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Abstract

We adopt the horizon-K farsighted set of Herings, Mauleon and Vannetel-

bosch (2019) to study the R&D networks that will emerge in the long run when

firms are neither myopic nor fully farsighted but have some limited degree of

farsightedness. We find that a singleton set consisting of a pairwise stable

network is a horizon-K farsighted set for any degree of farsightedness K ≥ 2.

That is, each R&D network consisting of two components of nearly equal size

satisfies both horizon-K deterrence of external deviations and horizon-K ex-

ternal stability for K ≥ 2. On the contrary, each R&D network consisting

of two components with the largest one comprising three-quarters of firms,

predicted when all firms are fully farsighted, violates horizon-K deterrence

of external deviations. Thus, when firms are homogeneous in their degree of

farsightedness, pairwise stable R&D networks consisting of two components

of nearly equal size are robust to limited farsightedness.
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1 Introduction

R&D bilateral collaborations are agreements that allow firms to access to new knowl-

edge providing them a competitive advantage. Hence, such collaborative agreements

could induce competitors to look for their own R&D alliances. Since innovation en-

hances both growth and welfare, it is important to analyse the formation of bilateral

R&D agreements between firms.

Different ways of characterizing which network structures are stable have been

proposed in the literature depending on whether (and how far) agents anticipate that

their action may also induce others to change the network relations they maintain.1

On the one hand pairwise stability (Jackson and Wolinsky, 1996) involves fully

myopic agents in the sense that they do not anticipate that others might react to

their actions: agents are able to modify the network one link at a time, and choose to

change the network if the resulting network implies higher payoffs for the deviating

agents. On the other hand, a number of solution concepts involve perfectly farsighted

agents: agents fully anticipate the complete sequence of reactions that results from

their own actions in the network.2 However, Kirchsteiger, Mantovani, Mauleon and

Vannetelbosch (2016) provide experimental evidence suggesting that subjects are

consistent with an intermediate degree of farsightedness: agents only anticipate a

limited number of reactions by the other agents to the actions they take themselves.

Similarly to Goyal and Moraga-Gonzalez (2001), Goyal and Joshi (2003), and

Mauleon, Sempere-Monerris and Vannetelbosch (2014), we consider a n-firm in-

dustry, where initially firms produce an homogeneous good at a given equal and

constant marginal cost. Each firm is able to reduce its marginal cost by forming

a R&D collaborative link with another competitor. The marginal cost of produc-

tion reduction for one firm is proportional to the number of firms it is connected to.

When a link is formed between two firms that are not connected, all firms connected

to those two firms benefit from that link while others become less competitive. The

collection of R&D collaborative links define the R&D network which in turn deter-

1Mauleon and Vannetelbosch (2016) provide a comprehensive overview of the solution concepts

for solving network formation games.
2Various approaches to farsightedness can be found in Chwe (1994), Xue (1998), Herings,

Mauleon and Vannetelbosch (2004, 2009), Mauleon and Vannetelbosch (2004), Dutta, Ghosal and

Ray (2005), Page, Wooders and Kamat (2005), Page and Wooders (2009), Mauleon, Vannetelbosch

and Vergote (2011), and Ray and Vohra (2015).
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mines the marginal cost profile for the n firms. Once the R&D network is formed,

firms compete in quantities.

When all firms are myopic, Mauleon, Sempere-Monerris and Vannetelbosch (2014)

show that a R&D network is pairwise stable if and only if it consists of two ”sym-

metric” components of nearly equal size (close to n/2 + 1 and n/2− 1). In contrast

to myopia, once all firms are fully farsighted, farsighted stability leads to R&D net-

works consisting of two ”asymmetric” components of different sizes (close to 3n/4

and n/4). Recently, Mauleon, Sempere-Monerris and Vannetelbosch (2018) allows

for a mixed population of firms: myopic firms interacting together with farsighted

firms.3 When the majority of firms are myopic, the myopic-farsighted stable set

consists of R&D networks having either two ”asymmetric” components of different

sizes (close to 3n/4 and n/4) with farsighted firms mostly occupying key positions in

the largest component, or two ”symmetric” components of nearly equal size (close to

n/2+1 and n/2−1) with the largest component having only myopic firms. However,

when the majority of firms becomes farsighted, networks having two components of

nearly equal size are now unstable. The myopic-farsighted stable set consists only

of the networks having two components of different sizes.4

Which are the R&D networks that will emerge in the long run when firms have a

limited degree of farsightedness? We adopt the horizon-K farsighted set of Herings,

Mauleon and Vannetelbosch (2019) to answer this question. The concept encom-

passes both the pairwise farsightedly stable set and the pairwise myopically stable

set introduced by Herings, Mauleon and Vannetelbosch (2009). A set of networks

GK is a horizon-K farsighted set if three conditions are satisfied. First, deviations

outside the set should be horizon-K deterred. Second, horizon-K external stability

is required. That is, from any network outside of GK there is a sequence of farsighted

improving paths of length smaller than or equal to K leading to some network in

GK . Third, a minimality condition is required. That is, there is no proper subset of

GK satisfying the first two conditions.

3Herings, Mauleon and Vannetelbosch (2020) define the myopic-farsighted stable set for two-

sided matching problems, while Luo, Mauleon and Vannetelbosch (2021) investigate the myopic-

farsighted stable set in general network formation problems.
4Petrakis and Tskas (2018) investigate the effect of potential entry on the formation and sta-

bility of R&D networks when firms are farsighted while Roketskiy (2018) studies collaboration

between farsighted firms competing in a tournament and finds that stable networks consist of two

asymmetric mutually disconnected complete components.
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In this paper, we show that a singleton set consisting of a pairwise stable network

is a horizon-K farsighted set for any degree of farsightedness greater or equal than 2.

That is, each R&D network having two components of nearly equal size satisfies both

horizon-K deterrence of external deviations and horizon-K external stability for

K ≥ 2. On the contrary, we find that each R&D network having two ”asymmetric”

components with the largest one comprising three-quarters of firms violates horizon-

K deterrence of external deviations. Hence, R&D networks having two components

of nearly equal size are not only stable when the majority of firms are myopic but

also when all firms are limitedly farsighted. To sum up, when firms are homogeneous

in their degree of farsightedness, pairwise stable R&D networks consisting of two

”symmetric” components of nearly equal size are robust to limited farsightedness.

The formation of research collaborations is also studied using the group forma-

tion approach where collaborations are modelled in terms of a coalition structure

which is a partition of the set of firms (i.e. each firm can only belong to one coali-

tion). Bloch (1995) proposes a sequential game for forming associations of firms. In

equilibrium, firms form two asymmetric associations, with the largest one compris-

ing roughly three-quarters of industry members. So, the sizes of the two associations

coincide with those Mauleon, Sempere-Monerris and Vannetelbosch (2014) obtain

when firms are farsighted. In fact, by assuming that all connected firms in a net-

work fully benefit from a new link, Mauleon, Sempere-Monerris and Vannetelbosch

(2014) recover the assumption in Bloch (1995) where the benefits from cooperation

increase linearly in the size of the association. The network approach differs from

the group formation approach by focusing on bilateral relationships and allowing for

a richer class of collaborations. It also differs in the decision making for establishing

R&D collaborations. Mutual consent is needed for forming a new link between two

firms,5 whereas the consent of all members of the association is required when a firm

joins the association.6 Both approaches lead to similar conclusions only if firms are

farsighted and anticipate the reactions of other firms to the decisions they take.7

5Caulier, Mauleon and Vannetelbosch (2013) and Caulier, Mauleon, Sempere-Monerris and

Vannetelbosch (2013) propose the concept of contractual stability to predict the stable networks

when the consent of coalition partners is needed for adding or deleting links.
6An exception is the open membership game. Yi (1997) finds that only the grand coalition is

stable, but this result is not always robust when firms are not identical (see Yi and Shin, 2000).

