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Abstract

This paper investigates the behavioral and welfare impacts of carbon pricing on energy-
vulnerable households in Belgium. We focus on two distinct groups: energy poor (EP)
households, who spend a large share of their income on energy, and hidden energy poor
(hEP) households, who spend very little on energy, suggesting severe self-restriction. Lever-
aging eleven cross-sections of the Belgian Household Budget Survey, we estimate a Quadratic
Almost Ideal Demand System with demographic controls to simulate household responses
to energy price changes under the forthcoming EU ETS 2 reform. Our analysis shows that
hEP households - despite their low observable energy use - suffer disproportionately high
welfare losses. In contrast, EP households face higher tax burdens but experience compar-
atively smaller welfare impacts. Both groups display greater price sensitivity - particularly
for heating fuels and transport - than the general population, with income emerging as the
primary driver of this responsiveness. Logistic regression results further highlight key struc-
tural differences between EP and hEP households in terms of housing characteristics, heating
systems, and regional location. These findings underscore the importance of integrating dif-
ferent vulnerability profiles into carbon pricing assessments, enabling the identification of
horizontal equity concerns that are often overlooked in income-based analyses.

Keywords: Carbon Pricing, Energy Poverty, Demand System, Welfare Analysis

1. Introduction

In response to global warming, the European Union has committed to reducing green-
house gas emissions by 55% by 2030 and achieving carbon neutrality by 2050. To help meet
these targets, the Commission will introduce a new Emissions Trading Scheme for the road
transport and building sectors (ETS 2). They accounted respectively for 23% and 14% of EU
CO2 emissions in 2021 (European Environment Agency, 2024). By requiring fuel suppliers to
purchase emission allowances, ETS 2 is expected to increase fuel prices. Anticipating house-
holds behavioral reaction is therefore essential to understand its impact on their welfare and
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living standards. Public debates - most notably those sparked by the Yellow Vests move-
ment in France - highlight how carbon pricing can have uneven effects across households. A
substantial body of literature has integrated demand systems into microsimulation models
to estimate responses to carbon pricing reforms. This stream of research broadly agrees
that carbon taxes place a disproportionate burden on low-income households, who devote a
larger share of their income to carbon-intensive energy goods (Douenne, 2020; Nikodinoska
and Schröder, 2016; Tovar Reaños and Wölfing, 2018).

This article seeks to move beyond the standard conclusion that carbon pricing is re-
gressive by offering an ex-ante behavioral welfare analysis rooted in the European policy
framework, and by extending beyond traditional income-based classifications. A growing
body of research stresses the importance of considering dimensions other than income when
identifying households struggling to meet their energy needs (Okushima, 2017). This litera-
ture distinguishes between energy poor households—who spend a large share of their income
on energy—and hidden energy poor households—who severely limit energy consumption to
keep expenses low. In Belgium, 21.8% of households were affected by energy poverty in 2022
(Fondation Roi Baudouin, 2024), highlighting the urgency of recognizing and addressing the
diversity within this vulnerable population to ensure a fair energy transition. Understanding
how these groups respond to rising energy prices is essential for evaluating the distributional
impacts of carbon taxation. Despite progress in identifying energy poverty, much of the
existing literature on carbon pricing overlooks the specific burden it places on (hidden) en-
ergy poor households. Notably, behavioral microsimulation models rarely incorporate energy
poverty indicators. Some exceptions exist: Berry (2019) underscores the need to consider
energy-poor households, though her model relies on a simplified linear expenditure frame-
work and focuses on revenue recycling. Charlier and Kahouli (2019) highlight heterogeneity
in price responses and stress the distinction between energy and income poverty. More re-
cently, Tovar Reaños and Lynch (2022) include energy poverty indicators in their analysis
for Ireland but do not differentiate behavioral responses across household types. None of
these studies fully account for the diversity within energy-poor groups. In fact, by including
hidden energy poor households, we expand the identified energy-vulnerable population by
roughly one third, significantly enhancing the scope of our policy analysis.

Building on this literature, our paper leverages eleven cross-sections of the Belgian House-
hold Budget Survey (HBS) to conduct a behavioral microsimulation that explicitly incorpo-
rates energy poverty statuses into a welfare analysis of carbon pricing. We begin by reviewing
the literature on energy vulnerability and its measurement to motivate our choice of indi-
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cators. We then offer a detailed descriptive analysis of the energy-vulnerable population
in Belgium, showing how (hidden) energy poor differ not only from the general population
but also from households with similar income levels. Moreover, we find substantial inter-
nal heterogeneity: key differentiating factors between energy poor and hidden energy poor
households include region, dwelling type, and heating system. These insights are formalized
through the estimation of two logistic regressions that identify the most salient determinants
of both statuses. These variables are then embedded into a demographic specification of
a Quadratic Almost Ideal Demand System (QUAIDS), allowing us to tailor behavioral re-
sponses to household characteristics and simulate demand adjustments in response to energy
price increases. Our results point towards income as the dominant factor driving behavioral
responses to carbon pricing, though some additional price-responsiveness is observed among
hidden energy poor households. Importantly, our welfare analysis reveals that arithmetic
tax burden measures overlook critical differences in vulnerability: hidden energy poor house-
holds, despite their low energy consumption, suffer disproportionately high welfare losses.
In contrast, energy poor households display higher tax burdens but comparably lower wel-
fare costs. These findings underscore the importance of complementing income-based and
vertical equity metrics with horizontal welfare indicators that capture the non-linear utility
of income and energy consumption within a carbon pricing framework.

Our contributions to the literature are fourfold. First, to our knowledge, this is the first
study to conduct an econometric analysis of the socio-demographic determinants of hidden
energy poverty, and the first to estimate the impact of carbon pricing on this specific pop-
ulation. By including hidden energy poor households, we significantly expand the scope of
the vulnerable groups typically considered in policy analyses. Second, by embedding these
determinants into a demographically-specified demand system, we are able to simulate dif-
ferentiated behavioral responses across household types, yielding a more accurate picture
of how energy vulnerability shapes reactions to energy price changes. Third, our ex-ante
microsimulation approach offers fresh insights into the horizontal equity dimensions of green
taxation, a concern that is often underexplored in policy design despite its importance for
social acceptance. Finally, our work is among the very few to evaluate the expected distribu-
tional effects in Belgium of the forthcoming EU-ETS 2, thereby contributing to the empirical
grounding of current policy debates.

In the remainder of this paper, Section 2 reviews the main concepts and measurement
challenges related to energy poverty, with a particular focus on the Belgian context, and out-
lines our energy poverty indicators. Section 3 introduces the dataset, before presenting key
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descriptive statistics and the results of our econometric analysis of (hidden) energy poverty
determinants. Section 4 details our demand system estimation, including the specification
of the QUAIDS model, the estimation strategy, and elasticity results. Section 5 presents
our welfare analysis of carbon pricing, based on a behavioral microsimulation of the forth-
coming EU-ETS 2 reform, with a focus on the distributional impacts across income deciles
and energy-vulnerable households. We conclude with a discussion of our findings and their
implications for policy design.

