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Abstract

We propose the notion of minimal instability to determine the networks that

are more likely to emerge in the long run when agents are farsighted. A network is

minimally farsighted unstable if there is no other network which is more farsightedly

stable. To formulate what it means to be more farsightedly stable, we compare net-

works by comparing (in the set inclusion or cardinal sense) their sets of farsighted

defeating networks. We next compare networks in terms of their absorbtiveness by

comparing both their sets of farsighted defeating networks (i.e. in terms of their

stability) and their sets of farsighted defeated networks (i.e. in terms of their reach-

ability). A network is maximally farsighted absorbing if there is no other network

which is more farsightedly absorbing. We provide general results for characterizing

minimally farsighted unstable networks and maximally farsighted absorbing net-

works, and we study their relationships with alternative notions of farsightedness.

Finally, we use experimental data to show the relevance of the new solution concepts.
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1 Introduction

The organization of agents into networks plays an important role in the determination of

the outcome of many social and economic interactions (e.g. R&D collaborations, bilateral

free-trade agreements, manufacturer-retailer relationships). Networks often do not emerge

randomly but rather through the decisions taken by the agents for forming links with

whom they want. Our aim is to better understand the formation of social and economic

networks when building a link between two agents requires the consent of both agents

involved, while deleting a link between two agents can be done unilaterally by one of the

agents involved.1 A simple notion to analyse the networks that one might expect to emerge

in the long run is the pairwise stability notion introduced by Jackson and Wolinsky (1996).

A network is pairwise stable if no agent benefits from severing one of their links and no

other two agents benefit from adding a link between them, with one benefiting strictly

and the other at least weakly. This stability notion presumes that agents are myopic since

they do not anticipate that other agents may react to their changes. However, farsighted

agents may add a link that is not valuable to them given the current network, as that

may in turn lead to the formation of other links and ultimately increase the payoffs of the

original deviating agents.

A network farsightedly defeats another network if there is a farsighted improving path

from the latter to the former network. A farsighted improving path is a sequence of

networks that can emerge when agents form or delete links based on the improvement the

end network offers relative to the current network. Jackson (2008) defines the notion of

farsightedly pairwise stable network: a network is a farsightedly pairwise stable network

if and only if it is not farsightedly defeated. But, there are many network formation

games where a farsightedly pairwise stable network fails to exist. In fact, requiring a

network to be immune to any profitable farsighted deviations is very demanding. Indeed,

farsighted deviations are not limited to a specific horizon and so they even include myopic

deviations. Hence, we propose the notion of minimal farsighted instability to predict the

networks that are most likely to emerge in the long run when agents are farsighted.

A network is said to be minimally farsighted unstable if there is no other network which

is more farsightedly stable. To formulate what it means to be more farsightedly stable, we

consider comparing networks by comparing their sets of farsighted defeating networks.2 A

network is more farsightedly stable than another network if the set of farsighted defeating

networks in the former is a proper subset of the set of farsighted defeating networks in the

latter network. We also consider a corresponding cardinal version such that a network

is cardinally more farsightedly stable than another network if the number of farsighted

defeating networks in the former is less than the number of farsighted defeating networks

1Mauleon and Vannetelbosch (2016) provide a comprehensive overview of the solution concepts for

solving network formation games.
2The set of farsighted defeating networks of a given network is the set of all networks that farsightedly

defeat this network.
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in the latter network. A network is said to be cardinally minimally farsighted unstable if

there is no other network which is cardinally more farsightedly stable.

Clearly, if a network is more farsightedly stable than another network, then it is also

cardinally more farsightedly stable. Hence, the set of cardinally minimally farsighted un-

stable networks refines the set of minimally farsighted unstable networks. We also provide

results that are helpful for characterizing the minimally farsighted unstable networks. If

there is a farsighted improving path from one network to another one, then the former

cannot be more farsightedly stable than the latter network. Hence, if there is a farsighted

improving path from all other networks to some network, then this network is minimally

farsighted unstable. Moreover, if the set of networks that defeat a network is a proper

subset of the set of networks that defeat any other network, then the former network is

the unique minimally farsighted unstable network.

Our method to compare networks by their farsighted stability is inspired by methods

used in recent matching studies. Doğan and Ehlers (2020) compare assignments in school

choice in terms of (myopic) stability by comparing (in the set inclusion or cardinal sense)

their sets of blocking pairs or comparing (in the set inclusion or cardinal sense) their

sets of blocking students involved in at least one blocking pair. Recently, Doğan and

Ehlers (2021) use similar methods to compare assignments in the context of priority-

based allocation of objects.3 Here, we adapt their methods for matching problems with

myopic agents to network games with farsighted agents.