See Bloch (2005) for a survey on group and network formation in industrial organization.
7Mauleon, Sempere-Monerris and Vannetelbosch (2016) show that if firms are myopic (∆-

3



The paper is organized as follows. In Section 2 we introduce some notation and

basic properties of R&D networks. In Section 3 we define the notion of a horizon-

K farsighted set. In Section 4 we identify the horizon-K farsighted set of R&D

networks. Finally, in Section 5 we conclude.

2 R&D Networks

We consider a two-stage game in a setting with n competing identical firms that pro-

duce some homogenous good. In the first stage, firms decide the bilateral R&D col-

laborations they establish to maximize their respective profits. Let N = {1, 2, ..., n}
be the set of firms.8 A network g of R&D collaborations is a list of which pairs of

firms are linked to each other and ij ∈ g indicates that i and j are linked under g.

The complete network on the set of firms S ⊆ N is denoted by gS and is equal to

the set of all subsets of S of size 2. The empty network is denoted by g∅. The set

of all possible networks on N is denoted by G and consists of all subsets of gN . The

cardinality of G is denoted by n′ = 2n(n−1)/2.

The network obtained by adding link ij to an existing network g is denoted

g+ ij and the network that results from deleting link ij from an existing network g

is denoted g− ij. Let N(g) = {i |there is j such that ij ∈ g} be the set of firms who

have at least one link in the network g. A path in a network g between i and j is

a sequence of firms i1, . . . , iK such that ikik+1 ∈ g for each k ∈ {1, . . . , K − 1} with

i1 = i and iK = j. A network g is connected if for all i ∈ N and j ∈ N \ {i}, there

exists a path in g connecting i and j. A non-empty network h ⊆ g is a component

of g, if for all i ∈ N(h) and j ∈ N(h) \ {i}, there exists a path in h connecting

i and j, and for any i ∈ N(h) and j ∈ N(g), ij ∈ g implies ij ∈ h. The set of

components of g is denoted by C(g). A component h of g is minimally connected if

h has #N(h) − 1 links.9 Knowing the components of a network, we can partition

the firms into coalitions within which firms are connected. Let P(g) denote the

partition of N into components and singletons induced by the network g. That is,

S ∈ P(g) if and only if either there exists h ∈ C(g) such that S = N(h) or there

stability) there is no stable association structure for n ≥ 8.
8Throughout the paper we use the notation ⊆ for weak inclusion and ⊂ for strict inclusion.

Finally, # will refer to the notion of cardinality.
9In a minimally connected component, every pair of firms belonging to the component is con-

nected by exactly one path.
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exists i /∈ N(g) such that S = {i}. We denote by S(i) the coalition S ∈ P(g) such

that i ∈ S. We denote by S̄(g) the largest coalition of g. That is, S̄(g) ∈ P(g) is

such that #S̄(g) ≥ #S(g) for all S(g) ∈ P(g).

R&D collaborations reduce marginal costs of production as in Mauleon, Sempere-

Monerris and Vannetelbosch (2014).10 Each firm benefits fully from its own R&D

and from the R&D done by the firms it is connected to.11 Given a network g, the

marginal cost for firm i is given by

ci(g) = c0 −#S(i)

where c0 is a firm’s initial marginal cost and #S(i) is the number of firms in the

component of firm i. Since knowledge flows perfectly throughout the component,

firms bear an infinitesimally small cost for maintaining redundant (or superfluous)

links.12

In the second stage, firms compete in quantities in the oligopolistic market,

taking as given the costs of production. Let p = a −
∑

i∈N qi with a > 0 be the

linear inverse demand function. For any given R&D network g, one can easily show

that there exists a unique Cournot equilibrium on the market, and that each firm’s

profit πi(g) is a monotonically increasing function of the following valuation or payoff

function,13

Πi(g) = a− c0 + (n+ 1)#S(i)−
∑

S∈P(g)

(#S)2. (1)

In fact, Πi(g) = (n+ 1)
√
πi(g) = (n+ 1)qi(g) where qi(g) is the equilibrium output.

10Firms collaborate in R&D but do not cooperate on R&D effort choices. For a general back-

ground on R&D cooperation in oligopoly the reader is directed to Amir (2000), Kamien, Muller,

and Zang (1992) and Katz (1986), among others.
11In Mauleon, Sempere-Monerris and Vannetelbosch (2008), the reduction in marginal costs

depends on the total number of connected firms, but decreases with the distance. In Goyal and

Joshi (2003), the reduction in marginal costs only depends on the number of direct links. In Goyal

and Moraga-Gonzalez (2001), firms also benefit imperfectly from public spillovers, i.e. the research

done by firms to whom they are not connected.
12In a network g, a component h ∈ C(g) has no redundant links if and only if h is minimally

connected. It reflects the idea that firms avoid wasting resources. When a firm deletes a redundant

or superfluous link, it remains connected to the same set of firms and so still benefits from the

same reduction in marginal costs.
13Excluding infinitesimally small costs for maintaining redundant links.
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We focus our analysis on the case where there are at least eight firms.14 Notice that

R&D networks connecting all firms are the ones that maximize social welfare, i.e.

the sum of the profits and the consumer surplus. As in Bloch (1995), for n ≥ 8,

this payoff function in (1) satisfies some general properties (P1-P5) that are useful

for characterizing the networks that will emerge in the long run. P1 states that, in

any R&D network, linking two components decreases the payoffs of the firms that

do not belong to those components. P2 states that, in any R&D network, firms

belonging to bigger components obtain greater payoffs. P3 states that, in any R&D

network, firms belonging to the two smallest components obtain greater payoffs by

bridging the two components. P4 states that, firms prefer to belong to the largest

component of a R&D network with one component encompassing all firms except

one rather than to belong to the largest component of a R&D network with two

nearly symmetric coalitions. P5 states that, firms prefer to belong to the single

component of a R&D network that includes less firms rather than to belong to the

single component of a R&D network that includes more firms, provided that more

than half of the firms belong to the single component. Formally, the payoff function

satisfies the following five properties.

P1 In any R&D network g, we have that Πi(g+jk) < Πi(g) if S(i) 6= S(j) 6= S(k)

and S(i), S(j), S(k) ∈ P(g).

P2 In any R&D network g, we have that Πi(g) > Πj(g) if and only if #S(i) >

#S(j).