2. The Energy Poverty Phenomenon

2.1. Literature Review

While the significance and multidimensional nature of energy poverty are widely ac-
knowledged, there is still no consensus on its precise definition or underlying causes, and
consequently, no agreement on the most appropriate method of measurement. Over the
past three decades, the literature has proposed five main approaches to measuring energy
poverty: (i) expenditure-based indicators, (ii) subjective indicators based on household self-
identification, (iii) minimum-income-standard-based indicators assessing the affordability of
essential energy needs relative to a minimum standard of living, (iv) multidimensional com-
posite indicators, and (v) indicators based on the modelling of households’ required energy
consumption. Subjective indicators are excluded due to their sensitivity to socio-cultural
context and survey design (Waddams Price et al., 2012), while minimum-income-standard-
based measures are typically suited for application at regional or sub-regional levels (Romero
et al., 2018). Regarding multidimensional approaches, we follow Rademaekers et al. (2016)
in advocating for the use of a selection of targeted indicators, rather than relying on a single
composite metric, to better distinguish between different forms of energy poverty. Finally,
we do not employ model-based indicators, as these require a wide range of assumptions, the
existence of advanced engineering models, and extensive datasets (Ye et al., 2022). There-
fore, we focus in this paper on expenditure-based measures for which we leverage detailed
consumption data, allowing us to also estimate a demand system and evaluate households’
behavioral responses to carbon pricing

Expenditure-based indicators are the most widely used approaches to identifying energy
poverty and typically focus on households whose energy expenditure is disproportionately
high relative to their income (hereafter referred to as EP households). A pioneering example
is the 10% Fuel Poverty Ratio introduced by Boardman (1991), which defines a household
as energy poor if its domestic energy costs amount to at least 10% of its income. Other
widely used measures include the Low Income High Costs (LIHC) indicator proposed by
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Hills (2011), which compares a household’s energy expenditure with its disposable income,
and the After Fuel Cost Approach, which identifies households as income poor after ac-
counting for housing and energy costs. However, these measures have been criticised for
their lack of transparency - particularly regarding the distinction between energy poverty
and income poverty - and for their sensitivity to threshold adjustments, which can lead to
inconsistent household classifications and potential false positives (Legendre and Ricci, 2015;
Moore, 2012). A more recent and prevalent indicator is the twice the median (2M) measure,
which classifies households as energy poor if their energy expenditure relative to disposable
income exceeds twice the national median (Rademaekers et al., 2016). Meyer et al. (2018)
further adapt the 2M indicator in their construction of an energy poverty barometer for
Belgium, incorporating housing costs and equivalised household income.

However, relying exclusively on EP measures risks overlooking a significant share of
energy-vulnerable households who remain undetected when attention is limited to excessive
energy spending. A more recent body of research highlights the existence of households
who severely restrict their energy use due to financial constraints—referred to as hidden
energy poor households (hereafter hEP households). This phenomenon is substantial: An-
derson et al. (2012) report that in Great Britain, up to 63% of surveyed income poor house-
holds adopt coping strategies, such as regularly or entirely forgoing heating, even when
their dwellings receive energy efficiency improvements.1 There is even less agreement on the
definition and underlying drivers of hEP, as these situations of self-imposed restriction are
inherently difficult to detect, even through targeted support schemes or administrative data
(Barrella et al., 2022). Rademaekers et al. (2016) argue that relative energy expenditure
does not reliably indicate whether energy needs are met, and therefore advocate for hEP
measures based on absolute monetary thresholds rather than expenditure shares. Building
on this rationale, Bagnoli and Bertoméu-Sánchez (2022) and Tovar Reaños et al. (2023)
define hEP households as those whose energy expenditure falls below half the national me-
dian (M/2). Meyer et al. (2018) further refine this approach by incorporating equivalised
disposable income and dwelling insulation, while Betto et al. (2020) adapt the M/2 measure
to account for regional climate variability, reflecting the specific requirements of the Italian
context.

1Yet, underconsumption of energy resulting in inadequate thermal comfort can have serious adverse effects
on health, underscoring the need for policy intervention (Ormandy and Ezratty, 2012).
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2.2. Measuring (hidden) Energy Poverty

In this study, we adopt the indicators developed by Meyer et al. (2018) to assess both
the extent and depth of (hidden) energy poverty. These indicators build explicitly on the
existing literature to capture the multifaceted nature of energy poverty and are tailored to the
Belgian context. Moreover, the annual recalibration of thresholds inherent in these indicators
allows them to reflect evolving socio-economic conditions. As detailed in the next section,
our primary adjustment is the use of Household Budget Survey data in place of Statistics
on Income and Living Conditions (SILC) data. While this choice offers greater precision
in the breakdown of energy expenditures, it provides less detailed information on dwelling
insulation in recent years. Nevertheless, our measures remain effective and consistent in
capturing both phenomena.2

2.2.1. Energy Poverty (EP)

Our objective is to identify households that overspend on energy and to quantify the
extent of this overspending. A household is classified as energy poor if its energy expenditure
exceeds twice the median ratio of energy expenditure (EE) to disposable income net of
housing costs.3,4 To exclude more affluent households whose high energy spending may reflect
lifestyle preferences rather than financial vulnerability, we restrict the analysis to households
in the bottom half of the equivalised income distribution. The threshold is calculated as
follows:

EP threshold = 2× median
(

household energy expenditure
household disposable income (exc. housing costs)

)
(1)

Following standard practice in poverty research, the depth or severity of energy poverty
is defined as the monetary gap between a household’s actual energy expenditure and the EP
threshold.

2As shown in Table B.1 in the Appendix, our (h)EP prevalence figures over time align closely with official
Belgian statistics reported by the Fondation Roi Baudouin, including those presented in their latest report
(2024). Moreover, our measures clearly distinguish between the two types of energy poverty, as households
falling under both measures never represent more than 0.1% of the population.

3As noted by Meyer et al. (2018), housing costs are capped at a maximum of twice the median housing cost
in order to isolate energy-related hardship from issues arising from excessively high housing expenses.

4Housing costs include rent for tenants and half of the imputed rent for homeowners with a mortgage, as
imputed rent often overestimates actual mortgage payments.

6



2.2.2. Hidden Energy Poverty (hEP)

We also seek to identify households that underspend on energy and to quantify the extent
to which their expenditures fall short of basic energy needs. The threshold for hEP targets
households whose energy spending is insufficient to meet these needs compared to similar
households. This absolute amount used for benchmarking is the mean of two medians: (i)
the median absolute energy expenditure of households with the same number of members
and (ii) the median absolute energy expenditure of households living in dwellings with the
same number of rooms. To ensure accuracy, we again limit the analysis to households in
the bottom half of the equivalised income distribution. In addition, to avoid misclassifying
households that live in well-insulated dwellings—and thus have low energy needs—we exclude
households in buildings classified as well-insulated.5,6 The threshold hence represents a proxy
for basic energy requirements7 and is constructed as follows:

hEP threshold =

0.5 · median EE of all HH with similar size +
0.5 · median EE of all HH with similar dwelling

2
(2)

Adapting standard measures of poverty severity to the context of energy underconsump-
tion, the depth of hidden energy poverty is defined as the monetary gap between a household’s
actual energy expenditure and the reference energy expenditure of comparable households
(based on the average of the relevant medians). This metric captures the extent to which
hEP households fall short of achieving a basic standard of energy comfort.

3. Data

3.1. The Household Budget Survey

For the entirety of this paper, we use 11 cross-sections of the Belgian Household Budget
Survey (HBS), covering the years 2003 to 2010 annually and 2010 to 2016 biannually, with

5Our approach diverges from that of Meyer et al. (2018), who had access to additional variables concerning
dwelling insulation for survey years after 2012. In line with Okushima (2017) for Japan and Betto et al.
(2020) for Italy, we use a dwelling’s construction year as a proxy for its insulation quality. Specifically, we
define a dwelling as well-insulated if it was built after 1990, corresponding to the introduction of first major
thermal insulation regulations in Belgium.