In addition of comparing networks in terms of their stability, one may also require

to compare them in terms of their reachability. Indeed, selecting a network that is more

farsightedly stable than another one might be a more robust prediction if at the same

time the former is more likely to be reached than the latter one. A network is said to

be maximally farsighted absorbing if there is no other network which is more farsightedly

absorbing. To formulate what it means to be more farsightedly absorbing, we consider

comparing networks by comparing both their sets of farsighted defeating networks (i.e.

in terms of their stability) and their sets of farsighted defeated networks (i.e. in terms

of their reachability).4 A network is more farsightedly absorbing than another network if

(i) the set of farsighted defeating networks in the former is a proper subset of the set of

farsighted defeating networks in the latter network and (ii) the set of farsighted defeated

networks in the latter is a proper subset of the set of farsighted defeated networks in the

former network. We also consider a corresponding cardinal version such that a network is

cardinally more farsightedly absorbing than another network if (i) the number of farsighted

defeating networks in the former is less than the number of farsighted defeating networks

in the latter network and (ii) the number of farsighted defeated networks in the latter is

3Minimally unstable assignments (in the set inclusion sense) are considered by Abdulkadiroğlu, Che,

Pathak, Roth and Tercieux (2020) and Tang and Zhang (2021) for school choice problems and by Combe,

Tercieux and Terrier (2020) for teacher assignment problems.
4The set of farsighted defeated networks of a given network is the set of all networks that this network

farsightedly defeats.

2



less than the number of farsighted defeated networks in the former network. A network

is said to be cardinally maximally farsighted absorbing if there is no other network which

is cardinally more farsightedly absorbing. Finally, we consider an additive version of the

cardinality version such that a network is cardinally+ more farsightedly absorbing than

another network if the number of farsighted defeating networks minus the number of

farsighted defeated networks in the former is less than in the latter network. A network is

said to be cardinally+ maximally farsighted absorbing if there is no other network which

is cardinally+ more farsightedly absorbing.

Obviously, if a network is more farsightedly absorbing than another network, then it

is also cardinally more farsightedly absorbing. Moreover, if a network is cardinally more

farsightedly absorbing than another network, then it is also cardinally+ more farsightedly

absorbing. Hence, the set of cardinally+ maximally farsighted absorbing networks refines

the set of cardinally maximally farsighted absorbing networks that itself refines the set of

maximally farsighted absorbing networks. Moreover, we show that, if there is a farsighted

improving path from all other networks to some network, then this network is maximally

farsighted absorbing. Finally, we provide a sufficient condition such that a network is

both Pareto efficient, minimally farsighted unstable and maximally farsighted absorbing.

Another common approach for analysing networks that emerge in the long run when

agents are farsighted are set-valued concepts like the vNM farsighted stable set (Herings,

Mauleon and Vannetelbosch, 2009; Mauleon, Vannetelbosch and Vergote, 2011; Ray and

Vohra, 2015), the largest consistent set (Chwe, 1994; Page, Wooders and Kamat, 2005),

the pairwise farsightedly stable set (Herings, Mauleon and Vannetelbosch, 2009) or the

horizon-K farsighted set (Herings, Mauleon and Vannetelbosch, 2019).5 We study the

relationships between those set-valued concepts and our newly defined concepts. If a

singleton set is a vNM farsighted stable set then this single network in the set is both

minimally farsighted unstable and maximally farsighted absorbing. Similarly, if a sin-

gleton set is a pairwise farsighted stable set then this single network is both minimally

farsighted unstable and maximally farsighted absorbing. Moreover, if there is a unique

pairwise farsightedly stable set, then this set coincides with the set of (cardinally) mini-

mally farsighted unstable networks.

We use experimental data from Kirchsteiger, Mantovani, Mauleon and Vannetelbosch

(2016) to test the relevance of the new solution concepts. We find that the set of mini-

mally farsighted unstable networks is not significantly different than the set of maximally

farsighted absorbing networks. Moreover, the set of cardinally+ maximally farsighted ab-

sorbing networks performs better than the vNM farsighted stable set. Finally, the set of

minimally farsighted unstable networks predicts most networks that occur with positive

probability while the set of cardinally minimally farsighted unstable networks is good at

5Alternative notions of farsightedness are suggested by Bloch and van den Nouweland (2020), Diaman-

toudi and Xue (2003), Dutta, Ghosal and Ray (2005), Dutta and Vohra (2017), Ray and Vohra (2019),

Herings, Mauleon and Vannetelbosch (2004), Kimya (2020), Mauleon and Vannetelbosch (2004), Page

and Wooders (2009), Xue (1998) among others.
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selecting the network with the highest frequency.

