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Abstract

We propose a solution concept for social environments called social rational-

izability with mediation that identifies the consequences of common knowledge of

rationality and farsightedness. In a social environment several coalitions may and

could be willing to move at the same time. Individuals not only hold conjectures

about the behaviors of other individuals but also about how a mediator is going to

solve conflicts of interest. The set of socially rationalizable outcomes with mediation

is shown to be non-empty for all social environments and it can be computed by

an iterative reduction procedure. We show that social rationalizability with media-

tion does not necessarily satisfy coalitional rationality when the number of coalition

members is greater than two.
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1 Introduction

Social environments (Chwe, 1994) constitute a framework in which it is possible to study

how groups of agents interact in a society. It specifies what each coalition can do if and

when it forms. Social environments are general enough to encompass the representation

of a cooperative game, an extensive-form game with perfect information, as well as a

normal-form game.1

We propose a new solution concept for social environments called social rationalizabil-

ity with mediation that identifies the consequences of common knowledge of rationality

and farsightedness. Given that social environments mainly deal with the behavior of

coalitions, whereas rationalizability is about the implications of rationality of individuals,

we convert coalitional behavior into individual behavior. Individual participation in a

coalition basically reverts either to agree to a coalitional move or to object to it and block

it. In a social environment several coalitions may and could be willing to move at the

same time. Conflicts of interest may arise: one coalition may try to preempt the move

of another coalition or coordination problems in and between coalitions may arise. We

assume that individuals not only hold conjectures about the behaviors of other individuals

but also about how a mediator is going to solve conflicts of interest.

In the rationalizability approach, conjectures are not assumed to be correct, but are

only constrained by considerations of rationality: individuals are rational and this is

common knowledge. That is, each individual believes that the behavior of every other

individual is a best response to some conjecture on every other individual’s behavior, and

further, each individual assumes that every other individual reasons in this way and hence

believes that every other individual believes that every other individual’s behavior is a

best responses to some conjecture, and so on.

Central to social rationalizability with mediation are the notions of individual behavior

and of conjectures about the mediator’s behavior. An individual behavior describes, for

each history, the coalitional moves the individual agrees to join and those she decides

to block. The mediator (player 0 whose payoff is always zero) chooses a move for each

possible set of moves on which the individuals could agree to join, and individuals hold

conjectures about the behavior of the mediator. Our definition of social rationalizability

is motivated by Pearce’s (1984) original extensive-form rationalizability.2

We show that the set of socially rationalizable outcomes with mediation is non-empty

for all social environments and it can be computed by an iterative reduction procedure.

Since social environments deal with coalitional moves, one may wonder if social rationaliz-

ability with mediation satisfies, in general, the property of coalitional rationality. That is,

1Chwe (1994) and Xue (1998) propose, respectively, the largest consistent set and the optimistic

or conservative stable standards of behavior as solution concepts for social environments. The largest

consistent set may fail to satisfy individual rationality while the stable standards of behavior may be

empty-valued or rule out too much.
2Related papers to extensive-form rationalizability are among others Bernheim (1984), Shimoji and

Watson (1998), Vannetelbosch (1999).
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in a situation in which a coalition of two or more individuals can move from a status quo

to different outcomes that are Pareto ranked, does social rationalizability with mediation

prescribe that players coordinate on the outcome that Pareto dominates all others? We

find that social rationalizability with mediation does not necessarily satisfy coalitional

rationality when the number of coalition members is greater than two.

The most closely related paper to ours is Herings, Mauleon and Vannetelbosch (2004)

who also define rationalizability for social environments. There are two main differences.

First, they do not define rationalizability directly on the social environment but rather

embed the social environment in a multi-stage game and then use the notion of extensive-

form game rationalizability by Pearce (1984) to solve the multi-stage game. Second,

their mediator is a dummy player whose payoff is always zero but who chooses an action

consisting of a permutation of the set of feasible moves after each history. Such a per-

mutation indicates the order according to which moves are implemented. Suppose that,

from a status quo, individuals can move to three outcomes x1, x2, and x3. The mediator

imposes a ranking over those three outcomes, for instance, (x2, x3, x1). If the individuals

find the moves to x1, x2, and x3 acceptable, then x2 is implemented. If they only agree

on x1 and x2, then x2 is still implemented. Such behavior of the dummy player guaran-

tees that individuals coordinate on the Pareto-dominant outcome. However, with a more

general mediator, it may happen that if the individuals find the moves to x1, x2, and x3

acceptable, then the mediator chooses to implement x2. But, if they only agree on x1 and

x2, then she chooses to implement x1 instead. We show that once the behavior of the

mediator is not constrained to the choice of a permutation over alternatives, individuals

may fail to coordinate on the Pareto-dominant outcome.

Besides the largest consistent set and the optimistic or conservative stable standards

of behavior, another common notion for analyzing outcomes that emerge in the long

run when individuals are farsighted is the farsighted stable set (Chwe, 1994; Herings,

Mauleon and Vannetelbosch, 2009; Mauleon, Vannetelbosch and Vergote, 2011; Ray and

Vohra, 2015).3 However, the farsighted stable set suffers from a conceptual drawback:

the maximality issue. For instance, while coalitional moves improve on existing outcomes

along a farsighted objection, coalitions might do even better by an alternative deviation.

Dutta and Vohra (2017) propose the rational expectations farsighted stable set and the

strong rational expectations farsighted stable set that restrict coalitions to hold common,

history-independent expectations that incorporate maximality regarding the continuation

path. More recently, Ray and Vohra (2019) incorporate absolute maximality into the

definition of the farsighted stable set. Absolute maximality requires immunity to all

deviations, not just by the coalition that moves or by those coalitions that intersect the

3Alternative notions of farsightedness are suggested by Bloch and van den Nouweland (2020), Dia-

mantoudi and Xue (2003), Dutta, Ghosal and Ray (2005), Dutta and Vohra (2017), Dutta and Vartianen

(2020), Herings, Mauleon and Vannetelbosch (2009, 2010, 2019, 2020), Karos and Robles (2021), Kimya

(2020), Luo, Mauleon and Vannetelbosch (2021), Mauleon and Vannetelbosch (2004), Page, Wooders and

Kamat (2005), and Page and Wooders (2009) among others.
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one that moves. Asking for maximality can be interpreted as imposing coalitions to play

a form of coalitional best responses. We find that social rationalizability may violate

coalitional rationality. In other words, the rationality of individuals is not enough to

guarantee that coalitional best responses or maximality do emerge endogenously.

The paper is organized as follows. In Section 2 we define social environments and social

rationalizability with mediation and we provide an illustration. In Section 3 we show that

social rationalizability with mediation satisfies two-player coalitional rationality, while in

Section 4 we show that coalitional rationality does not necessarily hold for larger coalitions.

In Section 5 we provide an alternative definition of social rationalizability and we show

the equivalence with our original definition. Finally, we show that, if we restrict the

behavior of the mediator to be consistent with a permutation over alternatives, then we

can guarantee that individuals coordinate on the Pareto-dominant outcome.

2 Rationalizable Social Behaviors with Mediation

2.1 Social Environments

As in Chwe (1994), Γ = 〈I, Z, (ui)i∈I , {→S}S⊆I,S 6=∅〉 is a social environment, where I is

the finite set of individuals, Z is the finite set of outcomes, {→S}S⊆I,S 6=∅ are effectiveness

relations defined on Z, and, for every individual i ∈ I, ui : Z → R is her utility function.

The relation →S represents what coalition S can do: x0 →S x1 means that if x0 is the

status quo, then coalition S can make x1 the new status quo. It does not mean that

coalition S can enforce x1 no matter what anyone else does; after S moves to x1 from

x0, another coalition S ′ might move to x2, where x1 →S′ x2. A priori no restrictions

are imposed on the effectiveness relations {→S}S⊆I,S 6=∅. For example, the effectiveness

relation can be empty, x0 →S x0 is allowed for, and x0 →S x1 does not imply x1 →S x0.