6Regarding electricity production through solar panels, Figure A.1 in the Appendix shows that this phe-
nomenon was negligible before 2010 and surged only after 2017. Moreover, solar installations are more
common in the upper half of the equivalised income distribution.

7Despite our methodological adjustments, the identification of hEP households remains imperfect. It may
still capture households with atypical preferences, old but renovated dwellings, or specific energy needs.
Therefore, it is more accurate to interpret households falling below the hEP threshold as being at risk of
hidden energy poverty.
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each cross-section surveying between 4,000 and 6,000 households. Although EU-SILC is also
suitable for measuring energy poverty, Thomson et al. (2017) recommend using household
energy expenditure data, as it offers the highest level of disaggregation available. Moreover,
access to detailed household expenditure data is essential for robust demand system estima-
tion, as discussed in the following section.

Our dataset includes over 40,000 households, each with detailed expenditure records, in-
cluding spending on food and transport fuels (gasoline and diesel) during the survey period.
Heating fuel (natural gas and heating oil) and electricity expenditures are derived from the
most recently reported annual energy bill. Accordingly, when imputing prices using Stat-
bel’s8 monthly Consumer Price Indices, we apply a six-month lag for energy products. In
addition, the HBS contains extensive socio-demographic information, including income, age,
and employment status of each household member, family composition, region of residence,
housing type (e.g., terraced house), and ownership of durable goods (e.g., cars and appli-
ances). We do not use data on durable goods expenditures, as these reflect investment
decisions rather than routine consumption. However, we control for the stability of these
expenditures over time, as shown in Figure A.2 in the Appendix.

3.2. Descriptive statistics

3.2.1. (hidden) Energy Poverty

We analyze the extent and composition of (hidden) energy poverty in Belgium using the
indicators introduced in subsection 2.2. As shown in Table 3.1, energy-poor (EP) households
are more prevalent in the sample than hidden energy-poor (hEP) households. However,
including hEP households expands the population considered vulnerable to energy costs by
approximately one third, underlining the importance of considering both groups. A clear
income gradient is evident: the prevalence of both EP and hEP declines sharply across
deciles. Notably, EP households tend to be more income-poor than hEP households. Table
B.3 in the Appendix reports that 47% of EP households are At Risk of Poverty (AROP),
compared to 37% of hEP households. Moreover, (h)EP households display deeper socio-
economic vulnerability. As Table B.3 shows, 29% of EP households and 39% of hEP ones
include a wage earner, compared to 62% of the general population. Educational attainment
is also lower: over one-third of EP and hEP households have no or only primary education,
and tertiary education is rare. Housing conditions further reflect the disparities between

8Belgium’s National Statistical Agency, responsible for producing the HBS data.
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(h)EP and the rest of the population: they are far more likely to be renters,9 tend to live
in smaller dwellings with fewer rooms, and a majority reside in buildings constructed before
1970. Regional patterns differ across the two groups: EP households are overrepresented in
Wallonia, while hEP households are disproportionately concentrated in Brussels. Housing
type and heating sources also vary: hEP households are more likely to live in flats but
also to rely on solid fuels for heating, which may reflect structural constraints contributing
to hidden energy poverty. Finally, demographic composition differs. Both EP and hEP
households are more likely to consist of single adults—either active or retired—and are
more often single-parent families. Children are less frequently present in these households,
suggesting differences in family structure that may intersect with vulnerability to energy
poverty. While these descriptive statistics offer valuable insight into the socio-economic and
housing profiles of energy-poor households, a fuller understanding of the determinants of
(hidden) energy poverty requires formal econometric analysis, as developed in subsection
3.3.

Table 3.1: Share of (Hidden) Energy Poor Households by Income Decile

Income Decile EP Share (%) hEP Share (%)

1 41.0 30.7
2 26.1 22.5
3 15.9 17.8
4 10.3 15.7
5 6.7 13.2

Total Sample Rate 13.6 4.62
Note: EP = Energy Poverty, hEP = Hidden Energy Poverty. Shares represent the

distribution across the bottom five income deciles. The final row reports the headcount rate
for the total sample population.

Source: Authors’ calculations based on HBS data for Belgium (2003–2016).

3.2.2. Price and Expenditure Patterns

As outlined in Subsection 4.1, the demand system is estimated over five composite con-
sumption bundles. Identifying price elasticities reliably requires meaningful price variation
over time. Figure 3.1 illustrates the evolution of consumer prices for each bundle, indexed
to 2013 price levels. Energy-related goods exhibit substantial price volatility over the 2003–
2016 period. This pronounced variation strengthens the identification of own-price and

9One possible concern is that (h)EP households consider expenditure on rents and expenditure on energy as
substitutes (e.g., higher rents for better-insulated dwellings). However, as shown in Table B.2, the correlation
between rent and energy expenditure is weakly negative, providing no strong evidence of such substitution.
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Figure 3.1: Real Price Variation for the Different Bundles of Goods
Source: Authors’ calculations based on HBS data for Belgium (2003-2016).

cross-price elasticities for these categories. Figure 3.2 complements this by displaying trends
in household expenditure shares, with a noticeable surge in energy spending around 2010.
This dynamic coincides with peaks in energy price indices and highlights the importance of
examining energy demand separately.

Figure 3.3a shows that overall expenditure shares devoted to the four consumption bun-
dles decline as income increases. This pattern is primarily driven by a decrease in the budget
shares allocated to food and electricity, while expenditure shares for heating and transport
fuels show more muted or inconsistent trends across deciles. Figure 3.3b complements this by
comparing expenditure patterns across energy poverty categories, as well as with the bottom
half of the income distribution (both including and excluding energy-poor households). The
figure confirms the core logic behind our classification: EP households are systematically
identified as overspending on energy, while hEP households are characterized by unusually
low energy spending. Additionally, hEP households allocate a relatively higher share of their
budget to food, reinforcing the relevance of taking into account this bundle for potential sub-
stitution patterns. In contrast, EP households appear to spend relatively more on transport
fuels, potentially reflecting greater mobility needs that could be explained by their presence
in the more rural Wallonia.
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Figure 3.2: Evolution of All Population Expenditure Shares
Source: Authors’ calculations based on HBS data for Belgium (2003-2016).

(a) Expenditure Shares by Income Decile (b) Expenditure Shares by Category of the Population

Figure 3.3: Household Expenditure Shares by Income and Socio-demographic Group
Source: Authors’ calculations based on HBS data for Belgium (2003–2016).

3.3. The Determinants of (hidden) Energy Poverty

To analyse the socio-demographic determinants of (hidden) energy poverty, we employ a
binary logit model. We assume the existence of an unobserved latent variable EP ∗

i repre-
senting the propensity of household i to be energy poor. This latent variable is modeled as
a function of the explanatory variables:

EP ∗
i = Xiβ + εi,
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where Xi is a vector of observed covariates, β is a vector of coefficients to be estimated,
and εi is an error term assumed to follow a logistic distribution. The coefficients β reflect
the change in the log-odds of being energy poor for a one-unit increase in each covariate. For
interpretability, we also report odds ratios, obtained by exponentiating the coefficients. An
odds ratio greater than one implies an increased likelihood of being energy poor. The same
specification is applied to model hidden energy poverty (hEPi). To ensure comparability
across households and to focus the analysis on the population most at risk, the models are
estimated on a restricted sample comprising only households in the bottom half of the in-
come distribution. This restriction allows the identification of the drivers of (hidden) energy
poverty within a more homogeneous income group.10

To assess model robustness, we run the standard checks. Pseudo-R2 values and Area
Under the Curve statistics indicate satisfactory explanatory and discriminatory power for
the EP model. In contrast, the hEP model performs less well.11 Given the rarity of hidden
energy poverty, we also estimated a complementary log-log specification, following Legen-
dre and Ricci (2015), but results were largely unchanged.12 This likely reflects the inherent
difficulty of capturing the determinants of hidden energy poverty, which by nature involves
behavioral and structural under-consumption patterns that are more complex and less easily
explicable than "classic" energy poverty.