The paper is organized as follows. In Section 2 we introduce some notation. In Section

3 we define the notion of (cardinally) minimally unstable network. In Section 4 we define

the notion of (additive / cardinally) maximally absorbing network. In Section 5 we study

the relationships with set-valued concepts. In Section 6 we test the relevance of the new

solution concepts using experimental data. Finally, in Section 7 we conclude.

2 Networks

The set of players is denoted by N = {1, 2, ..., n}, where n is the total number of players.

A network g is a list of which pairs of players are linked to each other and ij ∈ g indicates

that i and j are linked under g. The complete network on the set of players S ⊆ N is

denoted by gS and is equal to the set of all subsets of S of size 2. It follows in particular that

the empty network is denoted by g∅. The set of all possible networks on N is denoted by

G and consists of all subsets of gN . The network obtained by adding link ij to an existing

network g is denoted g + ij and the network that results from deleting link ij from an

existing network g is denoted g − ij. Let N(g) = {i |there is j such that ij ∈ g} be the

set of players who have at least one link in the network g. Let Ni(g) = {j ∈ N | ij ∈ g}
be the set of neighbours of player i in g. A path in a network g between i and j is a

sequence of players i1, . . . , iK such that ikik+1 ∈ g for each k ∈ {1, . . . , K − 1} with i1 = i

and iK = j. A network g is connected if for all i ∈ N and j ∈ N \ {i}, there exists a

path in g connecting i and j. A non-empty network h ⊆ g is a component of g, if for all

i ∈ N(h) and j ∈ N(h) \ {i}, there exists a path in h connecting i and j, and for any

i ∈ N(h) and j ∈ N(g), ij ∈ g implies ij ∈ h. The set of components of g is denoted by

H(g). The partition of N induced by g is denoted by Π(g), where S ∈ Π(g) if and only

if either there exists h ∈ H(g) such that S = N(h) or there exists i /∈ N(g) such that

S = {i}.6

A network utility function (or payoff function) is a mapping u : G → RN that assigns to

each network g a utility ui(g) for each player i ∈ N . A network g ∈ G is strongly efficient

relative to u if it maximizes
∑

i∈N ui(g); i.e. if
∑

i∈N ui(g) ≥
∑

i∈N ui(g
′) for all g′ ∈ G.

A network g ∈ G Pareto dominates a network g′ ∈ G relative to u if ui(g) ≥ ui(g
′) for all

i ∈ N , with strict inequality for at least one i ∈ N . A network g ∈ G is Pareto efficient

relative to u if it is not Pareto dominated, and a network g ∈ G is Pareto dominant if it

Pareto dominates any other network. To determine which networks can be formed in the

long run, Jackson and Wolinsky (1996) propose a myopic notion of stability: a network g

is pairwise stable with respect to u if and only if (i) for all ij ∈ g, ui(g) ≥ ui(g − ij) and

uj(g) ≥ uj(g − ij), and (ii) for all ij /∈ g, if ui(g) < ui(g + ij) then uj(g) > uj(g + ij).

6Throughout the paper we use the notation ⊆ for weak inclusion and  for strict inclusion. Finally,

# will refer to the notion of cardinality.
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3 Minimally Farsighted Unstable Networks

A farsighted improving path is a sequence of networks that can emerge when farsighted

players form or delete links based on the improvement the end network offers relative to

the current network; see Jackson (2008) or Herings, Mauleon and Vannetelbosch (2009).7

Since we only allow for pairwise deviations, each network in the sequence differs from the

previous one in that either a new link is formed between two players or an existing link

is deleted. If a link ij is deleted, then it must be that either player i or player j prefers

the end network to the current network. If a link is added between player i and player j,

then both player i and player j must prefer the end network to the current network.

Definition 1. A farsighted improving path from a network g to a network g′ 6= g is

a finite sequence of networks g1, . . . , gK with g1 = g and gK = g′ such that for any

k ∈ {1, . . . , K − 1} either

(i) gk+1 = gk − ij for some ij such that ui(gK) > ui(gk) or uj(gK) > uj(gk); or

(ii) gk+1 = gk + ij for some ij such that ui(gK) > ui(gk) and uj(gK) ≥ uj(gk).

If there exists a farsighted improving path from a network g to a network g′, then we

write g → g′. For a given network g ∈ G, let φ(g) be the set of all networks that can be

reached from g by a farsighted improving path. That is,

φ(g) = {g′ ∈ G | g → g′} .