All actions or moves are public and the individuals care only about the end outcome.

Both non-cooperative and cooperative games can be modelled as a social environment.

Figure 1 represents an example of a social environment in which a coalition of two

individuals may decide to move from the status quo x0, where they both get a utility of

0, to outcome x1 and getting both 1 unit of utility, or to outcome x2 and obtaining 2

units of utility each, or to outcome x3 and receiving both 3 units of utility. The social

environment is therefore given by I = {1, 2}, Z = {x0, x1, x2, x3}, for k = 1, 2, 3, x0 →I xk

are the only possible moves, and, for i = 1, 2, for k = 0, 1, 2, 3, ui(xk) = k.

2.2 Individual and Social Behaviors

In what follows, we denote the move x →S y of coalition S from x to y by (xy, S).

When none of the coalitions is willing or able to move at x, then the no-move results,

which is denoted by (xx, ∅). One has to distinguish between (xx, ∅) and (xx, {i}). Indeed,

(xx, {i}) means that individual i can move from x to x. The set of all possible moves is
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Figure 1: An example of a social environment with two individuals.

given by M = {(xy, S) | x, y ∈ Z, x →S y}. The set of all possible no-moves is equal

to N = {(xx, ∅) | x ∈ Z}. The initial status quo is given by x0 ∈ Z. We denote by

h = (x0,m1,m2, . . . ,mk−1) a history of length k, where x0 ∈ Z is the initial status quo,

for j = 1, . . . , k − 2, mj = (m−j m
+
j ,m

c
j) ∈M , mk−1 ∈M ∪N, m−1 = x0, and m+

j = m−j+1.

The set of all histories is denoted by H∗.

The length of a history h ∈ H∗ is denoted by `(h) with `(h) = 1 for h = (x0). To

make the length of a history h explicit, we sometimes use the notation hk, where k is the

length of the history. Let h− = x0 be the initial status quo of h and h+ = m+
`(h)−1 be the

end outcome of h. Given hk and j, k ∈ N with j ≤ k, we call hj a sub-history of hk if hj

consists of the first j elements of hk, and we write hj ≤ hk.4 If we write hj < hk, then hj

is a proper sub-history of hk, so j < k.

The set of feasible moves after a history h ∈ H∗ such that m`(h)−1 ∈ M, i.e., a non-

terminal history, is given by M(h) = {m ∈ M | m− = h+} and, for i ∈ I, Mi(h) =

{(xy, S) ∈ M(h) | i ∈ S} denotes the set of feasible moves after history h involving

individual i. The set containing the no-move after a non-terminal history h is given by

N(h) = {(h+h+, ∅)}. There are no feasible moves after a history h such that m`(h)−1 ∈ N,

i.e., a terminal history.

We denote by H the set of all non-terminal histories and by H(J) the set of histories

with at most J moves. That is, H(J) = {h ∈ H | `(h) ≤ J + 1}. Temporarily, we fix J

and consider only histories in H(J). Let Hi(J) = {h ∈ H(J) | Mi(h) 6= ∅} be the set of

histories that contain at most J moves and after which individual i is involved in a move.

A social behavior selects after any non-terminal history a move or the no-move. A social

behavior is denoted by b = (b(h))h∈H(J), where b(h) ∈ M(h) ∪ N(h). Let B be the set

of all social behaviors. Our aim is to find those social behaviors that are rationalizable.

From the rationalizable social behaviors, we derive the set of outcomes that are stable.

To do this, we examine individual behaviors first.

4A history is different from a path as used in the theory of stable standards of behavior. A path only

gives a sequence of outcomes, whereas for a history it also matters which coalition makes the move from

one outcome to another.
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We model an individual behavior as, for each relevant history, the set of coalitional

moves the individual agrees to join and those she decides to block. Observe that the

framework of social environments does not exclude that an individual might agree to

join more than one coalitional move. Formally, a behavior of individual i is bi = (bi(· |
h))h∈Hi(J), where bi(· | h) : Mi(h)→ {0, 1}. If bi((xy, S) | h) = 1 then i ∈ S agrees to join

in the potential move of coalition S from x to y. If bi((xy, S) | h) = 0 then i ∈ S blocks

the move of coalition S from x to y. The set of all possible behaviors of individual i is

denoted by Bi.

Let H0(J) = {h ∈ H(J) | M(h) 6= ∅} be the set of histories that contain at most

J moves and after which there is at least one feasible move. It may happen that the

individuals agree on more than one move. We denote by M(h) = {M | M ⊆ M(h)}
the collection of sets of feasible moves after h ∈ H0(J). Notice that M(h) contains at

least two elements, one of which is the empty set. For every history h ∈ H0(J), the

so-called agreement function is a mapping f(· | h) :
∏

i∈I Bi → M(h) which associates

to the profiles of individual behaviors the set of moves after history h on which there is

agreement, so f((bi)i∈I | h) = M if ∀(xy, S) ∈M, ∀i ∈ S, we have bi((xy, S) | h) = 1 and

∀(xy, S) ∈ M(h) \M , ∃i ∈ S such that bi((xy, S) | h) = 0. Notice that by this definition

we have f((bi)i∈I | h) = ∅ if there is no move on which there is agreement.

A profile of individual behaviors induces, potentially multiple, social behaviors. A

social behavior is induced by a profile of individual behaviors if for each history the move

prescribed by the social behavior is a move on which there is agreement by all individuals

involved in the move, or the no-move when no agreement is possible.

2.3 Beliefs, Conjectures, and Payoffs

A problem or a conflict may arise when there are several moves on which agreement

is possible. We assume that there is a mediator, referred to as player 0, who always

obtains a payoff of zero. The mediator chooses one move among any set of possible

agreements after history h ∈ H0(J). Histories h ∈ H(J) \ H0(J) are automatically

followed by the no-move in N(h). Let b0 = (b0(· | h))h∈H0(J) be a behavior of player 0,

where b0(· | h) :M(h) → M(h) ∪N(h) and b0(M | h) ∈ M whenever M 6= ∅. If M = ∅,
then b0(M | h) ∈ N(h). Let B0 be the set of behaviors of player 0.

Rationalizability assumes that individuals form conjectures about each others’ behav-

ior, including the behavior of the mediator, player 0, and then optimize subject to these

conjectures. We restrict the individuals to hold uncorrelated conjectures about the be-

haviors of their opponents and player 0. After each history h ∈ Hi(J) at which individual

i is involved in a move, she holds such conjectures. A conjecture of individual i is a

mapping ci : Hi(J) →
∏

j 6=i ∆(Bj) × ∆(B0).
5 We denote by ci(h

′)(b−i) the probability

individual i conjectures at history h′ that her opponents behavior is b−i. We denote by

5As general notation, we denote by ∆(X) the set of all probability measures on a finite set X and by

∆0(X) the set of all probability measures giving positive probability to each member of X.

5



cji (h
′)(bj) ∈ ∆(Bj) the probability individual i conjectures at history h′ that player j’s be-

havior is bj, and by c0i (h
′)(b0) ∈ ∆(B0) the probability individual i conjectures at history

h′ that player 0’s behavior is b0. There is only a need for an individual to form conjectures

when an individual is potentially involved in a move.

A conjecture ci is said to allow for h ∈ Hi(J) if there is an individual behavior bi, and

there are individual behaviors of her opponents b−i and a behavior b0 of player 0 in the

support of ci, such that (bi, b−i, b0) allows for h. A profile (bi, b−i, b0) is said to allow for

h = (x0,m1, . . . ,mk) if

(i) ∀j ∈ {1, . . . , k}, ∀i ∈ mc
j, bi(mj | hj) = 1,

(ii) ∀j ∈ {1, . . . , k}, b0(f((bi)i∈I | hj) | hj) = mj.

A behavior bi is said to allow for h if there is (b−i, b0) such that (bi, b−i, b0) allows for

h. A set A−i ⊆ B−i is said to allow for h if there is (bi, b−i, b0) with b−i ∈ A−i allowing

for h.