10Importantly, income is not included as an explanatory variable, as it directly enters the construction of the
energy poverty indicators. Including income would therefore risk introducing endogeneity into the model. A
similar logic explains the exclusion of construction year variables for the hEP logit.

11Variance Inflation Factor checks show no evidence of multicollinearity.
12The cloglog transformation is right-skewed and particularly suited for modeling rare events. Yet, the cloglog

specification yielded results qualitatively similar to the logit, with only marginal changes in fit statistics.
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Table 3.2: Logit Estimates for Energy Poverty (EP) and hidden Energy Poverty
(hEP)

Variable
EP hEP

Coef. O.R.- 1 Coef. O.R. - 1

Wage Earner –0.91*** –60% –0.08 –7%

No Education (ref. cat.)
Primary Education –0.15* –14% –0.05 –5%
Secondary Education –0.18*** –16% –0.15* –14%
Tertiary Education –0.30*** –26% –0.03 –2%

Renter (ref. cat.)
Owner with Loan –1.31*** –73% –0.17* –15%
Owner without Loan –1.59*** –80% 0.04 +4%

# Cars –0.21*** –19% –0.25*** –22%

HH Type: Couple Active (ref. cat.)
Couple Retired –0.54*** –41% –0.16 –14%
Many Adults –0.60*** –45% –0.42*** –34%
Single Active 0.64*** +89% 0.25*** +28%
Single Retired 0.33*** +40% 0.08 +8%

# Children –0.35*** –30% –0.04 –4%

Region: Brussels (ref. cat.)
Flanders –0.00 0% –0.78*** –54%
Wallonia 0.40*** +50% –0.90*** –59%

Detached House (ref. cat.)
Flat –0.62*** –46% 0.85*** +133%
Terraced House –0.44*** –36% 0.35*** +42%

Construction: After 2000 (ref.)
Before 1970 0.32*** +38% — —
1970–1990 0.36*** +44% — —

# Rooms 0.16*** +18% 0.04 +4%

Heating System Type: Electricity (ref. cat.)
Gas 0.22** +24% –0.54*** –42%
Oil 0.84*** +132% –0.16 –15%
Other –0.38 –31% 0.25 +28%
Solid –0.04 –4% 1.17*** +224%

Time Controls
Years After 2000 0.00 0% –0.03* –3%
Year 2008–09 0.03 +3% –0.09 –9%
Years After 2011 –0.06 –6% –0.34** –29%

McFadden’s R2 0.171 0.084

Note: Coefficients from logit regressions; OR = odds ratio interpreted as percentage change from baseline.
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Source: Authors’ calculations based on HBS data for Belgium (2003–2016), bottom 5 deciles.

Table 3.2 reveals both shared and distinct determinants of (hidden) energy poverty.
While many socio-demographic variables are significant in both models, coefficients for hEP
tend to be smaller and less precisely estimated, reflecting the more diffuse nature of under-
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consumption. Three key dimensions differentiate the two forms of deprivation: region, hous-
ing type, and heating system. EP is significantly more prevalent in Wallonia, among house-
holds living in detached houses, and those relying on oil-based heating. In contrast, hEP is
more common in Brussels, and associated with flat dwellings and solid fuel heating systems.
Some counterintuitive findings emerge with respect to what was observed in the descriptive
statistics of subsection 3.2, such as the negative association between the number of children
or retired household members and the likelihood of being (hidden) energy poor. Finally, all
variables with statistically significant associations in either model are retained as candidate
demographic controls in the subsequent behavioral model, ensuring the tailored estimation
of (h)EP reactions to carbon pricing.

4. Demand System Estimation

In this section, we develop a behavioral model to estimate the price and income elasticities
of household energy consumption. This model is designed to evaluate the extent to which
households will be impacted by the policy reforms under consideration. Indeed, as the model
is derived from theoretically consistent measures of utility, it allows for the computation of
welfare metrics, as seen in section 5. To ensure consistency with the earlier sections of this
study, we enrich our model with the socio-demographic variables driving (hidden) energy
poverty.

4.1. Specification of the Demand System

4.1.1. The Quadratic Almost Ideal Demand System

Following common practice in the literature (Brännlund and Nordström, 2004; Douenne,
2020; Semet, 2024), we employ the Quadratic Almost Ideal Demand System (QUAIDS), as
proposed by Banks et al. (1997). QUAIDS extends the Almost Ideal Demand System (AIDS)
developed by Deaton and Muellbauer (1980) by allowing for non-linear relationships between
expenditures shares and income, commonly referred to as Engel curves. They are displayed
for energy goods in the figure 4.1 below in a nonparametric form, reflecting the need for a
quadratic specification. This model is particularly suitable for estimating elasticities while
satisfying fundamental properties derived from neoclassical demand theory13. In addition,

13Homogeneity is imposed through the use of relative prices, while symmetry is enforced via the optimum
minimum distance estimator (Blundell, 1988; Browning and Meghir, 1991). These properties are testable
using likelihood-ratio tests, which compare restricted and unrestricted models. The additivity (or adding-up)
condition is inherently satisfied by the structure of the demand system: expenditure shares always sum to
one, ensuring that total expenditures align with the sum of category expenditures after estimation; during
the estimation process, one category is excluded, with its coefficients later recovered by enforcing additivity.
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Figure 4.1: Engel curves for energy goods
Note: In demand system estimation, income is approximated by total expenditures, reflecting total budget

allocation.

its flexibility in integrating demographic variables makes it suited to our analysis, as it allows
key determinants of energy poverty to enter the specification of the model (see subsection
4.1.2). We present here the system of equations for QUAIDS without demographics. It is
defined as follows and is solved using the Iterated Linear Least Squares (ILLS) estimator
developed by Blundell and Robin (1999):

wi = αi +
I∑

j=1

γij ln pj + βi ln
m

a(ppp)
+

λi

b(ppp)
ln

(
m

a(ppp)

)2

+ ui (3)

where wi is total expenditures’ share spent on goods category i, pj is the price index of
goods bundle j and m

a(ppp)
are the real total expenditures. αi, γij, βi and λi are parameters of

interest, and ui is the error term. b(ppp) is the following price aggregator: b(ppp) =
∏

pβi

i

To implement this formula on our data, we must first choose the dependent variables,
i.e., the different goods categories based on which we construct the wi. To be consistent with
the analysis above, we consider separately transport (gasoline and diesel) and heating fuels
(natural gas, liquid and solid fuels). In addition to that, we add food and electricity con-
sumption as these categories present specific patterns of substitution/complementary with
fuels. The remaining expenditures are listed under "other", with investments on durable
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goods excluded.14 This gives a total of five categories (I = 5). Total nominal expenditures
m are deflated by a general price index a(ppp) whose choice is detailed here below. Demo-
graphic characteristics enter the equation by shifting the values of αi as discussed in section
4.1.2.