P3 In any R&D network g with #P(g) ≥ 3, we have that Πi(g + ij) > Πi(g)

and Πj(g + ij) > Πj(g) if S(i) 6= S(j), S(i), S(j) ∈ P(g), and #S ≥
max{#S(i),#S(j)} for all S ∈ P(g), S 6= S(i), S(j).

P4 In any R&D networks g, g′ such that #P(g) = #P(g′) = 2 with #S̄(g) = n−1

and S̄(g′) = d(n+1)/2e, we have that Πi(g) > Πi(g
′) if i ∈ S̄(g) and i ∈ S̄(g′).15

P5 In any R&D networks g, g′ such that #C(g) = #C(g′) = 1 and #S̄(g′) >

#S̄(g) > dn/2e, we have Πi(g) > Πi(g
′) if i ∈ S̄(g) and i ∈ S̄(g′).

14Petrakis and Tsakas (2018) consider a setup where R&D effort is costly and endogenous but

in an environment with only three farsighted firms that could differ in the initial marginal cost

and the levels of substitutability between products.
15dxe is the function that takes as input a real number x and gives as output the lowest integer

greater than or equal to x.
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Throughout the paper we illustrate our main results by means of an example with

eight firms. In Table 1 we give the firms’ equilibrium payoffs in several networks for

a − c0 = 42. We make a slight abuse of notation. For instance, {5, 2, 1} should be

interpreted as a network, composed of three ”components” of size 5, 2 and 1, that

can be formed by eight firms. Firms in the component of size 5 obtain a payoff of

57, firms in the component of size 2 obtain a payoff of 30, and the (isolated) firm in

the ”component” of size 1 obtains a payoff of 21.

Networks: {8} {5, 3} {5, 2, 1} {3, 3, 2} {3, 3, 1, 1}
Payoffs: (50) (53, 35) (57, 30, 21) (47, 47, 38) (49, 49, 31, 31)

Networks: {7, 1} {4, 4} {4, 3, 1} {5, 1, 1, 1} {3, 2, 2, 1}
Payoffs: (55, 1) (46, 46) (52, 43, 25) (59, 23, 23, 23) (51, 42, 42, 33)

Networks: {6, 2} {6, 1, 1} {4, 2, 2} {4, 2, 1, 1} {2, 2, 2, 2}
Payoffs: (56, 20) (58, 13, 13) (54, 36, 36) (56, 38, 29, 29) (44, 44, 44, 44)

Table 1: Payoffs for the 8-firm case with a− c0 = 42.

3 Horizon-K Farsighted Set

We propose the notion of horizon-K farsighted set introduced by Herings, Mauleon

and Vannetelbosch (2019) to determine the R&D networks that emerge in the long

run when firms are neither fully myopic nor completely farsighted but have some

limited degree of farsightedness.

A farsighted improving path of length K ≥ 1 from a network g to a network g′

is a finite sequence of networks g0, . . . , gK with g0 = g and gK = g′ such that for any

k ∈ {1, . . . , K − 1} either (i) gk+1 = gk − ij for some ij such that Πi(gK) > Πi(gk)

or Πj(gK) > Πj(gk), or (ii) gk+1 = gk + ij for some ij such that Πi(gK) > Πi(gk)

and Πj(gK) > Πj(gk). If there exists a farsighted improving path of length K from

g to g′, then we write g →K g′. For a given network g and some K ′ ≥ 1, let φK′(g)

be the set of networks that can be reached from g by a farsighted improving path

of length K ≤ K ′. That is, φK′(g) = {g′ ∈ G | ∃K ≤ K ′ such that g →K g′}. Let
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φ∞(g) = {g′ ∈ G | ∃K ∈ N such that g →K g′} denote the set of networks that

can be reached from g by some farsighted improving path. Lemma 1 in Herings,

Mauleon and Vannetelbosch (2019) shows that for every K ≥ 1, for every g ∈ G, it

holds that φK(g) ⊆ φK+1(g), and that for K ≥ n′− 1, for every g ∈ G, it holds that

φK(g) = φK+1(g) = φ∞(g).

A network g′ is adjacent to g if either g′ = g + ij or g′ = g − ij for some ij.

A network g′ defeats g either if g′ = g − ij and Πi(g
′) > Πi(g) or Πj(g

′) > Πj(g),

or if g′ = g + ij with Πi(g
′) > Πi(g) and Πj(g

′) > Πj(g). A network is pairwise

stable (Jackson and Wolinsky, 1996) if and only if it is not defeated by another

network. Notice that g′ ∈ φ1(g) if and only if g′ defeats g. We can therefore define

the pairwise stable networks P1 as those g ∈ G for which φ1(g) = ∅. For K ≥ 1, let

PK = {g ∈ G |φK(g) = ∅} denote the set of horizon-K pairwise stable networks.

A refinement of pairwise stability is obtained when we require the network g to

defeat every other adjacent network, so g ∈ φ1(g′) for every network g′ adjacent to

g. We call such a network g pairwise dominant. For K ≥ 1, a network g ∈ G is

horizon-K pairwise dominant if for every g′ adjacent to g it holds that g ∈ φK(g′).

The set of horizon-K pairwise dominant networks is denoted by DK .

The set φ2
K(g) = φK(φK(g)) = {g′′ ∈ G | ∃g′ ∈ φK(g) such that g′′ ∈ φK(g′)}

consists of those networks that can be reached by a composition of two farsighted

improving paths of length at most K from g. For m ∈ N, let φm
K(g) be the networks

that can be reached from g by means of m compositions of farsighted improving

paths of length at most K. Let φ∞K denote the set of networks that can be reached

from g by means of any number of compositions of farsighted improving paths of

length at most K. Lemma 2 in Herings, Mauleon and Vannetelbosch (2019) shows

that for every K ≥ 1, for every g ∈ G, it holds that φ∞K (g) ⊆ φ∞K+1(g), and that for

K ≥ n′ − 1, for every g ∈ G, it holds that φ∞K (g) = φ∞K+1(g) = φ∞∞(g).

The notion of a horizon-K farsighted set is based on two main requirements:

horizon-K deterrence of external deviations and horizon-K external stability. A set

of networks G satisfies horizon-K deterrence of external deviations if all possible

deviations from any network g ∈ G to a network outside G are deterred by a threat

of ending worse off or equally well off.16

Definition 1 (Herings, Mauleon and Vannetelbosch, 2019). For K ≥ 1, a set of

networks G ⊆ G satisfies horizon-K deterrence of external deviations if for every

16We use the notational convention that φ−1(g) = ∅ for every g ∈ G.
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g ∈ G,

(a) ∀ ij /∈ g such that g+ij /∈ G, ∃g′ ∈ [φK−2(g+ij)∩G]∪[φK−1(g+ij)\φK−2(g+ij)]

such that Πi(g
′) ≤ Πi(g) or Πj(g

′) ≤ Πj(g),

(b) ∀ ij ∈ g such that g − ij /∈ G, ∃g′, g′′ ∈ [φK−2(g − ij) ∩ G] ∪ [φK−1(g − ij) \
φK−2(g − ij)] such that Πi(g

′) ≤ Πi(g) and Πj(g
′′) ≤ Πj(g).