2.4 Social Rationalizability with Mediation

We next propose a definition of social rationalizability with mediation that is motivated

by extensive-form rationalizability as defined in Pearce (1984) and is based on a reduction

procedure. Social rationalizability is derived from two assumptions: (1) individuals are

rational, and (2) this is common knowledge at the initial status quo. A rational individual

i maximizes her expected payoff at each history h reached by the play, subject to her

consistent updating system of conjectures, ci.

Definition 1. A consistent updating system for individual i is a mapping ci : Hi(J) →∏
j 6=i ∆(Bj)×∆(B0) such that, for all g, h ∈ Hi(J),

(i) ci(h) allows for h,

(ii) if g < h and ci(g) allows for h, then ci(g) = ci(h).

The consistency of the updating system requires that the conjecture at history h is

such that h is allowed for and that no conjecture is changed unless falsified. Individuals

update according to Bayes rule whenever possible. Formally, social rationalizability with

mediation is the result of a reduction procedure that is defined as follows.

Definition 2. Let P 0 =
∏

i∈I Bi. For n ≥ 1, P n =
∏

i∈I P
n
i is inductively defined as

follows: for all i ∈ I, bi ∈ P n
i if

(i) bi ∈ P n−1
i ,

(ii) there exists a consistent updating system ci such that for all h′ ∈ Hi(J) that are

allowed by bi and P n−1
−i it holds that
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(iia) ci(h
′) ∈

∏
j 6=i ∆0(P n−1

j )×∆0(B0),

(iib) for all b̂i ∈ P n−1
i , Ui(h

′)(bi, ci) ≥ Ui(h
′)(bi/b̂

h′
i , ci), where Ui(h

′)(bi, ci) denotes the

expected payoff of individual i given (bi, ci) conditional on reaching history h′ and

bi/b̂
h′
i is the behavior which results from bi when behavior at h′ and its followers

g > h′ is specified by b̂i.

The set P∞(J) = limn→∞ P n is the set of rationalizable individual behaviors where his-

tories contain at most J moves.

In Definition 2 individuals are cautious, meaning that they assign positive probability

to all behaviors of their opponents in P n−1
−i and of player 0 in B0.

Let S∞(J) denote the set of rationalizable social behaviors. A social behavior b belongs

to S∞(J) if there exists (bi)i∈I ∈ P∞(J) such that, for every h ∈ H(J), b(h) ∈ M(h)

implies b(h) ∈ f((bi)i∈I | h) and b(h) ∈ N(h) implies f((bi)i∈I | h) = ∅.
Let h−1({x}) = {h ∈ H(J+1) | `(h) = J+2 and h+ = x}∪{h ∈ H∗\H | `(h) ≤ J+2

and h+ = x} be the set of histories of length at most J + 2 ending at x ∈ Z. We

denote by Z∞J (x0) the set of rationalizable outcomes with initial status quo x0 ∈ Z. It

is given by Z∞J (x0) = {x ∈ Z | ∃(x0,m1, . . . ,mk) ∈ h−1({x}), ∃b ∈ S∞(J) such that

∀j = 1, . . . , k, b(x0,m1, . . . ,mj−1) = mj}. The set of socially rationalizable outcomes,

Z∞(x0), is obtained by letting J go to infinity, Z∞(x0) = lim supJ→∞ Z∞J (x0). The set of

socially rationalizable outcomes is never empty.

Theorem 1. Z∞(x0) 6= ∅.

The proof of this theorem is similar to the proof of Theorem 2 in Herings, Mauleon

and Vannetelbosch (2004) and is therefore omitted.

2.5 An Illustration

Remember that individuals hold conjectures about how a mediator (or a player whose

payoff is always zero) is going to choose a move among any set of feasible moves after any

history. That is, each individual who has the possibility of moving after a certain history

holds beliefs about the move chosen by the mediator (i.e. player 0) for each possible

set of moves on which the individuals could agree to join. Then, given the conjecture of

individual i about each others’ behavior and her belief on the moves chosen by player 0

among any set of feasible moves, individual i chooses the behavior that maximizes her

expected utility.

For the social environment of Figure 1, social rationalizability with mediation works

as follows. To simplify notation, we denote by (1, 0, 1) for instance the behavior of player

i when bi((x1, {1, 2}) | (x0)) = 1, bi((x2, {1, 2}) | (x0)) = 0, and bi((x3, {1, 2}) | (x0)) = 1.

In the first iteration, we can see that the behaviors (0, 0, 0), (1, 0, 0), and (0, 1, 0) are never

best responses whatever the conjecture of individual i about the behavior of individual
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bi

bj (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)

(0, 0, 0) 0 0 0 0

(0, 0, 1) 3
4

3
7

3
7

3
10

(1, 0, 0) 0 3
7

0 3
10

(0, 1, 0) 0 0 3
7

3
10

(1, 1, 0) 0 0 0 0

(0, 1, 1) 0 0 0 0

(1, 0, 1) 0 0 0 0

(1, 1, 1) 1
4

1
7

1
7

1
10

Table 1: Unique best response and conjecture.

j and whatever the belief on the choice of player 0. In fact, the behavior (1, 0, 0) gives

always a higher expected utility for player i than (0, 0, 0), the behavior (1, 1, 0) gives

always a higher expected utility for player i than (1, 0, 0), and the behavior (0, 1, 1) gives

always a higher expected utility for player i than (0, 1, 0). However, the behavior (1, 1, 0)

cannot be eliminated since it is the unique best response against the conjecture that

player j will have the behavior (1, 0, 0) with probability 3/7, the behavior (0, 1, 0) with

probability 3/7, and the behavior (1, 1, 1) with probability 1/7, and assuming that the

mediator chooses the move to the best outcome when the set of moves on which there is

agreement is formed by the first two moves (i.e., the move to x1 and to x2), while she

chooses the move to the worst outcome for any other set of possible agreements. In Table

1 we give conjectures against which each behavior bi, different from the four behaviors

already discussed, is the unique best response, assuming that the mediator only chooses

the move to the best outcome when the set of possible agreements coincides with the

moves that bi does not block. The uniqueness of the best response guarantees that there

are also cautious conjectures against which the behavior is the unique best response.

Hence, after the first iteration, we can only eliminate the behaviors (0, 0, 0), (1, 0, 0),

and (0, 1, 0). In the second iteration, we can show that the behavior (1, 1, 0) is never a

best response whatever the conjecture of individual i about the behaviors of individual j

not eliminated in the first iteration, and whatever the belief on the choice of the mediator.

Notice that the behavior (0, 1, 1) gives always a weakly greater expected utility for player

i than the behavior (1, 1, 0) given that (1, 0, 0) has been eliminated in the first iteration.

For the other behaviors, it can be shown that there are conjectures about the behavior of

individual j and beliefs on the choice of the mediator such that each of them is the unique

best response against that conjecture and belief. In Table 2 we give conjectures on the

behavior of player j against which each of these behaviors bi is the unique best response,

assuming that the mediator only chooses the move to the best outcome when the set of

possible agreements coincides with the moves that bi does not block when bi 6= (1, 1, 1).

For bi = (1, 1, 1), the mediator only chooses the move to the best outcome when there

8



bi

bj (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)

(0, 0, 1) 3
4

0 0 0

(1, 1, 0) 0 1
7

3
7

1
2

(0, 1, 1) 0 0 3
7

0

(1, 0, 1) 0 3
7

0 0

(1, 1, 1) 1
4

3
7

1
7

1
2

Table 2: Unique best response and conjecture.

is agreement on the moves to x1 and x2 or there is agreement on any move. As before,

the uniqueness of the best response guarantees that there are also cautious conjectures

against which the behavior is the unique best response.

Next, in the third iteration, once individual i knows that player j will play a behavior

that never blocks the move to x3, her behavior (0, 0, 1) will be the unique best response

against any cautious conjecture about the behavior of player j and the mediator. Hence,

(0, 0, 1) is the unique socially rationalizable behavior and the Pareto-dominant outcome,

x3, is the unique socially rationalizable outcome.