Definition 2. A network g′ ∈ G farsightedly defeats g ∈ G (g 6= g′) if g′ ∈ φ(g).

Hence, φ(g) gives us the set of networks that farsightedly defeat the network g ∈ G.

Jackson (2008) defines the set of farsightedly pairwise stable networks as those that are

immune to farsighted pairwise deviations.

Definition 3. A network g ∈ G is farsightedly pairwise stable if φ(g) = ∅.

Let P1 be the set of pairwise stable networks and let P∞ be the set of farsightedly

pairwise stable networks. There is no guarantee that the set P 1 is non-empty. Since

P1 ⊇ P∞, emptiness or instability is more likely to become a problem when players are

farsighted.

Example 1. In Bloch and Jackson (2007) or Jackson (2008) distance-based model, if

player i is connected to player j by a path of t links, then player i receives a benefit of

b(t) from her indirect connection with player j. It is assumed that b(t) ≥ b(t+ 1) > 0 for

any t. Each direct link ij ∈ g results in a benefit b(1) and a cost c to both i and j. This

7Jackson and Watts (2002) define the notion of improving path in the case that all players are myopic.

Herings, Mauleon and Vannetelbosch (2020) and Luo, Mauleon and Vannetelbosch (2021) extend this

notion to a mixed population composed of both myopic and farsighted players.
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cost can be interpreted as the time a player must spend with another player in order to

maintain a direct link. Player i’s distance-based payoff from a network g is given by

ui(g) =
∑
j 6=i

b(t(ij))−#Ni(g) · c,

where t(ij) is the number of links in the shortest path between i and j (setting t(ij) =∞
if there is no path between i and j), c ≥ 0 is a cost per link, and b is a non-increasing

function. The symmetric connections model (b(t) = δt) and the truncated connections

model of Jackson and Wolinsky (1996) are special cases of distance-based payoffs. In

Figure 1 we have depicted the 3-player case for b(1) = 3, b(2) = 1.5, and c = 2. We have

φ(g0) = {g1, g2, g3, g4, g5, g6}, φ(g1) = {g4, g5, g6}, φ(g2) = {g4, g5, g6}, φ(g3) = {g4, g5, g6},
φ(g4) = {g5, g6}, φ(g5) = {g4, g6}, φ(g6) = {g4, g5} and φ(g7) = {g4, g5, g6}. Hence,

there is no farsightedly pairwise stable network, P∞ = ∅. But, are some networks more

farsightedly stable than others?

s s
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0 0
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g0

Pl.1 Pl.3

Pl.2

s s
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1 1

0

g1

s s
s

1 0
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s���
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0 1

1
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s s
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2 2.5
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s���
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2.5 2

2.5
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s s
s���

��

2.5 2.5

2
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s s
s���

��

2 2

2

g7

Figure 1: The distance-based model with three players.

A farsighted stability comparison is a function σ associating with each network for-

mation game a binary relation &σ over networks, where g �σ g′ means that g is σ-more

farsightedly stable than g′. We write g �σ g′ instead of [g &σ g′ and not g′ &σ g]. We

consider two primitive stability comparisons based on farsighted defeating networks. The

farsighted defeating networks inclusion comparison (denoted σ(⊆)) is defined as follows.

For each g, g′ ∈ G,

g &σ(⊆) g′ ⇔ φ(g) ⊆ φ(g′).

The farsighted defeating networks cardinality comparison (denoted σ(#)) is defined as

follows. For each g, g′ ∈ G,

g &σ(#) g′ ⇔ #φ(g) ≤ #φ(g′).
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Any two networks can be compared with respect to farsighted defeating networks car-

dinality but not necessarily with respect to farsighted defeating networks inclusion. If

g �σ(⊆) g′, we say that g is more farsightedly stable than g′, while if g �σ(#) g′, we say

that g is #-more farsightedly stable than g′ (or g is cardinally more farsightedly stable

than g′).8

We now provide the definition of a minimally farsighted unstable network as well as

the definition of a cardinally minimally unstable network.

Definition 4. A network g ∈ G is minimally farsighted unstable if there is no g′ 6= g such

that g′ �σ(⊆) g.

Definition 5. A network g ∈ G is #-minimally farsighted unstable if there is no g′ 6= g

such that g′ �σ(#) g.

Let F be the set of minimally farsighted unstable networks and let F# be the set of

#-minimally farsighted unstable networks (or cardinally minimally unstable networks).