Once variables are defined, parameter estimation proceeds via repeated OLS regressions
of the first four equations of the system.15 This iterative method accommodates the fact
that parameters appear not only as coefficients but also within the translog price index used
to define a(ppp) (Deaton and Muellbauer, 1980):

ln a(ppp) = α0 +
∑
i

αi ln pi +
1

2

∑
i

∑
j

γij ln pi ln pj (4)

For the initial iteration, since the parameters are not yet valued, we approximate a(ppp)

using the Stone Index lnPStone =
∑

wi ln pi. Subsequent iterations refine the estimates of
parameters, along with ln a(ppp), until convergence is achieved. The final parameter values are
used to compute total expenditure elasticities ηi and uncompensated (own- or cross-) price
elasticities θij by log-derivation of wi:

ηi = 1 +
µi

wi

(5)

with
µi =

∂wi

∂ lnm
= βi +

2λi

b(ppp)
ln

m

a(ppp)
(6)

Θij = −δij +
µij

wi

(7)

where δij is Kronecker delta with δij = 1 ∀ i = j (own-price elasticity), and δij = 0 ∀
i ̸= j (cross-price elasticity).

with

µij =
∂wi

∂ ln pj
= γij − µi

(
αj +

∑
k

γkj ln pk

)
− λiβj

b(ppp)

(
ln

m

a(ppp)

)2

(8)

14As we do not consider investments in durables explicitly, our elasticities might reflect some of these long
term decisions. If a household facing high energy prices decided to invest in a cleaner heating system, thus
reducing its energy consumption, this will translate into our elasticity estimates. We provide descriptive
statistics about heating system switches in figure A.3 in the Appendix, showing the moderate increase in
the adoption of natural gas in replacement of heating oil.

15The fifth equation is estimated ex-post by supposing additivity. The values of the parameters retrieved are
independent of which equation is dropped from the estimation, as shown by Barten (1969).
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4.1.2. Demographic Specification

Demographic characteristics are integrated into the model by making the intercept αi

household-specific (Lecocq and Robin, 2015): αh
i = (ααα′i)sssh where αααi is a vector of coeffi-

cients, and sssh represents socio-demographic variables. This method is known as the trans-
lating approach (Pollak and Wales, 1981) because it shifts the intercept value through the
parameters (in αααi) associated to each characteristic (in sssh). Ultimately, this allows better
accounting of households’ heterogeneity.

Based on the results from subsection 3.3, we calibrate the model using the following
demographic variables: labor market status, education level, ownership status, mortgage
repayment status, region, dwelling type, dwelling size (in rooms), presence of elderly mem-
bers, household size, region.16 Household income is used to instrument total expenditures
using the instrumental variable techniques to account for potential endogeneity (Lecocq and
Robin, 2015), while car and fossil heating system ownership are included to account for zero
expenditure shares on transportation and heating fuels as explained in the next subsection.

Once parameters are obtained on the total sample, we obtain groups’ specific reactions
to prices (Baker et al., 1989; Blundell et al., 1993) by computing elasticities for different
subgroups (e.g., based on energy poverty statuses). To do so, elasticities are first projected
for each household using model’s estimates, and then averaged to obtain subsample means.
This process makes the choice of demographics sssh key into tuning the demand system to
reflect energy poverty determinants when computing households’ behaviors.

4.1.3. Zero expenditure and estimation strategy

In our sample, a significant proportion of households report zero expenditure on trans-
port fuels, ranging from 23% to 30% depending on the year. This arises primarily from two
factors. First, infrequency of purchase might lead to errors. While the one-month survey
period of the Household Budget Survey (HBS) is generally sufficient to capture consumption
patterns, some low-volume consumers may not purchase transport fuels within the survey
window. However, this issue is mitigated by the fact that we mostly ill-capture relatively
small consumers who fuel-up their tank only once in a while (such a behavior increases the
probability of not reporting transport fuel expenditure during a whole month). Moreover,
these errors cancel out as soon as we observe a sufficiently large pool of individuals, as it is

16We include two flags (starting from 2008 and 2012) to control for methodological changes in the Household
Budget Survey. Besides, we did not retain construction year as it directly enters the definition of hEP
households.
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the case in our sample.

Secondly, car ownership determines the need for transport fuels. The absence of private
vehicle ownership is significant, with, depending on the year, 17% to 20% of households
not owning a car.17 To address this issue, we assume the ownership decision is taken ex-
ante and we employ a Heckman-type two-step procedure (Labandeira et al., 2022). Indeed,
without that correction, these zero expenditures might be misclassified as optimal corner
solutions rather than the result of ex-ante decision-making or constraints.18 To avoid so,
we first estimate a Probit regression of the ownership status (binary) over an enriched set
of demographic variables for the entire sample. The resulting Inverse Mill’s Ratio19 is then
included as a correction term in the QUAIDS equations of wi. We apply a similar approach
for heating fuels, as some households do not heat with gas or oil (8% to 18%, depending on
the year). In the end, we pool both ownership statuses into one (owners of both a vehicle and
a fossil heating system), and apply the Heckman correction once. Consequently, the final
model is estimated on households owning both a vehicle and a fossil-fuel heating system.20

4.2. Elasticity Results

This subsection presents the (Marshallian) own-price elasticities and budget elasticities
(relative to total expenditures). Budget elasticities directly contribute to the uncompen-
sated price elasticities by informing us about the magnitude of the income effect, which
comes along with the substitution between goods in Marshallian elasticities.21

17Company cars are non-negligible in Belgium, but because they usually come with a fuel card paid by the
employer (in 90% of the cases, May et al. (2019)), they are left out of our analysis.

18Note that when vehicle owners do not report any transport fuel expenditures, this is still considered as a
utility-maximizing behavior in our model (e.g., absence of consumption in the face of high prices).

19Its inclusion corrects for the selection bias as shown by Heckman (1979).
20Doing so, we restrict our sample by approximately 25%.
21We can disentangle these effects by looking at compensated/Hicksian price elasticities. In appendix, you can

find in Table B.5 all compensated cross-price elasticities, and in Table B.4 all uncompensated cross-price
elasticities. When comparing both tables, we see that necessities like electricity and heating are mostly
substitution-driven: people adjust consumption directly to price changes with little income effect. Transport
fuels shows mostly substitution but slightly higher than domestic energy, reflecting more flexibility. Finally,
Food has a balanced mix of both effects, aligning with its role as a necessary but partially adjustable good.
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Table 4.1: Elasticities and Model Fit – Full Population

Consumption Price Elasticity Budget Elasticity R2

Food −0.38∗∗[-0.65 ; -0.11] 0.87∗∗∗[0.84 ; 0.90] 0.30
Transport −0.24∗∗∗[-0.35 ; -0.13] 0.79∗∗∗[0.73 ; 0.86] 0.13
Electricity −0.72∗∗∗[-0.86 ; -0.58] 0.27∗∗∗[0.22 ; 0.33] 0.35
Heating −0.10∗∗[-0.18 ; -0.02] 0.35∗∗∗[0.29 ; 0.41] 0.22
Other −0.83∗∗∗[-0.91 ; -0.74] 1.18∗∗∗[1.17 ; 1.19] 0.45

Significance levels: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
Note: Uncompensated price and budget elasticities with 95% confidence
intervals.
Source: Authors’ calculations based on QUAIDS estimation using HBS
data.