The next two sections study the case of two players who can move to an arbitrary

number of Pareto-ranked outcomes and the general case of more than two players who

can move to an arbitrary number of Pareto-ranked outcomes.

3 Two-Player Coalitional Rationality

We investigate if social rationalizability with mediation satisfies, in general, the property

of coalitional rationality. That is, in a situation in which a coalition of two or more indi-

viduals can move from a status quo x0 to different outcomes that are Pareto ranked, does

social rationalizability with mediation prescribe that players coordinate on the outcome

that Pareto dominates all others? In the example of Figure 1 with two players and three

possible moves, we have seen that the Pareto-dominant outcome is the unique socially

rationalizable outcome. Does this hold for the general case of two players and arbitrary

Pareto-ranked payoffs?

For the case with two possible moves, using similar arguments as in the case with three

possible moves, the behaviors (0, 0) and (1, 0) are eliminated in the first iteration and the

behavior (1, 1) in the second iteration, leaving the Pareto-dominant outcome again as the

unique socially rationalizable outcome. This section therefore focuses on the case with at

least four possible moves.

Consider the social environment Γ2, where I = {1, 2}, Z = {x0, x1, . . . , xK} with

K ≥ 4, the outcomes are Pareto ranked,

ui(xK) > ui(xK−1) > · · · > ui(x1) > ui(x0) = 0, i ∈ I,
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and the feasible moves are given by x0 →I xk, where k = 1, . . . , K. We say that social

rationalizability with mediation satisfies coalitional rationality if it selects the Pareto-

dominant outcome xK as the unique solution.

In the social environment Γ2, we have, for every i ∈ I, Hi = {(x0)} and M(x0) =

Mi(x0) = {(x0x1, I), (x0x2, I), . . . , (x0xK , I)}. Since there is only one non-terminal history,

in this section we drop histories from the notation for behaviors, conjectures, and utilities.

A behavior of individual i ∈ I is denoted by bi = (bi1, . . . , biK), where, for k ∈ {1, . . . , K},
bik = bi(x0xk, I). A behavior of player 0 is of the form b0 = (b0(M))∅6=M⊆M with b0(M) ∈
M.

We introduce some additional notation. In this section, from now on, we fix an

individual i ∈ I and take j to be the other individual in I. Given bi ∈ Bi, let Ai(bi) =

{mi ∈ Mi | bi(mi) = 1} be the set of moves on which individual i agrees and let ai(bi) =

#Ai(bi) be the cardinality of this set. For bi ∈ Bi with ai(bi) ≥ 1, we define k = max{k ∈
{1, . . . , K} | bik = 1} and k = min{k ∈ {1, . . . , K} | bik = 1} as the number of the best

and the worst outcome, respectively, on which individual i agrees. For k ∈ {1, . . . , K},
we denote by e(k) the individual behavior such that the kth component is 1 and the

other components are 0, and by 1 the vector of all ones, that is, the behavior where the

individual agrees to join every move.

We now show that coalitional rationality holds in general in the two-player social

environment Γ2. In order to do so, we use Lemmas 1–8. Lemma 1, whose proof is obvious

and left to the reader, states that if a behavior of individual i is the unique best response

against a conjecture ci ∈ ∆(B̃j)×∆(B0), where B̃j is some non-empty subset of Bj, then

it is also the unique best response against some cautious conjecture c∗i ∈ ∆0(B̃j)×∆0(B0).

Lemma 1. Take any bi ∈ Bi. Let B̃j be a non-empty subset of Bj. If there exists ci ∈
∆(B̃j)×∆(B0) such that, for every b′i ∈ Bi \ {bi}, Ui(bi, ci) > Ui(b

′
i, ci), then there exists

c∗i ∈ ∆0(B̃j)×∆0(B0) such that, for every b′i ∈ Bi \ {bi}, Ui(bi, c
∗
i ) > Ui(b

′
i, c
∗
i ).

Lemma 2 claims that the individual behavior bi = (0, . . . , 0), so individual i blocks all

moves, is never a best response whatever the cautious conjecture ci ∈ ∆0(Bj)×∆0(B0).

Indeed, the behavior b′i = e(K), so b′i is the same as bi except that individual i joins the

move to xK , is always a strictly better response. All proofs that are not in the main text

can be found in the appendix.

Lemma 2. Let bi = (0, . . . , 0). For b′i = e(K), for every ci ∈ ∆0(Bj) ×∆0(B0), it holds

that Ui(b
′
i, ci) > Ui(bi, ci).

Lemma 3 states that any individual behavior bi = e(k) with k < K, so individual i

only agrees to join a single move different from the move to xK , is never a best response

whatever the cautious conjecture ci ∈ ∆0(Bj)×∆0(B0). Indeed, the behavior b′i, where b′i
is the same as bi except that individual i joins the move to xk+1 is always a strictly better

response.
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Lemma 3. Let bi = e(k) for some k < K. For b′i = e(k) + e(k + 1), for every ci ∈
∆0(Bj)×∆0(B0), it holds that Ui(b

′
i, ci) > Ui(bi, ci).

Lemma 4 establishes that for any behavior bi where individual i agrees to move to at

least two outcomes or to move only to xK there exists a conjecture ci ∈ ∆(Bj) ×∆(B0)

such that bi is her unique best response. This conjecture is such that it puts positive

weight on bj = e(k) for every k such that bik = 1 as well as on bj = 1 and puts zero

weight on any other behavior. The positive weights on bj = e(k) guarantee that bi gives

higher utility than a behavior b′i which blocks moves that are not blocked by bi. The

positive weight on bj = 1, together with a suitably chosen conjecture on the behavior of

the mediator, implies that bi outperforms any b′i that agrees to strictly more moves than

bi.

Lemma 4. Take any bi ∈ Bi such that either ai(bi) ≥ 2 or bi = e(K). Then, for all

b′i ∈ Bi \ {bi}, we have Ui(bi, ci) > Ui(b
′
i, ci), where ci ∈ ∆(Bj)×∆(B0) is such that

cji (bj) =


ui(xK)

[ai(bi)·ui(xK)+ui(x1)]
if there is k ∈ {1, . . . , K} such that bj = e(k) and bik = 1

ui(x1)
[ai(bi)·ui(xK)+ui(x1)]

if bj = 1

0 otherwise

and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai(bi) and the

move to the worst outcome in M in any other non-empty set M ⊆M.

From Lemmas 2, 3, and 4 we have that P 1
i = {bi ∈ Bi | ai(bi) ≥ 2} ∪ {e(K)}.

For the second iteration, we first show that the behavior bi = e(1) + e(2) ∈ P 1
i does

not belong to P 2
i . In fact, the behavior b′i = (0, 1, . . . , 1) ∈ P 1

i gives higher utility than bi

against all relevant cautious conjectures.

Lemma 5. Consider the behavior bi = e(1) + e(2) ∈ P 1
i . Take the behavior b′i =

(0, 1, . . . , 1) ∈ P 1
i . Then, for every ci ∈ ∆0(P 1

j )×∆0(B0), we have Ui(b
′
i, ci) > Ui(bi, ci).

We continue by showing that any behavior bi ∈ P 1
i different from e(1) + e(2) belongs

to P 2
i , i.e., is the best response of player i in P 1

i against some cautious conjecture in

∆0(P 1
j )×∆0(B0). We achieve this by showing that bi is the unique best response against

a particular conjecture ci ∈ ∆(P 1
j )×∆(B0).

Lemma 6. Let bi ∈ P 1
i \ {e(1) + e(2)}. Then, for all b′i ∈ P 1

i \ {bi}, we have Ui(bi, ci) >

Ui(b
′
i, ci), where, for ε > 0 sufficiently small, ci ∈ ∆(P 1

j )×∆(B0) is such that

cji (bj) =


1− ε− ε2 if bj = bi

ε if bj = 1

ε2 if bj = e(1) + e(max{2, k})

and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai(bi) and the

move to the worst outcome in M for any other non-empty set M ⊆M.
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From Lemmas 5 and 6 it follows that P 2
i = P 1

i \ {e(1) + e(2)}. The set P 2
i consists of

the behaviors bi such that ai(bi) ≥ 2 and k ≥ 3 as well as the behavior bi = e(K).