For any farsightedly pairwise stable network g ∈ P∞, there is no other network g′ 6= g

which is more farsightedly stable (#-more farsightedly stable) than g. Notice that if g is

more farsightedly stable than g′ then g is also #-more farsightedly stable than g′. Hence,

we do have that F# is a refinement of F , i.e. F# ⊆ F .

Proposition 1. F# ⊆ F .

For the distance-based model with three players (example of Figure 1) we have that

the set of minimally farsighted unstable networks is given by F = {g4, g5, g6}. Indeed,

g4, g5 and g6 are more farsightedly stable than any g′ ∈ {g0, g1, g2, g3, g7} and no addi-

tional comparison among g4, g5 and g6 can be made with respect to farsighted defeating

networks inclusion comparison. With respect to the farsighted defeating networks car-

dinality comparison, we obtain the following ranking: #φ(g4) = #φ(g5) = #φ(g6) = 2,

#φ(g1) = #φ(g2) = #φ(g3) = #φ(g7) = 3, and #φ(g0) = 6. Hence, the set of #-

minimally farsighted unstable networks leads to the same prediction, F# = {g4, g5, g6}.
We now give an example where the inclusion comparison and the cardinality compar-

ison lead to two different sets.

Example 2. Consider the situation where three players can form links and where the pay-

offs are given in Figure 2. We have φ(g0) = {g1, g2, g3, g4, g5, g6}, φ(g1) = {g2, g4, g5, g6},
φ(g2) = {g3, g4, g5, g6}, φ(g3) = {g1, g4, g5, g6}, φ(g4) = {g2, g5, g6}, φ(g5) = {g1, g4, g6},
φ(g6) = {g3, g4, g5} and φ(g7) = {g5, g6}. Hence, we obtain that F = {g5, g6, g7} while

F# = {g7}.

We now provide some results that are helpful for characterizing the minimally far-

sighted unstable networks. If there is a farsighted improving path from one network to

another one, then the former cannot be more farsightedly stable than the latter network.

8Notice that &σ(#) is complete and transitive while &σ(⊆) is transitive but not complete.
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Figure 2: An example with three players where F#  F .

Lemma 1. If g′ ∈ φ(g) then g cannot be more farsightedly stable than g′.

Proof. Take g′ such that g′ ∈ φ(g). Since g′ /∈ φ(g′), we cannot have that φ(g) ⊆ φ(g′).

Proposition 2. If for every g′ ∈ G \ {g}, either φ(g) ∩ φ(g′) 6= φ(g′) or φ(g) = φ(g′)

holds, then g is a minimally farsighted unstable network.

Proof. Take g, g′ ∈ G, g′ 6= g. If g is such that φ(g) = φ(g′) then g′ cannot be more

farsightedly stable than g. If g is such that φ(g) ∩ φ(g′) 6= φ(g′), then there is g′′ ∈ φ(g′)

such that g′′ /∈ φ(g), and so g′ cannot be more farsightedly stable than g′, φ(g′) * φ(g).

Corollary 1 tells us that, if there is a farsighted improving path from all other networks

to some network, then this network is minimally farsighted unstable.

Corollary 1. If g ∈ φ(g′) for all g′ ∈ G \ {g}, then g is a minimally farsighted unstable

network.

Proposition 3. If φ(g)  φ(g′) for all g′ ∈ G, g′ 6= g, then g is the unique minimally

farsighted unstable network.

Proof. Take g, g′ ∈ G, g′ 6= g. If φ(g)  φ(g′), then we have that g is more farsightedly

stable than g′: g �σ(⊆) g′.

4 Maximally Farsighted Absorbing Networks

In addition of comparing networks in terms of their stability, one may also require to

compare them in terms of their reachability. For a given network g ∈ G, let φ−1(g) be the

set of all networks from which there is a farsighted improving path going to g. That is,

φ−1(g) = {g′ ∈ G | g′ → g} .

8



Definition 6. A network g′ ∈ G is farsightedly defeated by g ∈ G (g 6= g′) if g′ ∈ φ−1(g).

Hence, φ−1(g) gives us the set of networks that are farsightedly defeated by the network

g ∈ G.

A farsighted absorbtiveness comparison is a function α associating with each network

formation game a binary relation &α over networks, where g �α g′ means that g is α-more

farsightedly absorbing than g′. We consider three primitive absorbtiveness comparisons

based on both farsighted defeating networks and farsighted defeated networks.

• The farsighted defeating/defeated networks inclusion comparison (denoted α(⊆)) is

defined as follows. For each g, g′ ∈ G,

g &α(⊆) g′ ⇔ φ(g) ⊆ φ(g′) and φ−1(g′) ⊆ φ−1(g).