Condition (a) in Definition 1 captures that adding a link ij to a network g ∈ G
that leads to a network g + ij outside of G, is deterred by the threat of ending

in g′. Here g′ is such that either there is a farsighted improving path of length

smaller than or equal to K − 2 from g + ij to g′ and g′ belongs to G or there is a

farsighted improving path of length equal to K − 1 from g + ij to g′ and there is

no farsighted improving path from g + ij to g′ of smaller length. Condition (b) is a

similar requirement, but then for the case where a link is severed.17

A set of networks G satisfies horizon-K external stability if from any network

outside of G there is a sequence of farsighted improving paths of length smaller than

or equal to K leading to some network in G.

Definition 2 (Herings, Mauleon and Vannetelbosch, 2019). For K ≥ 1, a set of

networks G ⊆ G satisfies horizon-K external stability if for every g′ ∈ G\G, φ∞K (g′)∩
G 6= ∅.

This requirement implies that if we allow players with a degree of farsightedness

equal to K to successively create or delete links, they will ultimately reach the set

G irrespective of the initial network.

Definition 3 (Herings, Mauleon and Vannetelbosch, 2019). For K ≥ 1, a set of

networks GK ⊆ G is a horizon-K farsighted set if it is a minimal set satisfying

horizon-K deterrence of external deviations and horizon-K external stability.

17Since the degree of farsightedness of players is equal to K, Herings, Mauleon and Vannetelbosch

(2019) distinguish farsighted improving paths of length less than or equal to K−2 after a deviation

from g to g + ij and farsighted improving paths of length equal to K − 1. In the former case, the

reasoning capacity of the players is not yet reached, and the threat of ending in g′ is only credible

if it belongs to the set G. In the latter case, the only way to reach g′ from g requires K steps of

reasoning or even more; one step in the deviation to g + ij and at least K − 1 additional steps in

any farsighted improving path from g + ij to g′. Since this exhausts the reasoning capacity of the

players, the threat of ending in g′ is credible, irrespective of whether it belongs to G or not.
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Herings, Mauleon, and Vannetelbosch (2019) prove that a horizon-K farsighted

set of networks exists. For K = 1, Theorem 3 of Herings, Mauleon, and Vannetel-

bosch (2019) show that there is a unique horizon-1 farsighted set consisting of all

networks that belong to a closed cycle.18 This result does not carry over to higher

levels of K.

As shown by Herings, Mauleon, and Vannetelbosch (2019), the collection of

horizon-K farsighted sets is independent of K when K ≥ n′+1. Moreover, for every

pairwise farsightedly stable set G∞ defined by Herings, Mauleon and Vannetelbosch

(2009), there is a set G′ ⊆ G∞ such that G′ is a horizon-(n′ + 1) farsighted set.19

4 Horizon-K Farsighted Set of R&D Networks

Mauleon, Sempere-Monerris and Vannetelbosch (2014) show that the set G1/2 =

{g ∈ G | C(g) = (h1, h2), h1 and h2 are minimally connected, N(h1) ∪ N(h2) =

N,#N(h1) = d(n+ 1)/2e} is the set of pairwise stable networks. That is, a network

g ∈ G is pairwise stable if and only if g consists of two minimally connected compo-

nents with the cardinality of the largest component equal to d(n + 1)/2e. Thus, in

the case all firms are myopic, stability leads to R&D networks consisting of nearly

symmetric components. However, in the case all firms are farsighted, Mauleon,

Sempere-Monerris and Vannetelbosch (2014) show that the set G3/4 is a pairwise

farsightedly stable set, where G3/4 = {g ∈ G | C(g) = (h1, h2), h1 and h2 are min-

imally connected, N(h1) ∪ N(h2) = N , and #N(h1) = b(3n + 1)/4c} is the set of

all R&D networks that consist of two minimally connected components of different

size close to 3n/4 and n/4, respectively.20

Which R&D networks are stable when firms are neither myopic nor fully far-

sighted but rather have a limited degree of farsightedness?

18Similarly to Jackson and Watts (2002), a set of networks C is a cycle if for any g′ ∈ C and

g ∈ C \ {g′}, g′ ∈ φ∞1 (g). A cycle C is a closed cycle if φ∞1 (C) = C. For every pairwise stable

network g ∈ P1, the set {g} is a closed cycle.
19Herings, Mauleon and Vannetelbosch (2009) define a pairwise farsightedly stable set as a set

G∞ of networks satisfying horizon-∞ deterrence of external deviations and minimality, but with

horizon-∞ external stability replaced by the requirement that for every g′ ∈ G\G∞, φ∞(g′)∩G∞ 6=
∅.

20bxc is the function that takes as input a real number x and gives as output the greatest integer

less than or equal to x.
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We say that firm i is a leaf node in network g if it only has a single link, i.e.

#Ni(g) = 1. If a firm that is a leaf node deletes its single link, it becomes an isolated

firm with no R&D collaboration.

We now provide results that turn to be useful for characterizing the set of horizon-

1 pairwise dominant networks, the horizon-1 farsighted set and the horizon-K far-

sighted sets for K ≥ 2. Lemma 1 tells us that, from any network where some

component is not minimally connected there is a sequence of farsighted improving

paths of length 1 leading to some network where this component is now minimally

connected and all firms belong to the same component or are isolated as in the

initial network. Lemma 1 follows from the incentives for deleting superfluous links

in components that are not minimally connected.

Lemma 1. Take any network g ∈ G such that some component h ∈ C(g) is not

minimally connected. It holds that there exists some network g′ ∈ φ∞1 (g) such that

every component h ∈ C(g′) is minimally connected and P(g) = P(g′).

Lemma 2 tells us that, from any network with at least three components and/or

isolated firms, there is a sequence of farsighted improving paths of length 1 leading

to some network with two components. Lemma 2 follows from P3 and the incentives

for adding a link between two firms that belong to the two smallest coalitions.

Lemma 2. Take any network g ∈ G such that every component h ∈ C(g) is

minimally connected and #P(g) ≥ 3. It holds that there exists some network

g′ ∈ φ∞1 (g) such that every component h ∈ C(g′) is minimally connected and

#P(g′) = #C(g′) = 2.

Lemma 3 tells us that, from any minimally connected network with a single

component connecting all firms, there is a sequence of farsighted improving paths

of length 1 towards some network belonging to the set of pairwise stable networks,

G1/2. Starting from a minimally connected network g such that P(g) = {N} we

build a sequence of farsighted improving paths of length 1 towards some network

g′ ∈ G1/2 as follows. First, at each step a firm that is a leaf is isolated until we reach

a network g1 ⊂ g with #S̄(g1) = d(n + 1)/2e and n − d(n + 1)/2e isolated firms.

Given P5, firms belonging to the largest component have incentives to isolate a firm

that is a leaf. Next, at each step isolated firms have incentives to add links one

by one between them to form a minimally connected component leading to some g′

such that P(g′) = {S1, S2} with #S1 = d(n+ 1)/2e and #S2 = n− d(n+ 1)/2e.
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Lemma 3. Take any minimally connected network g ∈ G such that #P(g) = 1. It

holds that φ∞1 (g) ∩G1/2 6= ∅.