Lemma 7 shows that the behaviors bi ∈ P 2
i that block the moves to the best K − 3

outcomes do not belong to P 3
i . The behavior b′i = (0, 0, 1, . . . , 1) ∈ P 2

i gives a greater

utility against any cautious conjecture in ∆0(P 2
j )×∆0(B0).

Lemma 7. Consider a behavior bi ∈ P 2
i such that k = 3. Take the behavior b′i =

(0, 0, 1, . . . , 1) ∈ P 2
i . Then, for every ci ∈ ∆0(P 2

j )×∆0(B0), we have Ui(b
′
i, ci) > Ui(bi, ci).

We continue by showing that any behavior bi ∈ P 2
i such that k ≥ 4 belongs to P 3

i ,

i.e., is the best response of player i in P 2
i against some cautious conjecture in ∆0(P 2

j ) ×
∆0(B0). We achieve this by showing that bi is the unique best response against a particular

conjecture ci ∈ ∆(P 2
j )×∆(B0).

Lemma 8. Let bi ∈ P 2
i be such that k ≥ 4. Then, for all b′i ∈ P 2

i \ {bi}, we have

Ui(bi, ci) > Ui(b
′
i, ci), where, for ε > 0 sufficiently small, ci ∈ ∆(P 2

j )×∆(B0) is such that

cji (bj) =


1− ε− ε2 if bj = bi

ε if bj = 1

ε2 if bj = e(1) + e(2) + e(max{3, k})

and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai(bi) and the

move to the worst outcome in M for any other non-empty set M ⊆M.

Hence, by Lemmas 7 and 8 we have that every behavior bi in P 3
i is such that ai(bi) ≥ 2

and k ≥ 4 or bi = e(K). Proceeding in this way, we obtain the following proposition.

Proposition 1. For 1 ≤ k ≤ K − 1, it holds that P k
i = {bi ∈ Bi | ai(bi) ≥ 2 and k ≥

k + 1} ∪ {e(K)}.

Proof. The proposition has already been shown for k = 1, 2, 3. Assume the proposition is

true for some k ≤ K − 2. We show the proposition to hold for k + 1.

We eliminate any behavior bi ∈ P k
i such that k = k + 1 by the behavior b′i =∑K

`=k+1 e(`). The proof follows the steps of the proof of Lemma 7.

The other behaviors bi in P k
i are such that ai(bi) ≥ 2 and k > k + 1 or bi = e(K).

Such a behavior bi is the unique best response, for ε > 0 sufficiently small, against the

conjecture ci ∈ ∆(P k
j )×∆(B0) defined by

cji (bj) =


1− ε− ε2 if bj = bi

ε if bj = 1

ε2 if bj =
∑k

`=1 e(`) + e(max{k + 1, k})

and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai(bi) and the

move to the worst outcome in M for any other non-empty set M ⊆M. The proof follows

the steps of the proof of Lemma 8.
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Putting these results together, we are able to show the following main result.

Theorem 2. Consider the social environment Γ2. There is a unique behavior of individual

i that is socially rationalizable, PK
i = P∞i = {e(K)}.

Proof. From Proposition 1, we have PK−1
i = {bi ∈ Bi | k = K}. Finally, for every

ci ∈ ∆0(PK−1
j ) × ∆0(B0), the behavior bi = e(K) gives to individual i a utility equal

to Ui(bi, ci) = ui(xK). For every b′i ∈ PK−1
i \ {bi}, for every ci ∈ ∆0(PK−1

j ) × ∆0(B0),

Ui(b
′
i, ci) < ui(xK) because for some k < K, b′ik = 1, and the cautiousness of ci implies

that with positive probability the opponent of i follows a behavior bj such that bjk = 1

and the mediator chooses b0(f(bi, bj)) = xk, which leads to utility ui(xk) < ui(xK). So,

PK
i = {e(K)} = P∞i .

The above result implies that social rationalizability with mediation satisfies the prop-

erty of two-player coalitional rationality. When the outcomes can be Pareto ranked, a

coalition of two players always selects the Pareto-dominant outcome. Each individual

only agrees to move to the Pareto dominating outcome and blocks all other moves.

Corollary 1. Consider the social environment Γ2. We have Z∞(x0) = {xK}.

4 Coalitional Rationality for More Than Two Players

Does social rationalizability with mediation satisfy, in general, the property of coalitional

rationality? We now provide an example of a social environment with three players which

violates this property.

Example 1. Consider the social environment Γ3 in which the coalition of three individuals

may decide to move from the status quo x0, where they all get a utility equal to 0,

to outcome x1 obtaining each 1 unit of utility, or to outcome x2 all getting 2 units of

utility, or to outcome x3 and receive 3 units of utility each. That is, I = {1, 2, 3},
Z = {x0, x1, x2, x3}, for every k ∈ {1, 2, 3}, x0 →I xk are the only possible moves, and,

for every i ∈ I, for every k ∈ {0, 1, 2, 3}, ui(xk) = k.

In this social environment Γ3, we have I(x0) = I, Hi = {(x0)} and, for every i ∈ I,

Mi(x0) = M(x0) = {(x0x1, I), (x0x2, I), (x0x3, I)}. As in Section 3, since there is only one

non-terminal history, in this section we drop histories from the notation for behaviors,

conjectures, and utilities. A behavior of individual i ∈ I is denoted by bi = (bi1, bi2, bi3),

where, for k ∈ {1, 2, 3}, bik = bi(x0xk, I). The set of possible behaviors of individual i is

Bi = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

A behavior of player 0 is of the form b0 = (b0(M))∅6=M⊆M with b0(M) ∈M. In this section,

from now on, we fix an individual i ∈ I.

By Definition 2, P 0
i = Bi. We show that the behaviors (0, 0, 0), (1, 0, 0), and (0, 1, 0)

do not belong to P 1
i . Let bi be any such behavior. Take b′i ∈ Bi such that b′i = bi+(0, 0, 1).
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It is quite straightforward that for all ci ∈
∏

j∈I\{i}∆0(Bj)×∆0(B0), Ui(bi, ci) < Ui(b
′
i, ci).

Indeed, the behaviors bi and b′i give the same payoff to individual i against the opponents’

behaviors b−i whenever the set of moves on which the opponents of individual i agree

does not include the move to outcome x3, i.e., when some opponents behavior bj is such

that bj3 = 0. But, b′i does strictly better than bi against the opponents’ behaviors b−i such

that bj3 = 1 for all j ∈ I \ {i} and a mediator that chooses the move to x3 whenever that

move belongs to M.

Next, we show that for every bi ∈ Bi \ {(0, 0, 0), (1, 0, 0), (0, 1, 0)} there exists ci ∈∏
j∈I\{i}∆(Bj)×∆(B0) such that bi is the unique best response against ci. We can extend

Lemma 1 to the setting of Example 1 and conclude that bi ∈ P 1
i .

In fact, we can use conjectures that are similar to the ones used in Lemma 4. We

define the conjecture ci ∈
∏

j∈I\{i}∆(P 1
j )×∆(B0) by

cji (bj) =


ui(xK)

[ai(bi)·ui(xK)+ui(x1)]
if there is k ∈ {1, . . . , K} such that bj = e(k) and bik = 1

ui(x1)
[ai(bi)·ui(xK)+ui(x1)]

if bj = 1

0 otherwise

and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai(bi) and the

move to the worst outcome in M in any other non-empty set M ⊆M.

The possible sets of moves on which both opponents agree are respectively equal to

∅, for any k ∈ {1, . . . , K} such that bik = 1, {(x0xk, I)}, and M. The definition of b0

implies that under bi the move to the best feasible outcome results, irrespective of the

realization of M. Any other behavior b′i that is a best response should therefore also result

in the move to the best feasible outcome. Since opponents may only agree on the move

to {(x0xk, I)} for any k ∈ {1, . . . , K} such that bik = 1, this implies that Ai(bi) ⊆ Ai(b
′
i).