That is, g is more farsightedly absorbing than g′, or g �α(⊆) g′, if and only if

φ(g) ⊆ φ(g′) and φ−1(g′) ⊆ φ−1(g), with one inclusion holding strictly.

• The farsighted defeating/defeated networks cardinality comparison (denoted α(#))

is defined as follows. For each g, g′ ∈ G,

g &α(#) g′ ⇔ #φ(g) ≤ #φ(g′) and #φ−1(g′) ≤ #φ−1(g).

That is, g is #-more farsightedly absorbing than g′, or g �α(#) g′, if and only if

#φ(g) ≤ #φ(g′) and #φ−1(g′) ≤ #φ−1(g), with one inequality holding strictly.

• The farsighted defeating/defeated networks additivity comparison (denoted α(+))

is defined as follows. For each g, g′ ∈ G,

g &α(+) g′ ⇔ #φ(g)−#φ−1(g) ≤ #φ(g′)−#φ−1(g′).

That is, g is +-more farsightedly absorbing than g′, or g �α(+) g′, if and only if

#φ(g)−#φ−1(g) < #φ(g′)−#φ−1(g′).

Any two networks can be compared with respect to farsighted defeating/defeated

networks additivity but not necessarily with respect to farsighted defeating/defeated net-

works inclusion (or cardinality).9 A network is said to be maximally farsighted absorbing

if there is no other network which is more farsightedly absorbing. Similarly, a network

is said to be cardinally (cardinally+) maximally farsighted absorbing if there is no other

network which is cardinally (cardinally+) more farsightedly absorbing.

Definition 7. A network g ∈ G is maximally farsighted absorbing if there is no g′ 6= g

such that g′ �α(⊆) g.

Definition 8. A network g ∈ G is #-maximally farsighted absorbing if there is no g′ 6= g

such that g′ �α(#) g.

9Notice that &α(+) is complete and transitive while &α(⊆) and &α(#) are transitive but not complete.
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Definition 9. A network g ∈ G is +-maximally farsighted absorbing if there is no g′ 6= g

such that g′ �α(+) g.

Let A be the set of maximally farsighted absorbing networks, let A# be the set of #-

maximally farsighted absorbing networks (or cardinally maximally absorbing networks),

and let A+ be the set of +-maximally farsighted absorbing networks (or cardinally+

maximally absorbing networks). Obviously, we have that A# is a refinement of A (i.e.

A# ⊆ A) and A+ is a refinement of A# (i.e. A+ ⊆ A#).

Proposition 4. A+ ⊆ A# ⊆ A.

The next proposition shows that, if there is a farsighted improving path from all other

networks to some network, then this network is a maximally farsighted absorbing network.

Proposition 5. If g ∈ φ(g′) for all g′ ∈ G \ g, then g is maximally farsighted absorbing.

Proof. From Corollary 1 we know that g is minimally unstable, and so there is no g′ 6= g

that is more farsightedly stable than g (i.e. no g′ such that φ(g′)  φ(g)). In addition,

φ−1(g) = G \ {g} and so there is no g′ such that φ−1(g)  φ−1(g′).

Example 1 (Continued). We reconsider the distance-based model with three play-

ers of Figure 1. Remember that φ(g0) = {g1, g2, g3, g4, g5, g6}, φ(g1) = {g4, g5, g6},
φ(g2) = {g4, g5, g6}, φ(g3) = {g4, g5, g6}, φ(g4) = {g5, g6}, φ(g5) = {g4, g6}, φ(g6) =

{g4, g5} and φ(g7) = {g4, g5, g6}. In addition, we have that φ−1(g0) = ∅, φ−1(g1) =

{g0}, φ−1(g2) = {g0}, φ−1(g3) = {g0}, φ−1(g4) = {g0, g1, g2, g3, g5, g6, g7}, φ−1(g5) =

{g0, g1, g2, g3, g4, g6, g7}, φ−1(g6) = {g0, g1, g2, g3, g4, g5, g7} and φ−1(g7) = ∅. Hence, we

obtain that A = A# = A+ = {g4, g5, g6}, and so the minimally farsighted unstable net-

works are also the maximally farsighted absorbing ones.