Lemma 4 tells us that, from any non-pairwise stable network with two minimally

connected components or one minimally connected component and one isolated firm,

there is a sequence of farsighted improving paths of length 1 leading to some pairwise

stable network.

Lemma 4. Take any network g ∈ G \G1/2 such that every component h ∈ C(g) is

minimally connected and #P(g) = 2. It holds that φ∞1 (g) ∩G1/2 6= ∅.

Proof. Starting from a network g /∈ G1/2 such that each component is minimally

connected and #P(g) = 2 we build a sequence of farsighted improving paths of

length 1 towards some network g′ ∈ G1/2 as follows. At each step some firm that

is a leaf in the largest component is first isolated. Next, this isolated firm adds

a link to some firm that does not belong to the largest component. We proceed

so up to the largest component reaches the size d(n + 1)/2e. Formally, let g0 = g

and gk̄ = g′. For k = 1, ..., k̄ = 2(#S̄(g) − d(n + 1)/2e), either gk = gk−1 − ij for

k odd with #Nj(gk−1) = 1 and j ∈ S̄(gk−1), or gk = gk−1 + jl for k even with

Nj(gk−1) = ∅ and l /∈ S̄(gk−1). When k is odd, we have that Πi(gk) > Πi(gk−1) for

i ∈ S̄(gk−1) \ {j} with P(gk) = {S̄(gk−1) \ {j}, {j}, N \ S̄(gk−1)}. When k is even,

we have that Πj(gk) > Πj(gk−1) and Πl(gk) > Πl(gk−1) for j such that Nj(gk−1) = ∅
and l ∈ N \ S̄(gk−1), with P(gk) = {S̄(gk−1) \ {j}, N \ S̄(gk−1) ∪ {j}}. Thus,

φ∞1 (g) ∩G1/2 6= ∅

We first show that the set of pairwise stable networks, G1/2, is the set of pairwise

dominant networks.

Proposition 1. The set G1/2 is the set of horizon-1 pairwise dominant networks,

D1 = G1/2.

Proof. (i) We first show that G1/2 ⊆ D1. Each g ∈ G1/2 defeats every adjacent

network g′ to g, so g ∈ φ1(g′). Indeed, for every g ∈ G1/2 we have Πi(g) > Πi(g− ij)
for all ij ∈ g. Deleting some ij ∈ g would split one of the two components in C(g)

either in two new components or in one new component with an isolated firm. In

both cases, all firms belonging to the component that is split become strictly worse

off. Adding a link between two firms belonging to the two different components in
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g would strictly decrease the profit of the firm belonging to the largest component

in g. That is, Πi(g) > Πi(g + ij) for g ∈ G1/2, i ∈ h1, j ∈ h2, C(g) = (h1, h2),

#N(h1) > #N(h2); so g ∈ φ1(g+ ij). Adding a link ij /∈ g between two firms i and

j belonging to the same component in g ∈ G1/2 would strictly decrease the profit of

both firms i and j since this link ij does not increase the profit and is infinitesimally

costly; so again g ∈ φ1(g + ij). Thus, G1/2 ⊆ D1.

(ii) We now show that for any g /∈ G1/2, φ1(g) 6= ∅, and so g /∈ D1. From Lemma

1, Lemma 2, Lemma 3 and Lemma 4 it directly follows that for any g ∈ G \G1/2 it

holds that φ1(g) 6= ∅. Thus, from (i) and (ii) it follows that D1 = G1/2.

We next show that the set of pairwise stable networks, G1/2, is the unique

horizon-1 farsighted set.

Proposition 2. The set G1/2 is the unique horizon-1 farsighted set.

Proof. (i) Notice that if g ∈ φ∞1 (g′) and g′ ∈ φ∞1 (g′′) then g ∈ φ∞1 (g′′). From Lemma

1, Lemma 2, Lemma 3 and Lemma 4 it directly follows that for any g ∈ G \ G1/2

it holds that φ∞1 (g) ∩ G1/2 6= ∅. Hence, G1/2 satisfies horizon-1 external stability.

(ii) From Proposition 1 we have that D1 = G1/2 and each g ∈ G1/2 defeats every

adjacent network g′ to g, so g ∈ φ1(g′). Hence, G1/2 satisfies horizon-1 deterrence of

external deviations. (iii) Since G1/2 is the set of pairwise stable networks, it holds

that φ1(g) = φ∞1 (g) = ∅ for every g ∈ G1/2. Hence, G1/2 satisfies the minimality

requirement. (iv) Suppose that G′ 6= G1/2 is a horizon-1 farsighted set. Since for

every g ∈ G1/2, it holds that φ∞1 (g) = ∅, then G1/2 ⊆ G′. Otherwise, G′ violates

horizon-1 external stability. But, if G1/2  G′ then G′ violates the minimality

requirement. Hence, G is the unique horizon-1 farsighted set.

What happens for higher degrees of farsightedness (i.e. for K ≥ 2)? We show

that a singleton set consisting of a pairwise stable network is a horizon-K farsighted

set for any degree of farsightedness greater or equal than 2. Hence, pairwise stable

networks are not only stable when firms are myopic but also when firms are limitedly

farsighted.

Proposition 3. A singleton set {g} such that g ∈ G1/2 is a horizon-K farsighted

set for every K ≥ 2.

Since g ∈ D1, each {g} with g ∈ G1/2 satisfies horizon-K deterrence of external

deviations. Obviously, each {g} with g ∈ G1/2 also satisfies the minimality require-

ment. We now provide Lemma 5 and Lemma 6 that are useful for showing that
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each {g} with g ∈ G1/2 satisfies horizon-K external stability for K ≥ 2, and then

we prove Proposition 3. Take any two pairwise stable networks such that the firms

belonging to the largest component are not exactly the same. Lemma 5 tells us that

there is a sequence of farsighted improving paths of length at most 2 from one of

the two pairwise stable networks to some pairwise stable network where firms in the

largest component are the same as the ones in the largest component of the other

pairwise stable network.

Lemma 5. Take any g, g′ ∈ G1/2 such that g 6= g′, S̄(g) 6= S̄(g′). Then, there exists

g′′ ∈ φ∞2 (g′) such that g′′ ∈ G1/2 and S̄(g) = S̄(g′′).

Proof. Take any g, g′ ∈ G1/2 such that g 6= g′, S̄(g) 6= S̄(g′). There is i∗ ∈ S̄(g′) and

j∗ ∈ N \S̄(g′) such that i∗, j∗ ∈ S̄(g). We now build in steps a sequence of farsighted

improving paths (of length at most K = 2) from g′ to some g′′ (i.e. g′′ ∈ φ∞2 (g′))

such that g′′ ∈ G1/2 and S̄(g′′) = S̄(g).