Since the opponents may also agree on the set of all moves and b′i 6= bi, b0 selects the move

to the worst outcome in Ai(b
′
i) in this case. Since bi ∈ Bi \ {(0, 0, 0), (1, 0, 0), (0, 1, 0)}

and Ai(bi) ⊆ Ai(b
′
i), the move to the worst outcome in Ai(b

′
i) is inferior to the move to

the best outcome in Ai(bi). This shows that bi is the unique best response to ci. Hence,

P 1
i = {(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

In the second iteration, individual i knows that any other individual j will play a

behavior in P 1
j . We continue by defining for each behavior bi ∈ P 1

i a conjecture ci ∈∏
j∈I\{i}∆(P 1

j )×∆(B0) such that bi is the unique best response against ci.

(i) The behavior bi = (0, 0, 1) is the unique best response against the conjecture ci such

that, for j ∈ I \ {i},

cji (bj) =

{
3/4 if bj = (0, 0, 1)

1/4 if bj = 1

and c0i (b0) = 1 where b0 is such that the move to the worst outcome in M is selected

for any non-empty set M ⊆ M. Indeed, for every b′i ∈ P i
1 \ {bi}, we have that

Ui(bi, ci) = 3 > Ui(b
′
i, ci).
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(ii) Let I \ {i} = {j, j′}. The behavior bi = (1, 1, 0) is the unique best response against

the conjecture ci such that

cji (bj) =

{
7/8 if bj = (1, 1, 0)

1/8 if bj = 1

cj
′

i (bj′) =

{
7/8 if bj′ = (1, 0, 1)

1/8 if bj′ = 1

and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai(bi)

and the move to the worst outcome in M in any other non-empty set M ⊆ M.

Indeed, for every b′i ∈ P i
1 \ {bi}, we have that Ui(bi, ci) = 72/64 > Ui(b

′
i, ci).

(iii) Let I \ {i} = {j, j′}. The behavior bi = (1, 0, 1) is the unique best response against

the conjecture ci such that

cji (bj) =

{
7/8 if bj = (1, 0, 1)

1/8 if bj = 1

cj
′

i (bj′) =

{
7/8 if bj′ = (1, 1, 0)

1/8 if bj′ = 1

and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai(bi)

and the move to the worst outcome in M in any other non-empty set M ⊆ M.

Indeed, for every b′i ∈ P i
1 \ {bi}, we have that Ui(bi, ci) = 80/64 > Ui(b

′
i, ci).

(iv) Let I \ {i} = {j, j′}. The behavior bi = (0, 1, 1) is the unique best response against

the conjecture ci such that

cji (bj) =

{
7/8 if bj = (0, 1, 1)

1/8 if bj = 1

cj
′

i (bj′) =

{
7/8 if bj′ = (1, 1, 0)

1/8 if bj′ = 1

and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai(bi)

and the move to the worst outcome in M in any other non-empty set M ⊆ M.

Indeed, for every b′i ∈ P i
1 \ {bi}, we have that Ui(bi, ci) = 136/64 > Ui(b

′
i, ci).

(v) The behavior bi = (1, 1, 1) is the unique best response against the conjecture ci such

that, for j ∈ I \ {i},

cji (bj) =


6/13 if bj = (1, 1, 0)

3/13 if bj = (1, 0, 1)

3/13 if bj = (0, 1, 1)

1/13 if bj = 1
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and c0i (b0) = 1 where b0 selects the move to the best outcome in M in any non-empty

set M ⊆ M. Indeed, for every b′i ∈ P i
1 \ {bi}, we have that Ui(bi, ci) = 351/169 >

Ui(b
′
i, ci).

We find that P 1
i = P 2

i = P∞i . The set of socially rationalizable outcomes with mediation

coincides with the set of initial outcomes, Z∞(x0) = {x0, x1, x2, x3}. Therefore, social

rationalizability with mediation does not satisfy the property of coalitional rationality

when the number of players is greater than two.

5 Discussion

5.1 An Equivalent Definition of Social Rationalizability

An alternative definition of social rationalizability with mediation is obtained by adapting

Battigalli’s (1997) notion of extensive-form rationalizability to social environments. So-

cial rationalizability based on the approach of Battigalli is derived from two assumptions:

(1) individuals are rational and endowed with a hierarchy of hypotheses, and (2) this is

common knowledge at the initial status quo. In Definition 3, R1
i is the set of individ-

ual behaviors of i ∈ I that are individually rational. Higher degrees of rationality are

constructed recursively.

Definition 3. Let R0 =
∏

i∈I Bi. For n ≥ 1, Rn =
∏

i∈I R
n
i is inductively defined as

follows: for all i ∈ I, bi ∈ Rn
i if there exists a consistent updating system ci such that

(i) for all h′ ∈ Hi(J), ci(h
′) ∈

∏
j 6=i ∆0(Rk∗

j )×∆0(B0) where k∗ is the maximal element

in {0, 1, . . . , n− 1} such that Rk∗
−i allows for h′,

(ii) for all h′ ∈ Hi(J), if bi allows for h′, then bi is a best response to ci(h
′) at h′, that is,

for all b̂i ∈ Bi, Ui(h
′)(bi, ci) ≥ Ui(h

′)(bi/b̂
h′
i , ci), where bi/b̂

h′
i is the behavior which

results from bi when behavior at h′ and its followers g > h′ is specified by b̂i.

The set R∞(J) = limn→∞Rn is the set of rationalizable individual behaviors where his-

tories contain at most J moves.

The sequence (R1
j )j 6=i, (R2

j )j 6=i, (R3
j )j 6=i, . . . in Definition 3 represents for individual

i a hierarchy of increasingly strong hypotheses about the behavior of individuals j 6=
i. When individual i adopts a behavior bi ∈ R∞i (J), she always holds the strongest

hypothesis which is consistent with the history reached (part (i) in Definition 3) and

optimizes accordingly.

Theorem 3. For all n ≥ 0, Rn = P n.

Theorem 3 claims that both definitions of social rationalizability are equivalent. The

proof of this theorem is similar to the proof of Theorem 1 in Battigalli (1997) and is

therefore omitted. From Theorem 3, we have that R∞(J) = P∞(J). Notice that the

computation of the set of socially rationalizable outcomes is greatly simplified by using

the reduction procedure of Definition 2.
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5.2 A Permutational Mediator

Assume the mediator, player 0, is known to behave as follows. A behavior b0 = (b0(· |
h))h∈H(J) of player 0 is such that after each history h she chooses a permutation of M(h)

that indicates the order according to which moves are implemented. For M ∈M(h), the

highest ordered element in M according to this permutation is implemented. We refer to

such a mediator as a permutational mediator.

Consider the social environment ΓK where I contains a finite number of individuals,

Z = {x0, x1, . . . , xK}, and there is one outcome which strictly Pareto dominates all other

outcomes,

ui(xK) > ui(xk) > ui(x0), i ∈ I, k ∈ {2, . . . , K − 1}.

The possible moves are given by x0 →I xk for k = 1, . . . , K. We say that social rational-

izability with mediation satisfies coalitional rationality if it selects the Pareto-dominant

outcome xK .

Theorem 4. Consider the social environment ΓK with a permutational mediator. There

is a unique behavior of individual i ∈ I that is socially rationalizable, P∞i = {e(K)}.

The proof of this theorem is similar to the proof of Theorem 3 in Herings, Mauleon

and Vannetelbosch (2000) and Theorem 6 in Herings, Mauleon and Vannetelbosch (2004)

and is therefore omitted.

Corollary 2. Consider the social environment ΓK with a permutational mediator. There

is a unique socially rationalizable outcome, Z∞ = {xK}.

It can be shown that, in the case of two players, social rationalizability with mediation

requires K − 2 additional rounds of elimination to obtain coordination on the Pareto-

dominant outcome compared to social rationalizability with a permutational mediator.