In Table 4.1, we observe that all the consumption groups are price inelastic, with elas-
ticities below 1 in absolute value. This is particularly the case for transport and heating
fuels, whose uncompensated elasticities are respectively –0.24 and –0.1. These low values
suggest limited short-run substitutability or behavioral flexibility in these domains, which
is consistent with their status as necessities or infrastructure-constrained expenditures. By
contrast, electricity shows a much higher elasticity of –0.72, which may seem surprising at
first given it also represents a form of domestic energy. However, this likely reflects greater
adjustability in usage (e.g. lighting, appliances), compared to heating which is more rigid in
the short run. The food elasticity (–0.38) lies in a mid-range, while "other goods" display the
highest elasticity (–0.83), as expected for a more heterogeneous and discretionary category.

These patterns align with recent empirical findings. For example, Douenne (2020) finds
uncompensated elasticities of –0.45 for transport and –0.2 for housing energies in France,
both close to our own results. Similarly, Semet (2024) reports values of –0.3 for food and
–0.2 for home energy. Our electricity elasticity is close to those in Labandeira et al. (2022)
for Mexico (–0.67 to –0.71) or Nikodinoska and Schröder (2016) for Germany (–0.81). Our
transport fuel price elasticity lies in between the separate elasticities for gasoline and diesel
obtained by Calvet and Marical (2011), estimated at -0.35 and -0.11 respectively. More
importantly, the general ranking across categories we observe is in line with the literature.
Finally, the particularly low elasticity for heating fuels we observe (–0.1) is at the bottom
of the range found in the literature, suggesting very limited short-run substitutability or
adaptation capacity in this domain in our sample.
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In Table 4.1, we also report the budget elasticities across consumption categories. All
of them are strictly positive and below or close to 1, indicating that the goods are normal
and that expenditure shares remain relatively stable as income increases; except domestic
energies (electricity and heating) that clearly emerges as necessities with low budget elastic-
ities. The elasticity for other goods is the highest at 1.18, confirming its status as the most
income-sensitive category, likely encompassing many luxury or non-essential items. This is
followed by food (0.87) and transport (0.79), which are necessities, in line with their essential
nature.

These results are consistent with findings in the empirical literature. Semet (2024) re-
ports budget elasticity of 0.8 for food, which aligns with our estimate, although it seems
above other studies (0.41 for Nikodinoska and Schröder (2016), 0.6 for Labandeira et al.
(2022)). For domestic energy, our results echo the low values observed by Douenne (2020)
(around 0.5 for housing energy), Labandeira et al. (2022) (0.27 for electricity), as well as
Nikodinoska and Schröder (2016) (0.5 for electricity). The last study also reports higher
budget elasticities for transport fuels (0.8), very close to our result, though Douenne (2020)
find relatively smaller estimates (around 0.5).

Overall, our budget elasticities display a classical Engel pattern, with higher-income
households allocating proportionally less to necessities and more to flexible, luxury-type
expenditures. This confirms the validity of our model and aligns well with international
evidence.

Table 4.2: Uncompensated Price Elasticities by Group and Consumption Category

Group n Food Transport Electricity Heating Other

All Population 33,699 -0.40 -0.24 -0.72 -0.09 -0.82
Deciles 1–3 7,899 -0.56 -0.39 -0.70 -0.19 -0.87
Deciles 1–5 14,825 -0.51 -0.34 -0.71 -0.16 -0.85
Deciles 6–10 18,874 -0.30 -0.15 -0.72 -0.02 -0.80
hidden Energy Poor 1,111 -0.65 -0.48 -0.77 -0.19 -0.93
Energy Poor 3,427 -0.58 -0.36 -0.76 -0.18 -0.89
Dec. 1–5, non EP 10,297 -0.47 -0.32 -0.69 -0.15 -0.82

Source: Authors’ calculations based on QUAIDS estimation using HBS data.
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In table 4.2, we break down uncompensated price elasticities by group. First, we con-
centrate on the income dimension with the three first deciles (poor households), the five
first deciles (bottom half of the income distribution, and cutoff for energy poverty statuses),
and the upper half of the distribution (deciles 6 to 10). We observe a gradient with lower
income households exhibiting stronger reactions to price variation, except for electricity
whose elasticity remains high for all income groups. Looking at energy poverty statuses, we
observe a similar pattern with hidden energy poor (hEP) being more price-sensitive than
energy poor. Both of them report higher price elasticities than the rest of the population in
the bottom half of the income distribution (Dec. 1–5, non EP). Although income appears
as the main dimension at play to explain the differences between EP and the rest of the
population (their elasticities are close to those of poor households to which they mainly be-
long), hEP are particularly price-sensitive despite being richer that EP. We show in section
5 that these strong reactions to price variation come along with a non-negligible welfare cost.

Table 4.3: Budget Elasticities by Group and Consumption Category

Group n Food Transport Electricity Heating Other

All Population 33,699 0.88 0.78 0.30 0.39 1.17
Deciles 1–3 7,899 0.95 0.86 0.29 0.44 1.23
Deciles 1–5 14,825 0.94 0.84 0.30 0.43 1.19
Deciles 6–10 18,874 0.83 0.73 0.31 0.36 1.15
hidden Energy Poor 1,111 0.98 0.93 0.30 0.44 1.24
Energy Poor 3,427 0.96 0.77 0.28 0.38 1.23
Dec. 1–5, non EP 10,297 0.93 0.85 0.30 0.45 1.17

Source: Authors’ calculations based on QUAIDS estimation using HBS data.

We then compare the results obtained before with the ones of table 4.3 reporting bud-
get elasticities by group. The gradients in price elasticities is not that clearly reproduced
here. Though poorer households show slightly higher budget elasticities than richer ones
(except for electricity), differences in budget elasticities for (h)EP compared to same-income
population (Dec. 1–5 non EP) are not striking. Therefore, the trends obtained in the uncom-
pensated price elasticities should not be the sole result of differences in budget elasticities.
Indeed, looking at Table B.6 in the Appendix, we see that vulnerable groups (low income,
(hidden) energy poor) show stronger substitution patterns as well.
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5. Welfare Analysis of Carbon Pricing

To assess the distributional and welfare impacts of carbon pricing, we adopt the compen-
sating variation (CV) metric, following the methodology established by King (1983). This
approach allows us to account for non-homothetic preferences, heterogeneous price elastici-
ties, and realistic income-dependent substitution patterns. Unlike raw tax burden metrics,
the CV captures the full welfare cost of price changes. As such, it provides a money-metric
measure of welfare loss that is sensitive to both behavioral responses and differences in
marginal utility across households. This is especially critical when analyzing vulnerable
groups such as the energy poor and hidden energy poor. Using this framework, we are able
to produce a more nuanced and policy-relevant analysis of carbon pricing reforms.

Formally, the CV is defined as:

CV = E(p1, u0)− E(p0, u0) (9)

with

E(p, u) = a(p) · exp
(

u · b(p)
1− λ · u

)
(10)

where E(p, u) represents the expenditure function derived here from QUAIDS, p0 and p1

are the pre- and post-tax price vectors, and u0 is the initial utility level. Intuitively, the CV
tells us how much additional income a household would need after the tax to maintain the
same level of well-being as before the policy change. By definition, the level of expenditure
at initial price and utility level E(p0, u0) is equal to total expenditures prior carbon pricing
m. In our case, m is also used to retrieve u0 using the indirect utility function (see 11).
Once we obtain u0, we plug its value into the expenditure function along with the new price
vector p1 to obtain E(p1, u0). CV is then given by E(p1, u0)−m and is strictly positive in
the case of additional taxation like carbon pricing.

log u0(p,m) =
1

b(p)

[
log

(
m

a(p)

)
+ λ

(
log

(
m

a(p)

))2
]

(11)

For our policy analysis, we draw from the up-coming EU-ETS 2 by simulating the impact of
a €45 carbon price (valued at 2016 price-levels), which results in a 17% increase in heating
fuel prices and a 9.2% increase in transport fuel prices.22 As the QUAIDS framework allows

22The relative price increase allows us to simulate carbon pricing adaptive to inflation with a carbon price
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Figure 5.1: Tax Burden and Compensating Variation by Income Decile

us to compute household-specific welfare losses, capturing non-linear expenditure responses
and income effects, we obtain individual CV that we compare with the computations of an
arithmetic (non behavioral) tax burden.