Step 1. We build a farsighted improving path of length K = 2 from g′ where firms look

two steps forward such that: g′ → g′+i∗j∗ → g′+i∗j∗−kl with k, l ∈ N \S̄(g′),

kl ∈ g′ with l being a leaf in g′+ i∗j∗. Looking two steps forward, firms i∗ and

j∗ have incentives to add the first link i∗j∗ since Πi∗(g
′ + i∗j∗ − kl) > Πi∗(g

′)

and Πj∗(g
′+i∗j∗−kl) > Πj∗(g

′) by P4, even tough Πi∗(g
′+i∗j∗) < Πi∗(g

′) and

Πj∗(g
′+ i∗j∗) > Πj∗(g

′). From g′+ i∗j∗ to g′+ i∗j∗−kl, firm k that is not a leaf

has incentives (looking one step forward) to delete its link with the leaf l since

Πk(g′+i∗j∗) < Πk(g′+i∗j∗−kl) by P5. Notice that S̄(g′+i∗j∗−kl) = N \{l}.

Step 2. We build a sequence of farsighted improving paths of length K = 1 from

g′ + i∗j∗ − kl, where firms that were belonging to N \ S̄(g′) are isolated one

by one with firm j∗ being the last one to be isolated. That is, starting from

g′+ i∗j∗−kl, we have a sequence of deviations g′+ i∗j∗−kl→ g′+ i∗j∗−kl−
k1l1 → g′ + i∗j∗ − kl − k1l1 − k2l2 → ... → g′ + i∗j∗ − {kl | kl ∈ g′ and k, l ∈
N \ S̄(g′)} where at each step m firm km deletes its link to firm lm that is a

leaf, with km, lm 6= j∗, km 6= lm, km, lm ∈ N \ S̄(g′), m = 1, ...,#(N \ S̄(g′))−2.

Firm km that is not a leaf has incentives (looking one step forward) to delete

its link with the leaf firm lm since Πkm(g′ + i∗j∗ − k1l1 − ... − km−1lm−1) <

Πkm(g′ + i∗j∗ − k1l1 − ...− km−1lm−1 − kmlm) by P5. Next firm i∗ deletes its

link with firm j∗ to isolate firm j∗ and we reach a network g1 = g′−{ij | ij ∈
g′ and i, j ∈ N \ S̄(g′)} where S̄(g1) = S̄(g′) and all firms that were belonging
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toN\S̄(g′) are isolated. Next those isolated firms add one by one links between

them to form a star component with firm j∗ in the center. By P3, firm j∗ and

each firm k have incentives to add the link j∗k to the current network looking

one step forward. We reach g2 = g1 + {j∗k | k 6= j∗, k ∈ N \ S̄(g′)}. Notice

that S̄(g2) = S̄(g′) and g2 ∈ G1/2.

Step 3. We build a farsighted improving path of length K = 2 from g2 = g1 + {j∗k |
k 6= j∗, k ∈ N \ S̄(g′)} where, looking two steps forward (K = 2), firm i∗ and

firm j∗ first build the link i∗j∗ and next firm j∗ deletes its link to some firm

l with l ∈ N \ S̄(g2) and l /∈ S̄(g) so that firm l becomes isolated. Indeed,

looking two steps forward, firms i∗ and j∗ have incentives to add the link i∗j∗

since Πi∗(g2 + i∗j∗ − j∗l) > Πi∗(g2) and Πj∗(g2 + i∗j∗ − j∗l) > Πj∗(g2) by

P4, even tough Πi∗(g2 + i∗j∗) < Πi∗(g2) and Πj∗(g2 + i∗j∗) > Πj∗(g2). From

g2 + i∗j∗ to g2 + i∗j∗ − j∗l, firm j∗ that is not a leaf has incentives (looking

one step forward) to delete its link with firm l that is a leaf in g2 + i∗j∗ since

Πj∗(g2 + i∗j∗) < Πj∗(g2 + i∗j∗ − j∗l) by P5. Notice that S̄(g2 + i∗j∗ − j∗l) =

N \ {l}. Let g3 = g2 + i∗j∗ − j∗l.

Step 4. We build a sequence of farsighted improving paths of length K = 1 from g30 →
g31 → ...→ g3m̄ with g30 = g3, m̄ = #(N \ S̄(g))− 1, and g3m = g3m−1− kmlm
where lm ∈ {i /∈ S̄(g) | i leaf in g3m−1} if {i /∈ S̄(g) | i leaf in g3m−1} 6= ∅, lm ∈
{i ∈ S̄(g) | i leaf in g3m−1} and kmlm /∈ g′′ if {i /∈ S̄(g) | i leaf in g3m−1} = ∅.
That is, along this sequence we isolate at each step a firm that is a leaf giving

priority to firms in N \ S̄(g). We so proceed up to the number of isolated firms

is equal to #(N \S̄(g)). If S̄(g3m̄) = S̄(g) we go to Step 6. If S̄(g3m̄) 6= S̄(g) we

build a star network component between the isolated firms in g3m̄. From g3m̄,

isolated firms have incentives by P3 to add one by one links between them to

form a star component with some firm k∗ ∈ S̄(g) such that Nk∗(g3m̄) = ∅ in

the center. We reach g4 = g3m̄ + {k∗l | l 6= k∗, Nl(g3m̄) = ∅}. Let g′′ be such

that {k∗l | l 6= k∗, Nl(g3m̄) = ∅, l ∈ S̄(g)} ⊆ g′′. Links added from g3m̄ to g4

between k∗ and other firms belonging S̄(g) are not deleted later on. We next

go to Step 5.

Step 5. We build a farsighted improving path of length K = 2 from g4 = g3m̄ + {k∗l |
l 6= k∗, Nl(g3m̄) = ∅} where, looking two steps forward (K = 2), firm j∗ and

firm k∗ first build the link j∗k∗ and next firm k∗ deletes its link to some firm l
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with l ∈ N\S̄(g4) and l /∈ S̄(g) so that firm l becomes isolated. Indeed, looking

two steps forward, firms j∗ and k∗ have incentives to add the link j∗k∗ since

Πj∗(g4 + j∗k∗−k∗l) > Πk∗(g4) and Πk∗(g4 + j∗k∗−k∗l) > Πk∗(g4) by P4, even

tough Πj∗(g4+j∗k∗) < Πj∗(g4) and Πk∗(g4+j∗k∗) > Πk∗(g4). From g4+j∗k∗ to

g4+j∗k∗−k∗l, firm k∗ that is not a leaf has incentives (looking one step forward)

to delete its link with firm l that is a leaf in g4 + j∗k∗ since Πk∗(g4 + j∗k∗) <

Πk∗(g4 + j∗k∗−k∗l) by P5. Notice that S̄(g4 + j∗k∗−k∗l) = N \{l}. We next

repeat the process from Step 4 starting with g5 = g4 + j∗k∗−k∗l instead of g3.

Step 6. We build a sequence of farsighted improving paths of length K = 1 from g3m̄

with S̄(g3m̄) = S̄(g), where all isolated firms belong to N \S̄(g) and by P3 they

have incentives to add one by one links between them to form a star component

with some firm k̂ ∈ N \ S̄(g) in the center. We reach the end network g′′ =

g3m̄ + {k̂l | k̂, l ∈ N \ S̄(g), l 6= k̂,#Nk̂(g′′) = #(N \ S̄(g))− 1,#Nl(g
′′) = 1}.

Thus, we have built a sequence of farsighted improving paths (of length at most

K = 2) from g′ to g′′ (i.e. g′′ ∈ φ∞2 (g′)) such that g′′ ∈ G1/2 and S̄(g′′) = S̄(g).