In the case of the social environment Γ3 (Example 1), social rationalizability with a

permuational mediator satisfies the property of coalitional rationality while social rational-

izability with mediation does not. The reason behind this fact is that once P 1
i = {(0, 0, 1),

(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}, the behavior (1, 1, 0) that blocks the move to the

Pareto-dominant outcome cannot be eliminated when the mediator can arbitrarily select

different moves for different sets of possible agreements. On the contrary, a permutational

mediator holds a ranking over the feasible moves and chooses, for any set of possible agree-

ments, the agreement that is ranked highest.

Finally, instead of having a permutational mediator, one could simply assume that all

individuals have uniform implementability prior-beliefs on the set M(h). The likelihood

of a particular move in the set of moves on which there is agreement is then determined

by Bayesian updating. This results in uniform ex-post beliefs on the agreement set.

Assuming that the implementability prior-beliefs of the individuals are cautious, Herings,

Mauleon and Vannetelbosch (2000) show that social rationalizability ends up selecting

the Pareto-dominant outcome.
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5.3 Conclusion

Social environments constitute a framework in which it is possible to study how groups

of agents interact in a society. We have proposed a new solution concept for social

environments that is based on individual rationality, called social rationalizability with

mediation. One of the basic steps in our construction is to model individual behavior

in a social environment, which makes a social environment apt to an analysis based on

individual rationality. Individual behavior within a coalition is modelled as the decision

to agree to a coalitional move or to block it. Since a coalition may have several moves

available, and more than one coalition may have the option to move at the same time, there

can be many moves on which there is agreement. Individuals therefore have conjectures

about how a mediator, a player whose payoff is always zero, is going to solve the conflicts

of interest.

Social rationalizability with mediation identifies which coalitions are likely to form

and which outcomes might occur when the individuals are rational and this is common

knowledge at the initial status quo. We have shown that for all social environments the set

of socially rationalizable outcomes with mediation is non-empty. Social rationalizability

with mediation aims to be a weak concept that rules out with confidence. Its non-

emptiness makes it applicable to cases where traditional solution concepts fail to make

predictions. It is also not too weak in the sense that it satisfies individual rationality. As

a theory of social behavior, we have analyzed if social rationalizability with mediation is

consistent with elementary notions of coalitional rationality. For instance, when a coalition

has to choose between a number of Pareto-ranked moves, it should select the Pareto

dominating one for sure. We have shown that social rationalizability with mediation

does not satisfy the property of coalitional rationality for coalitions of more than two

players. In fact, restrictions on the behavior of the mediator are needed to guarantee that

individuals coordinate on the Pareto-dominant outcome. So, coalitional rationality does

not necessarily follow from individual behaviors of rational individuals.
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Appendix

Proof of Lemma 2.

(i) For all bj ∈ Bj with bjK = 0, we have that

Ui(b
′
i, bj, c

0
i ) = Ui(bi, bj, c

0
i ) = 0.

(ii) For all bj ∈ Bj with bjK = 1, we have that

ui(xK) = Ui(b
′
i, bj, c

0
i ) > Ui(bi, bj, c

0
i ) = 0.

It follows that, for every ci ∈ ∆0(Bj)×∆0(B0), Ui(b
′
i, ci) > Ui(bi, ci).

Proof of Lemma 3.

(i) For all bj ∈ Bj with bjk = bjk+1 = 0, we have

Ui(bi, bj, c
0
i ) = Ui(b

′
i, bj, c

0
i ) = ui(x0).

(ii) For all bj ∈ Bj with bjk = 1 and bjk+1 = 0, we have

Ui(bi, bj, c
0
i ) = Ui(b

′
i, bj, c

0
i ) = ui(xk).

(iii) For all bj ∈ Bj with bjk = 0 and bjk+1 = 1, we have

Ui(bi, bj, c
0
i ) = 0 < Ui(b

′
i, bj, c

0
i ) = ui(xk+1).

(iv) For all bj ∈ Bj with bjk = bjk+1 = 1, we have

ui(xk) = Ui(bi, bj, c
0
i ) < Ui(b

′
i, bj, c

0
i ).

Hence, for every ci ∈ ∆0(Bj)×∆0(B0), it holds that Ui(b
′
i, ci) > Ui(bi, ci).

Proof of Lemma 4.

(i) Consider the behavior bi = e(K). Then,

Ui(bi, ci) =

[
ui(xK)

ui(xK) + ui(x1)

]
· ui(xK) +

[
ui(x1)

ui(xK) + ui(x1)

]
· ui(xK) = ui(xK).

For any b′i ∈ Bi \ {e(K)} it holds that

Ui(b
′
i, ci) ≤

[
ui(xK)

ui(xK) + ui(x1)

]
· ui(xK) +

[
ui(x1)

ui(xK) + ui(x1)

]
· ui(xK−1) < ui(xK),

where the expression after the weak inequality uses the fact that f(b′i,1) contains a move

leading to an outcome different from xK , so b0 selects a move leading to an outcome worse

than xK , or f(b′i,1) is equal to the empty set and outcome x0 results.

(ii) Consider any behavior bi ∈ Bi such that ai(bi) ≥ 2. We have that

Ui(bi, ci) =
[

ui(xK)
ai(bi)·ui(xK)+ui(x1)

]
·

∑
{k∈{1,...,K}|bik=1}

ui(xk) +
[

ui(x1)
ai(bi)·ui(xK)+ui(x1)

]
· ui(xk).
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Two cases have to be considered. In Case 1 we consider b′i ∈ Bi such that, for some

k ∈ {1, . . . , K}, bik = 1 and b′ik = 0. In Case 2 we take b′i ∈ Bi \ {bi} such that bik = 1

implies b′ik = 1.

Case 1. It follows that

Ui(b
′
i, ci) ≤

[
ui(xK)

ai(bi)·ui(xK)+ui(x1)

]
·
[∑

{k∈{1,...,K}|bik=1} ui(xk)− ui(xk)
]

+
[

ui(x1)
ai(bi)·ui(xK)+ui(x1)

]
· ui(xK)

≤
[

ui(xK)
ai(bi)·ui(xK)+ui(x1)

]
·
[∑

{k∈{1,...,K}|bik=1} ui(xk)
]

< Ui(bi, ci).

Case 2. It holds that

Ui(b
′
i, ci) ≤

[
ui(xK)

ai(bi)·ui(xK)+ui(x1)

]
·
[∑

{k∈{1,...,K}|bik=1} ui(xk)
]

+
[

ui(x1)
ai(bi)·ui(xK)+ui(x1)

]
· ui(xk)

< Ui(bi, ci),

where the expression after the weak inequality uses the fact that f(b′i,1) is not equal to

f(bi,1) and contains the move to outcome xk as an element, so b0 selects a move leading

to an outcome which is at best equal to xk.

Proof of Lemma 5.

Since the behaviors (0, . . . , 0) and e(1) of individual j do not belong to P 1
j , it follows that,

for every conjecture ci ∈ ∆0(P 1
j )×∆0(B0),

Ui(b
′
i, ci) ≥ ui(x2) ≥ Ui(bi, ci).

Since such a conjecture ci puts positive weight on the behavior bj = e(K) and

Ui(b
′
i, e(K), c0i ) = ui(xK) > ui(x0) = Ui(bi, e(K), c0i ),

we conclude that Ui(b
′
i, ci) > Ui(bi, ci).

Proof of Lemma 6.

It holds that

Ui(bi, ci) = (1− ε− ε2) · ui(xk) + ε · ui(xk) + ε2 · ui(xk),

where for k = 1 the expression in the last term follows from the fact that

(x0x1, I) ∈ f(bi, e(1) + e(2)) = f(bi, e(1) + e(max{2, k})) 6= Ai(bi),

so bi selects the worst move in f(bi, e(1) + e(2)), which is equal to (x0x1, I).

Let b′i ∈ P 1
i \ {bi}.