First, we look at the comparison across the income distribution in Figure 5.1. We observe
that both the tax burden and the compensating variation (CV) increase in absolute terms
across income deciles, while exhibiting the usual regressive pattern when expressed relative
to income. When comparing the tax burden with the CV across income groups, differences
remain relatively limited, suggesting that in terms of aggregate monetary impact, both indi-
cators yield similar patterns. Even though (substitution) behaviors adaptation could entail
lower CV than TB on average, low price elasticities on heating and transport, coupled with
moderate price increases, limit the behavioral effect encompassed in the CV measure.23

proportional to past price levels.
23With general population price elasticities of -0.24 and -0.10 for transport and heating fuels, the price increases

of 9.2% and 17% result to average consumption drops of -2.21% and -1.7% respectively.
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Table 5.1: Comparison of Compensating Variation and Tax Burden Across Groups

Group CV (€/month) TB (€/month) CV (% Inc.) TB (% Inc.)

All Population –24.6 –24.6 –0.91 –0.91
Deciles 1–3 –21.4 –21.7 –1.26 –1.28
Deciles 1–5 –22.5 –22.5 –1.14 –1.14
Deciles 6–10 –26.4 –26.4 –0.71 –0.72
hidden Energy Poor –18.6 –8.5 –1.10 –0.50
Energy Poor –21.7 –30.3 –1.49 –1.98
Dec. 1 to 5, non-EP –23.2 –21.4 –1.02 –0.93

Note: CV = Compensating Variation, TB = Tax Burden. Values in euros per month.
Relative CV and TB are expressed as percentages of household disposable income.
Source: Authors’ calculations based on QUAIDS simulations and policy scenario modelling.

However, when disaggregating the analysis along energy vulnerability dimensions, signif-
icant differences emerge between the magnitudes of TB and CV. Indeed, looking at Table
5.1, we observe large discrepancies between the two measures for (h)EP households. These
differences are primarily driven by divergent expenditure profiles among EP and hEP house-
holds. EP households, who allocate a large share of their budget to energy, appear highly
exposed in arithmetic tax burden terms, yet their CV is lower—a sign that behavioral ad-
justments (such as substitution or curtailment) partially mitigate welfare loss. In contrast,
hEP households exhibit the opposite pattern: despite a relatively low tax burden due to
their limited energy spending, their CV is notably higher. This discrepancy reflects a higher
marginal utility of income and a constrained ability to substitute or absorb further energy
price increases without utility loss.

These results underscore the analytical value of a welfare-based approach, which cap-
tures both non-linear income effects and heterogeneous behavioral responses. Relying solely
on tax burden measures may thus underestimate the real incidence of carbon pricing for
vulnerable groups, whereas compensating variation offers a more comprehensive metric of
welfare impact. While EP households might appear as the biggest losers in the classical
monetary framework, their loss is compensated by their ability to cope with higher energy
prices. On the contrary, hEP households are already restraining on energy use and further
price increases might impact them well beyond the sole monetary dimension. This results
underpins the need to complement energy poverty metrics with the hidden energy poverty
dimension, as this population might suffer proportionally more than their limited monetary
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loss from higher energy prices. Finally, enriching carbon pricing impact analyses with a
focus on vulnerability profiles that go beyond income poverty allows to disentangle relevant
horizontal distributive patterns that are otherwise neglected in vertical equity studies.

6. Discussion and Conclusion

This paper has explored the distributional implications of carbon pricing through a be-
havioral lens, with a particular focus on energy poor (EP) and hidden energy poor (hEP)
households in Belgium. Leveraging a detailed household demand system estimation based on
eleven years of household budget survey data, we have provided a welfare-based evaluation
of the forthcoming EU-ETS 2 policy, disaggregated across income and energy vulnerability
dimensions.

Traditional energy poverty metrics often fail to detect households that restrict their
energy consumption below adequate levels due to financial constraints. Our analysis demon-
strates that hEP households, though not visible in standard indicators, represent a substan-
tial share of the vulnerable population—particularly within urban area—while EP house-
holds are more likely to be income poor and reside in less-densily populated areas. These
distinct patterns underscore the importance of disaggregating energy poverty into its visible
and hidden components. Logistic regression results confirm that Region, housing type, and
heating systems are key differentiators between the two groups. Educational attainment
and car ownership further stratify vulnerability, suggesting that energy poverty is embedded
within broader socio-economic disadvantages.

Our demand estimates indicate that food, domestic energy and transport fuels are price
inelastic, with transport and heating fuels showing the lowest responsiveness. Budget elas-
ticities put electricity and heating as necessities, whereas food and transport have moderate
income sensitivity. Lower-income and (hidden) energy poor households display higher price
elasticities, particularly for food, transport, and heating fuels. The lower income of (h)EP
households largely explains the differences in elasticities between them and other house-
holds. Nevertheless, hidden energy poor households exhibit greater sensitivity than energy
poor households, despite having higher average incomes. These variations highlight the need
to account for behavioral heterogeneity when evaluating carbon pricing effects on vulnerable
populations.

Our results also emphasize the importance of moving beyond income-based metrics.
While EP households face high tax burdens due to high energy expenditures, their welfare
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impact is comparably smaller. In contrast, hEP households, who appear less affected under
arithmetic measures due to their low energy use, incur greater welfare losses. This divergence
between tax burden and compensating variation highlights the limitations of conventional
policy assessments and underscores the added value of a behavioral welfare approach.

These findings carry several policy implications. Carbon pricing must be accompanied
by targeted compensation schemes that account not only for income, but also for vulnera-
bility arising from housing conditions and behavioral constraints in energy use. Recognizing
hidden energy poverty is particularly urgent: without intervention, these households may
face welfare losses disproportionate to their observable energy consumption. Structural in-
terventions such as building renovations and heating system upgrades are key to long-term
resilience.