Take any two pairwise stable networks such that the same firms belong to the

largest component. Lemma 6 tells us that there is a sequence of farsighted improving

paths of length at most 2 from each pairwise stable network to the other one.

Lemma 6. Take any g, g′ ∈ G1/2 such that g 6= g′, S̄(g) = S̄(g′). Then, g ∈ φ∞2 (g′).

Proof. Take any g, g′ ∈ G1/2 such that g 6= g′, S̄(g) = S̄(g′). We now build in steps

a sequence of farsighted improving paths (of length at most K = 2) from g′ to g,

i.e. g ∈ φ∞2 (g′).

Step 1. Let g0 = g′. We build a farsighted improving path of length K = 2 from g0

where firms look two steps forward such that: g0 → g0 + ij → g0 + ij−kl with

i ∈ S̄(g0), j, k, l ∈ N \ S̄(g0), kl ∈ g0 with l being a leaf in g0 + ij. Looking

two steps forward, firms i and j have incentives to add the first link ij since

Πi(g0 + ij − kl) > Πi(g0) and Πj(g0 + ij − kl) > Πj(g0) by P4, even tough

Πi(g0 + ij) < Πi(g0) and Πj(g0 + ij) > Πj(g0). From g0 + ij to g0 + ij − kl,
firm k that is not a leaf has incentives (looking one step forward) to delete its

link with the leaf l since Πk(g0 + ij) < Πk(g0 + ij − kl) by P5. Notice that

S̄(g0 + ij − kl) = N \ {l}.
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Step 2. We build a farsighted improving path of length K = 2 from g0 + ij− kl where

firms look two steps forward such that: g0 + ij − kl → g0 + ij − kl + i1j1 →
g0 + ij − kl+ i1j1− k1l1 with i1, j1 ∈ S̄(g0), i1j1 ∈ g, i1j1 /∈ g0, l1 ∈ N \ S̄(g0),

k1l1 ∈ g0 + ij− kl+ i1j1 with l1 being a leaf in g0 + ij− kl+ i1j1. Looking two

steps forward, firms i1 and j1 have incentives to add the first link i1j1 since

Πi1(g0+ij−kl+i1j1−k1l1) > Πi(g0+ij−kl) and Πj1(g0+ij−kl+i1j1−k1l1) >

Πj(g0 + ij − kl) by P5, even tough Πi1(g0 + ij − kl+ i1j1) < Πi1(g0 + ij − kl)
and Πj1(g0 + ij − kl + i1j1) < Πj1(g0 + ij − kl). From g0 + ij − kl + i1j1 to

g0 + ij − kl+ i1j1 − k1l1, firm k1 that is not a leaf has incentives (looking one

step forward) to delete its link with the leaf l1 since Πk1(g0 + ij − kl+ i1j1) <

Πk1(g0 + ij − kl + i1j1 − k1l1) by P5.

Step 3. We build a farsighted improving path of length K = 1 from g0 + ij − kl +

i1j1 − k1l1 to g0 + ij − kl + i1j1 − k1l1 − i2j2 with i2, j2 ∈ S̄(g0), i2j2 /∈
g, i2j2 ∈ g0 + ij − kl + i1j1 − k1l1, where i2j2 is a superfluous link in the

largest component and it does not belong to the end network g,21 and so,

Πi2(g0 + ij − kl + i1j1 − k1l1) < Πi2(g0 + ij − kl + i1j1 − k1l1 − i2j2) and

Πj2(g0 + ij − kl + i1j1 − k1l1) < Πj2(g0 + ij − kl + i1j1 − k1l1 − i2j2).

Step 4. We repeat the process from Step 2 until (i) every firm belonging to N \ S̄(g0)

is now isolated, or (ii) each link ij ∈ g such that i, j ∈ S̄(g) belongs to

g0 + ij − kl + i1j1 − k1l1 − i2j2 + ... + im̄−1jm̄−1 − km̄−1lm̄−1 − im̄jm̄ and each

link ij /∈ g such that i, j ∈ S̄(g) does not belong to g0 + ij − kl + i1j1 −
k1l1 − i2j2 + ... + im̄−1jm̄−1 − km̄−1lm̄−1 − im̄jm̄, with m̄ = #{ij ∈ g | ij /∈
g0 and i, j ∈ S̄(g)}. If #(N \ S̄(g)) − 1 < m̄ then (i) is first satisfied and go

to Step 5. If #(N \ S̄(g))− 1 > m̄ then (ii) is first satisfied and go to Step 6.

If #(N \ S̄(g))− 1 = m̄ then (i) and (ii) are both satisfied and go to Step 7.

Step 5. From Step 4 we have reached the network g1 = g0 + ij − kl + i1j1 − k1l1 −
i2j2 + ...+ im̄−1jm̄−1−km̄−1lm̄−1− im̄jm̄ where all firms in N \ S̄(g) are isolated

and S̄(g) = S̄(g1). Notice that #{ij ∈ g | ij /∈ g0 and i, j ∈ S̄(g)} = m̄ ≤
#S̄(g)− 1 and #S̄(g)−#(N \ S̄(g)) ≤ 2. Hence, m̄−#(N \ S̄(g)) + 1 ≤ 2.

First, we build a sequence of farsighted improving paths of length K = 1

21By adding the link i1j1, there are now two paths connecting i1 and j1 in the network, and

so there is a superfluous link that does not belong to the end network on the path that connects

indirectly i1 and j1.
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from g1 to g1 + {k∗l | l ∈ N \ S̄(g), l 6= k∗} ∈ G1/2, where each firm l 6= k∗

belonging to N \ S̄(g) adds successively links to firm k∗ ∈ N \ S̄(g) to form

a star component with k∗ in the center. By P3, firm k∗ and each firm l

have incentives to add the link k∗l to the current network looking one step

forward. Next, we repeat the process from Step 1 to Step 4 starting with

g0 = g1 + {k∗l | l ∈ N \ S̄(g), l 6= k∗}, followed by Step 6.22

Step 6. We build a sequence of farsighted improving paths of length K = 1 from

g0 + ij − kl+ i1j1− k1l1− i2j2 + ...+ im̄−1jm̄−1− km̄−1lm̄−1− im̄jm̄ to {ij ∈ g |
i, j ∈ S̄(g)}, where each firm i ∈ S̄(g0+ij−kl+i1j1−k1l1−i2j2+...+im̄−1jm̄−1−
km̄−1lm̄−1− im̄jm̄) such that i /∈ S̄(g) and i is (or becomes during the process)

a leaf is isolated one by one. We reach the network {ij ∈ g | i, j ∈ S̄(g)} where

every firm i /∈ S̄(g) is isolated. Next, go to Step 8.

Step 7. From Step 4 we have already reached the network {ij ∈ g | i, j ∈ S̄(g)} where

all firms belonging to S̄(g) are exactly as in the end network g while all firms

belonging to N \ S̄(g) are isolated. Next, go to Step 8.

Step 8. Finally, firms belonging to N \ S̄(g) have incentives by P3 to add successively

links between them to form the network g ∈ G1/2. Thus, we have built in steps

a sequence of farsighted improving paths (of length at most K = 2) from g′ to

g, i.e. g ∈ φ∞2 (g′).