If b′
ik

= 0, then, for ε > 0 sufficiently small,

Ui(b
′
i, ci) ≤ (1− ε− ε2) · ui(xk−1) + (ε + ε2) · ui(xK) < Ui(bi, ci),
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where the strict inequality makes use of the fact that ε is sufficiently small.

Assume b′
ik

= 1. If there is k < k such that b′ik = 1, then, for ε > 0 sufficiently small,

Ui(b
′
i, ci) ≤ (1− ε− ε2) · ui(xk) + ε · ui(xk−1) + ε2 · ui(xK) < Ui(bi, ci),

where the strict inequality makes use of the fact that ε is sufficiently small.

Assume the smallest k for which b′ik = 1 is equal to k. It follows that bi 6= e(K), since

k = K together with the assumption that the smallest k for which b′ik = 1 is equal to k

implies b′i = e(K). Since b′i 6= bi we have that bi 6= e(K). Since bi ∈ P 1
i and bi 6= e(1)+e(2),

it also follows that k ≥ 3. We have that

Ui(b
′
i, ci) = (1− ε− ε2) · ui(xk) + ε · ui(xk) < Ui(bi, ci),

where the second term in the expression after the equality follows from the fact that

f(b′i,1) = Ai(b
′
i) 6= Ai(bi), so the worst move (x0xk, I) in Ai(b

′
i) is selected by b0.

The expression after the equality also uses that bi 6= e(K), so k < k, and f(b′i, e(1) +

e(max{2, k})) = ∅.

Proof of Lemma 7.

Since, for every behavior bj ∈ P 2
j , there is k ≥ 3 such that bjk = 1, it follows that, for

every conjecture ci ∈ ∆0(P 2
j )×∆0(B0),

Ui(b
′
i, ci) ≥ ui(x3) ≥ Ui(bi, ci).

Since such a conjecture ci puts positive weight on the behavior bj = e(K) and

Ui(b
′
i, e(K), c0i ) = ui(xK) > ui(x0) = Ui(bi, e(K), c0i ),

we conclude that Ui(b
′
i, ci) > Ui(bi, ci).

Proof of Lemma 8.

We have that

Ui(bi, ci) = (1− ε− ε2) · ui(xk) + ε · ui(xk) + ε2 · ui(xk),

where if k ≤ 2 the expression in the last term follows from the fact that

(x0xk, I) ∈ f(bi, e(1) + e(2) + e(3)) = f(bi, e(1) + e(2) + e(max{3, k})) 6= Ai(bi),

so we find that bi selects the worst move in f(bi, e(1) + e(2) + e(3)), which is equal to

(x0xk, I). The inequality in the last expression makes use of the fact that k ≥ 4.

Let b′i ∈ P 2
i \ {bi}. If b′

ik
= 0, then, for ε > 0 sufficiently small,

Ui(b
′
i, ci) ≤ (1− ε− ε2) · ui(xk−1) + (ε + ε2) · ui(xK) < Ui(bi, ci),

where the strict inequality makes use of the fact that ε is sufficiently small.
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Assume b′
ik

= 1. If there is k < k such that b′ik = 1, then, for ε > 0 sufficiently small,

Ui(b
′
i, ci) ≤ (1− ε− ε2) · ui(xk) + ε · ui(xk−1) + ε2 · ui(xK) < Ui(bi, ci),

where the strict inequality makes use of the fact that ε is sufficiently small.

Assume the smallest k for which b′ik = 1 is equal to k. It follows that bi 6= e(K), since

k = K together with the assumption that the smallest k for which b′ik = 1 is equal to k

implies b′i = e(K). Since b′i 6= bi it follows that bi 6= e(K). We have that

Ui(b
′
i, ci) = (1− ε− ε2) · ui(xk) + ε · ui(xk) < Ui(bi, ci),

where the second term in the expression after the equality follows from the fact that

f(b′i,1) = Ai(b
′
i) 6= Ai(bi), so the worst move (x0xk, I) in Ai(b

′
i) is selected by b0. The

expression after the equality also uses that bi 6= e(K), so k < k, and f(b′i, e(1) + e(2) +

e(max{3, k})) = ∅.

References

[1] Battigalli, P., 1997. On rationalizability in extensive games. Journal of Economic

Theory 74, 40-61.

[2] Bernheim, D., 1984. Rationalizable strategic behavior. Econometrica 52, 1007-1028.

[3] Bloch, F. and A. van den Nouweland, 2020. Farsighted stability with heterogeneous

expectations. Games and Economic Behavior 121, 32-54.

[4] Chwe, M.S., 1994. Farsighted coalitional stability. Journal of Economic Theory 63,

299-325.

[5] Diamantoudi, E. and L. Xue, 2003. Farsighted stability in hedonic games. Social

Choice and Welfare 21, 39-61.

[6] Dutta, B., S. Ghosal and D. Ray, 2005. Farsighted network formation. Journal of

Economic Theory 122, 143-164.

[7] Dutta, B. and H. Vartiainen, 2020. Coalition formation and history dependence.

Theoretical Economics 15, 159-197.

[8] Dutta, B. and R. Vohra, 2017. Rational expectations and farsighted stability. Theo-

retical Economics 12, 1191-1227.

[9] Herings, P.J.J., A. Mauleon and V. Vannetelbosch, 2000. Social rationalizability.

CentER Discussion Paper 2000-81, Tilburg University, The Netherlands.

[10] Herings, P.J.J., A. Mauleon and V. Vannetelbosch, 2004. Rationalizability for social

environments. Games and Economic Behavior 49, 135-156.

22



[11] Herings, P.J.J., A. Mauleon and V. Vannetelbosch, 2009. Farsightedly stable net-

works. Games and Economic Behavior 67, 526-541.

[12] Herings, P.J.J., A. Mauleon and V. Vannetelbosch, 2010. Coalition formation among

farsighted agents. Games 1, 286-298.

[13] Herings, P.J.J., A. Mauleon and V. Vannetelbosch, 2019. Stability of networks under

horizon-K farsightedness. Economic Theory 68, 177-200.

[14] Herings, P.J.J., A. Mauleon and V. Vannetelbosch, 2020. Matching with myopic and

farsighted players. Journal of Economic Theory 190, 105125.

[15] Karos, D. and L. Robles, 2021. Full farsighted rationality. Games and Economic

Behavior 130, 409-424.

[16] Kimya, M., 2020. Equilibrium coalitional behavior. Theoretical Economics 15, 669-

714.

[17] Luo, C., A. Mauleon and V. Vannetelbosch, 2021. Network formation with myopic

and farsighted players. Economic Theory 71, 1283-1317.

[18] Mauleon, A. and V. Vannetelbosch, 2004. Farsightedness and cautiousness in coali-

tion formation games with positive spillovers. Theory and Decision 56, 291-324.

[19] Mauleon, A., V. Vannetelbosch and W. Vergote, 2011. von Neumann Morgenstern

farsightedly stable sets in two-sided matching. Theoretical Economics 6, 499-521.

[20] Page, F.H., Jr. and M. Wooders, 2009. Strategic basins of attraction, the path dom-

inance core, and network formation games. Games and Economic Behavior 66, 462-

487.

[21] Page, F.H., Jr., M. Wooders and S. Kamat, 2005. Networks and farsighted stability.

Journal of Economic Theory 120, 257-269.

[22] Pearce, D.G., 1984. Rationalizable strategic behavior and the problem of perfection.

Econometrica 52, 1029-1050.

[23] Ray, D. and R. Vohra, 2015. The farsighted stable set. Econometrica 83, 977-1011.

[24] Ray, D. and R. Vohra, 2019. Maximality in the farsighted stable set. Econometrica

87, 1763-1779.

[25] Shimoji, M. and J. Watson, 1998. Conditional dominance, rationalizability, and game

forms. Journal of Economic Theory 83, 161-195.

[26] Vannetelbosch, V., 1999. Rationalizability and equilibrium in N-person sequential

bargaining. Economic Theory 14, 353-371.

23



[27] Xue, L., 1998. Coalitional stability under perfect foresight. Economic Theory 11,

603-627.

24