By bridging demand system estimation with energy poverty metrics, this paper con-
tributes to the literature on the distributive effects of green taxation and introduces a novel
approach for evaluating horizontal equity. Future work could refine vulnerability indicators,
integrate more granular data on housing quality and energy needs, and simulate broader
climate policy packages that combine carbon pricing with investment and redistribution.
In doing so, it will be possible to craft climate policies that are not only environmentally
efficient, but also just and politically acceptable.
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A. Supplementary Figures
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Figure .1: Historical electricity production from PV panels in Belgium

Figure .2: Evolution of Durables’ Share in Total Expenditures
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Figure .3: Evolution of Households Heating System Type

B. Supplementary Tables

Table .1: (Hidden) Energy Poverty Rates and Depth Over the Years (%)

Year EP Rate EP Depth hEP Rate hEP Depth Any EP Rate Both EP Rate

2003 13.5 49.7 5.2 60.4 18.6 0.087
2004 14.3 55.3 6.7 62.9 20.9 0.051
2005 13.5 56.7 5.3 66.5 18.7 0.141
2006 13.4 65.8 5.2 77.4 18.3 0.199
2007 13.0 54.2 5.5 77.0 18.4 0.189
2008 13.5 69.9 5.0 81.2 18.4 0.114
2009 14.0 73.0 4.2 86.3 18.1 0.084
2010 14.3 67.0 4.7 82.8 18.9 0.028
2012 12.6 55.8 2.9 91.2 15.5 0.032
2014 13.5 57.0 4.2 84.1 17.7 0.000
2016 13.8 47.2 2.6 77.5 16.3 0.045

Note: EP = Energy Poverty, hEP = Hidden Energy Poverty. Rates are displayed in % and depth in €.
Source: Authors’ calculations based on HBS data for Belgium (2003-2016).
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Table .2: Correlation Between Rent, Energy, and Total Housing Costs

Variable Pair Correlation 95% CI p-value

Rent vs Energy Expenditure (absolute) −0.111 [−0.120, −0.102] < 2.2× 10−16

Rent Share vs Energy Share 0.156 — —
Rent Share vs Total Housing Share 0.949 — —
Energy Share vs Total Housing Share 0.460 — —

Note: The first row reports the Pearson correlation between absolute rent and energy expenditures, along with its 95% confidence interval
and the p-value from a two-sided test. Remaining rows show Pearson correlations between expenditure shares. The low (but statistically
significant) correlation of −0.111 suggests a weak inverse relationship between rent and energy expenses, indicating they are not close

substitutes in household budgets. In contrast, budget shares for rent and energy are positively correlated (0.16), suggesting that households
with high rent burdens often also face high energy burdens. Energy expenditure therefore appears to be a complementary - not substitutive -

component of housing cost pressures, supporting the relevance of analyzing energy poverty separately.
Source: Authors’ calculations based on HBS data for Belgium (2003-2016).
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Table .3: Household Socio-demographic Characteristics Across Categories of
the Population

Characteristic All D1–5 D1–3 EP hEP

Wage Earner Ref 62% 46% 38% 29% 39%

Education: No Education 7.2% 12% 15% 15% 14%
Education: Primary 13% 19% 21% 21% 20%
Education: Secondary 63% 59% 56% 55% 55%
Education: Tertiary 15% 8.0% 6.3% 6.7% 9.8%

Ownership: No 29% 41% 52% 62% 56%
Ownership: With Loan 36% 22% 16% 11% 14%
Ownership: Without Loan 34% 35% 31% 26% 28%

Number of Cars 1.04 0.89 0.78 0.69 0.66

Region: Brussels 10% 11% 13% 12% 26%
Region: Flanders 57% 52% 49% 43% 43%
Region: Wallonia 32% 35% 37% 44% 30%

House Type: Detached 53% 46% 41% 44% 29%
House Type: Flat 25% 30% 35% 36% 50%
House Type: Terraced 21% 23% 23% 19% 20%

Construction Year: After 1990 16% 11% 9.5% 7.5% –
Construction Year: Before 1970 55% 59% 61% 61% 68%
Construction Year: 1970–1990 27% 28% 29% 31% 31%

Number of Rooms 5.94 5.72 5.55 5.50 5.29

Heating: Electric 6.9% 6.7% 6.4% 5.2% 8.2%
Heating: Gas 55% 55% 57% 51% 49%
Heating: Oil 32% 31% 29% 39% 28%
Heating: Other 0.5% 0.5% 0.5% 0.2% 0.7%
Heating: Solid 4.6% 5.6% 6.4% 4.5% 12.9%

HH Type: Couple Active 34% 25% 23% 17% 22%
HH Type: Couple Retired 17% 18% 18% 14% 14%
HH Type: Many Adults 12% 13% 12% 5.6% 6.9%
HH Type: Single Active 22% 25% 28% 37% 35%
HH Type: Single Retired 13% 17% 17% 25% 20%

Number of Children 56% 58% 60% 35% 49%

Older Person Present 32% 38% 38% 42% 36%

At Risk of Poverty (AROP) 12% 24% 41% 47% 37%

Single Parent Family 5.8% 8.8% 11% 10% 10%

Note: Percentages represent the share of households in each subgroup. Numeric variables (e.g.,
rooms/cars) are presented as means.

Source: Authors’ calculations using Belgian HBS data (2003–2016).
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Table .4: Uncompensated Cross-Price Elasticities – Full Population

Food Transport Electricity Heating Other

Food −0.38∗∗ −0.29∗∗ 0.45∗∗ 0.14∗ −0.21∗∗∗

Transport −0.08∗∗∗ −0.24∗∗∗ −0.22∗∗∗ 0.14∗∗∗ −0.04∗∗∗

Electricity 0.05∗ −0.16∗∗∗ −0.72∗∗∗ −0.03 −0.02∗∗

Heating 0.01 0.11∗∗∗ −0.04 −0.10∗∗ −0.08∗∗∗

Other −0.47∗∗∗ −0.22∗∗ 0.26 −0.49∗∗∗ −0.83∗∗∗

Note: Own-price elasticities are on the diagonal. Stars indicate significance.
Significance levels: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
Source: Authors’ calculations based on QUAIDS estimation using HBS data
for Belgium.
Most cross-price effects are small but significant.
The positive cross-elasticity between Food and Electricity and between Trans-
port and Heating suggests some substitutability or shared budget constraints.

Table .5: Compensated Cross-Price Elasticities – Full Population

Food Transport Electricity Heating Other

Food −0.19 −0.12 0.50∗∗∗ 0.22∗∗∗ 0.05

Transport −0.03 −0.20∗∗∗ −0.20∗∗∗ 0.16∗∗∗ 0.03∗∗∗

Electricity 0.08∗∗∗ −0.13∗∗∗ −0.71∗∗∗ −0.02 0.03∗∗∗

Heating 0.06∗∗∗ 0.16∗∗∗ −0.03 −0.08∗ −0.02∗∗

Other 0.08 0.29∗∗∗ 0.43∗∗∗ −0.28∗∗∗ −0.09∗∗

Note: Own-price elasticities are on the diagonal. Stars indicate statistical
significance.
Significance levels: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
Source: Authors’ calculations based on QUAIDS estimation using HBS data
for Belgium.
Electricity has strong substitution effects: it substitutes positively with food
and other, and negatively with transport.
Heating substitutes with food and transport, and is complementary with
other goods.
Own-price elasticities are still inelastic and mostly significant.
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Table .6: Compensated Own-Price Elasticities by Group

Group Food Transport Electricity Heating Other

All (full population) -0.19 -0.19 -0.70 -0.06 -0.08
Deciles 1 to 3 -0.32 -0.32 -0.70 -0.17 -0.18
Deciles 1 to 5 -0.28 -0.28 -0.70 -0.14 -0.14
Deciles 6 to 10 -0.12 -0.12 -0.71 0.00 -0.04
Hidden Energy Poor (hEP) -0.39 -0.51 -0.77 -0.18 -0.25
Energy Poor (EP) -0.34 -0.29 -0.76 -0.15 -0.20
Dec. 1 to 5, Not (h)EP -0.25 -0.26 -0.68 -0.13 -0.11

Note: Table reports compensated (Hicksian) own-price elasticities, which reflect substitu-
tion effects. More negative values indicate stronger substitution response to price changes.
Source: Authors’ calculations based on QUAIDS model using Belgian HBS data.
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