Proof of Proposition 3. Take any g ∈ G1/2. We show that a singleton set {g} is a

horizon-K farsighted set for every K ≥ 2.

(i) We first show that each {g} satisfies horizon-K external stability for K ≥ 2.

Notice that if g ∈ φ∞1 (g′) and g′ ∈ φ∞2 (g′′) then g ∈ φ∞2 (g′′). (i.a) From Lemma

1, Lemma 2, Lemma 3 and Lemma 4 it directly follows that for any g ∈ G \ G1/2

it holds that φ∞1 (g) ∩ G1/2 6= ∅. (i.b) From Lemma 5 and Lemma 6 we have that,

for any g, g′ ∈ G1/2, g 6= g′, g′ ∈ φ∞2 (g). Hence, from (i.a) and (i.b) it follows that

g ∈ φ∞2 (g′) for all g′ ∈ G \ {g}.
22Since the number of links in the smallest component (i.e. #N \ S̄(g) − 1 links) is greater or

equal than the maximum number of links that belong to the end network and are still missing in

the largest component (i.e. 2 links), we only need to repeat one time the process from Step 1 to

Step 4; and so, we go directly from Step 4 to Step 6 after the first repetition.
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(ii) We now show that each {g} satisfies horizon-K deterrence of external deviations

for K ≥ 2. From Proposition 1 we have that D1 = G1/2 and each g ∈ G1/2 defeats

every adjacent network g′ to g, so g ∈ φ1(g′) ⊆ φ2(g′). Hence, {g} satisfies horizon-

K deterrence of external deviations for K ≥ 2.

(iii) Since {g} is a singleton set, it satisfies minimality.
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Figure 1: Some R&D networks in G1/2 when n = 8.

Example 1. We illustrate the proofs of Lemma 5 and Lemma 6 in the case of eight

firms (n = 8). In Figure 1 we depict three R&D networks, g1, g2, g3 ∈ G1/2 to show

that g2 ∈ φ∞2 (g1) and g3 ∈ φ∞2 (g2) so that g3 ∈ φ∞2 (g1). Notice that S̄(g2) = S̄(g3)
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and so N \ S̄(g2) = N \ S̄(g3) but g2 6= g3. Starting from g1 ∈ G1/2 we build a

sequence of farsighted improving paths of length at most 2 ending in g2 ∈ G1/2.

First, (looking two steps forward) g1 → g1 + 34 → g1 + 34 − 78 = g11, followed by

(looking one step forward) g11 → g11−67→ g11−67−56 = g12, followed by (looking

one step forward) g12 → g12 +68→ g12 +68+78 = g2; so g2 ∈ φ∞2 (g1). Starting from

g2 we build a sequence of farsighted improving paths of length at most 2 ending in

g3. First, (looking two steps forward) g2 → g2 + 58 → g2 + 58 − 68 = g21, followed

by (looking two steps forward) g21 → g21 + 24 → g21 + 24 − 78 = g22, followed

by (looking one step forward) g22 → g22 − 34 = g23, followed by (looking two steps

forward) g23 → g23 +35→ g23 +35−58 = g24, followed by (looking one step forward)

g24 → g24 + 67→ g24 + 67 + 78 = g3; so g3 ∈ φ∞2 (g2). Thus, g3 ∈ φ∞2 (g1).

Next proposition shows that, meanwhile each singleton set {g} with g ∈ G1/2

is a horizon-K farsighted set for every K ≥ 2, networks that are not pairwise

stable cannot be a singleton horizon-K farsighted set. Hence, pairwise stable R&D

networks seem robust to limited farsightedness.

Proposition 4. Take any g /∈ G1/2 such that #P(g) ≤ 2 and every h ∈ C(g) is

minimally connected. Then, {g} is never a horizon-K farsighted set for K ≥ 2.

Proof. We show that for any g /∈ G1/2 such that #P(g) ≤ 2 and every h ∈ C(g) is

minimally connected, the singleton set {g} violates horizon-K deterrence of external

deviations.

(i) Take a minimally connected network g such that P(g) = {N} and an adjacent

network g′ = g − ij to g where j is a leaf in g. Then, all firms in S̄(g′) are strictly

better off in g′ than in g, and so they will not participate to any deviation from g′

towards g. Hence, g /∈ φK−1(g′), K ≥ 2 and the deviation to g′ = g − ij is not

deterred.

(ii) Take a network g such that P(g) = {S1(g), S2(g)} with #S1(g) = #S2(g), each

h ∈ C(g) is minimally connected and an adjacent network g′ = g + ij to g where

i ∈ S1(g) and j ∈ S2(g). Then, all firms in S1(g) and S2(g) are strictly better off

in g′ than in g, and so they will not participate to any deviation from g′ towards g.

Hence, g /∈ φK−1(g′), K ≥ 2 and the deviation to g′ = g − ij is not deterred.

(iii) Take a network g such that P(g) = {S1(g), S2(g)} with #S1(g) > b((n+3)/2c if

n even and #S1(g) > (n+ 1)/2 if n odd, and each h ∈ C(g) is minimally connected.

Take an adjacent network g′ = g − ij to g where ij ∈ g, i, j ∈ S̄(g) = S1(g), j is a
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leaf in g and P(g′) = {S1(g)\{j}, {j}, S2(g)}. Then, all firms in S1(g)\{j} = S̄(g′)

and in S2(g) are strictly better off in g′ than in g, and so they will not participate

to any deviation from g′ towards g. Hence, g /∈ φK−1(g′), K ≥ 2 and the deviation

to g′ = g − ij is not deterred.

When the degree of farsightedness is great enough (K ≥ n′ + 1), then a subset

of the networks that are stable when all firms are farsighted become a horizon-

K farsighted set. Indeed, Mauleon, Sempere-Monerris and Vannetelbosch (2014)

show that G3/4 is a pairwise farsightedly stable set while Herings, Mauleon and

Vannetelbosch (2019) find that, for every pairwise farsightedly stable set G∞ there

exists some G ⊆ G∞ such that G is a horizon-(n′ + 1) farsighted set where n′ is

the cardinality of G. Hence, together with Proposition 4, we obtain the following

corollary.

Corollary 1. There is G ⊆ G3/4 such that G is a horizon-(n′ + 1) farsighted set

and #G 6= 1.

5 Conclusion

We study the R&D networks that will emerge in the long run when firms are neither

myopic nor fully farsighted but have some limited degree of farsightedness. We adopt

the horizon-K farsighted set of Herings, Mauleon and Vannetelbosch (2019) and we

find that a singleton set consisting of a pairwise stable network is a horizon-K

farsighted set for any degree of farsightedness greater or equal than 2. That is,

each R&D network consisting of two components of nearly equal size satisfies both

horizon-K deterrence of external deviations and horizon-K external stability for

K ≥ 2. On the contrary, each R&D network consisting of two components with

the largest one comprising three-quarters of firms, predicted when all firms are fully

farsighted, violates horizon-K deterrence of external deviations. Thus, when firms

are homogeneous in their degree of farsightedness, R&D networks consisting of two

components of nearly equal size are robust to limited farsightedness.
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