Example 2 (Continued). We reconsider the example with three players of Figure 2. Re-

member that φ(g0) = {g1, g2, g3, g4, g5, g6}, φ(g1) = {g2, g4, g5, g6}, φ(g2) = {g3, g4, g5, g6},
φ(g3) = {g1, g4, g5, g6}, φ(g4) = {g2, g5, g6}, φ(g5) = {g1, g4, g6}, φ(g6) = {g3, g4, g5}
and φ(g7) = {g5, g6}. In addition, we have that φ−1(g0) = ∅, φ−1(g1) = {g0, g3, g5},
φ−1(g2) = {g0, g1, g4}, φ−1(g3) = {g0, g2, g6}, φ−1(g4) = {g0, g1, g2, g3, g5, g6}, φ−1(g5) =

{g0, g1, g2, g3, g4, g6, g7}, φ−1(g6) = {g0, g1, g2, g3, g4, g5, g7} and φ−1(g7) = ∅. Hence, we

get that A = {g4, g5, g6, g7}, A# = {g5, g6, g7} and A+ = {g5, g6}, while F = {g5, g6, g7}
and F# = {g7}.

Example 3. In Jackson and Wolinsky (1996) coauthor model, each player is a researcher

who spends time writing papers. If two players are connected, then they are working on

a paper together. The amount of time researcher i spends on a given project is inversely

related to the number of projects, #Ni(g), that she is involved in. Formally, player i’s

payoff is given by

ui(g) =
∑
j:ij∈g

(
1

#Ni(g)
+

1

#Nj(g)
+

1

#Ni(g)#Nj(g)

)
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for #Ni(g) > 0. For #Ni(g) = 0 we assume that ui(g) = 0. In Figure 3 we have depicted

the 3-player case. We have φ(g0) = {g1, g2, g3, g4, g5, g6}, φ(g1) = {g4, g5}, φ(g2) = {g4, g6},
φ(g3) = {g5, g6}, φ(g4) = φ(g5) = φ(g6) = {g7} and φ(g7) = ∅. Hence, F = F# = {g7}. In

addition, we have φ−1(g0) = ∅, φ−1(g1) = {g0}, φ−1(g2) = {g0}, φ−1(g3) = {g0}, φ−1(g4) =

{g0, g1, g2}, φ−1(g5) = {g0, g1, g3}, φ−1(g6) = {g0, g2, g3} and φ−1(g7) = {g4, g5, g6}. It

follows that A = {g1, g2, g3, g4, g5, g6, g7} while A# = A+ = {g7}.
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Figure 3: The co-author model with three players.

Example 4. Consider the situation where three players can form links and where the

payoffs are given in Figure 4. Wit respect to the defeating networks, we have φ(g0) =

{g1, g2, g3, g4, g5, g6}, φ(g1) = {g2, g3}, φ(g2) = {g3, g4, g5}, φ(g3) = {g4, g5}, φ(g4) =

{g1, g5, g6}, φ(g5) = {g1, g6}, φ(g6) = {g1, g2, g3} and φ(g7) = {g1, g2, g3, g4, g5, g6}. With

respect to the defeating networks, we have φ−1(g0) = ∅, φ−1(g1) = {g0, g4, g5, g6, g7},
φ−1(g2) = {g0, g1, g6, g7}, φ−1(g3) = {g0, g1, g2, g6, g7}, φ−1(g4) = {g0, g2, g3, g7}, φ−1(g5) =

{g0, g2, g3, g4, g7}, φ−1(g6) = {g0, g4, g5, g7} and φ−1(g7) = ∅. Herings, Mauleon and Van-

netelbosch (2009) show that there is no vNM farsighted stable set (a set-valued concept

defined in Section 5). However, F = F# = {g1, g3, g5} and A = A# = A+ = {g1, g3, g5}.

In Table 1 we give the minimally farsighted unstable networks and the maximally

farsighted absorbing networks found in Examples 1-4.

Proposition 6. If g ∈ φ(g′) for all g′ ∈ G \ g, then g is Pareto efficient, minimally

farsighted unstable and maximally farsighted absorbing.

Proof. If g ∈ φ(g′) for all g′ ∈ G \ g, we know from Corollary 1 and Proposition 5 that

g is both minimally farsighted unstable and maximally farsighted absorbing. Given the

definition of a farsighted improving path, if g ∈ φ(g′) then there is some player i such that

ui(g) > ui(g
′). Hence, g′ does not Pareto dominates g. Since g ∈ φ(g′) for all g′ ∈ G \ g,

g is Pareto efficient.
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Figure 4: Non-existence of a vNM farsightedly stable set.

Concept Example 1 Example 2 Example 3 Example 4

F g4, g5, g6 g5, g6, g7 g7 g1, g3, g5

F# g4, g5, g6 g7 g7 g1, g3, g5

A g4, g5, g6 g4, g5, g6, g7 g1, g2, g3, g4, g5, g6, g7 g1, g3, g5

A# g4, g5, g6 g5, g6, g7 g7 g1, g3, g5

A+ g4, g5, g6 g5, g6 g7 g1, g3, g5

Table 1: Minimally farsighted unstable networks and maximally farsighted absorbing

networks.

5 Relationship with Set Concepts

A set of networks G is a vNM farsighted stable set (FSS) if the following two conditions

hold. Internal stability (IS): for any two networks g and g′ in the farsighted stable set

G there is no farsighted improving path from g to g′ (and vice versa). External stability

(ES): from any network outside the set G there is a farsighted improving path to some

network within the set G.10 vNM farsighted stable sets do not always exist.

Definition 10. A set of networks G ⊆ G is a vNM farsighted stable set if: (IS) for every

g, g′ ∈ G, it holds that g′ /∈ φ(g); and (ES) for every g ∈ G\G, it holds that φ(g)∩G 6= ∅.

Proposition 7. If {g} is a vNM farsighted stable set then g is minimally farsighted

unstable (g ∈ F ) and maximally farsighted absorbing (g ∈ A).

Proof. If {g} is a vNM farsighted stable set then {g} satisfies ES and so, for every g′ ∈ G,

10Herings, Mauleon and Vannetelbosch (2020) and Luo, Mauleon and Vannetelbosch (2021) define the

notion of myopic-farsighted stable set that extends the notion of vNM farsighted stable set to a mixed

population of myopic and farsighted players.

12



g′ 6= g, φ(g′) ∩ {g} 6= ∅. Hence, from Corollary 1 and Proposition 5 we have that g ∈ F
and g ∈ A.

Remark that if {g} is a vNM farsighted stable set and there is no g′ 6= g such that

{g′} is a vNM farsighted stable set, then g is also a #-maximally farsighted absorbing

network (g ∈ A#).

Herings, Mauleon and Vannetelbosch (2009) introduce the pairwise farsightedly sta-

ble set (PFSS). It is obtained by requiring the deterrence of external deviations (DED),

external stability (ES), and minimality (MIN). A set of networks G is pairwise farsight-

edly stable if (DED) all deviations from any network g ∈ G to a network outside G are

deterred by a credible threat of ending worse off or equally well off, (ES) there exists a

farsighted improving path from any network outside the set leading to some network in

the set, and (MIN) there is no proper subset of G satisfying (DED) and (ES).

Definition 11. A set of networks G ⊆ G is pairwise farsightedly stable if: (DED) ∀ij /∈ g
such that g + ij /∈ G, ∃ g′ ∈ φ(g + ij) ∩ G such that (ui(g

′), uj(g
′)) = (ui(g), uj(g)) or

ui(g
′) < ui(g) or uj(g

′) < uj(g), and ∀ij ∈ g such that g− ij /∈ G, ∃ g′, g′′ ∈ φ(g− ij)∩G
such that ui(g

′) ≤ ui(g) and uj(g
′′) ≤ uj(g); (ES) ∀g′ ∈ G \ G, φ(g′) ∩ G 6= ∅; (MIN) @

G′  G such that G′ satisfies (DED) and (ES).

Condition (DED) captures that adding a link ij to a network g ∈ G that leads to a

network outside of G, is deterred by the threat of ending in g′. Here g′ is such that there

is a farsighted improving path from g + ij to g′. Moreover, g′ belongs to G, which makes

g′ a credible threat. There is a similar requirement, but then for the case where a link

is severed. Since the set G (trivially) satisfies (DED) and (ES), a minimality condition

(MIN) is required.

Proposition 8. If {g} is a pairwise farsightedly stable set then g is minimally farsighted

unstable (g ∈ F ) and maximally farsighted absorbing (g ∈ A).

The proof of Proposition 8 is similar to the one of Proposition 7. Again, if {g} is

a pairwise farsightedly stable set and there is no g′ 6= g such that {g′} is a pairwise

farsightedly stable, then g is also a #-maximally farsighted absorbing network (g ∈ A#).

Herings, Mauleon and Vannetelbosch (2009) show that a set G ⊆ G is the unique

pairwise farsightedly stable set if and only if G = {g ∈ G | φ(g) = ∅} and for any

g′ ∈ G \G, φ(g′) ∩G 6= ∅.

Proposition 9. If G ⊆ G is the unique pairwise farsightedly stable set, then F = F# = G.

Proof. Take G such that G = {g ∈ G | φ(g) = ∅} and for any g′ ∈ G \G, φ(g′)∩G 6= ∅. It

follows that φ(g)  φ(g′)) for all g, g′ such that g ∈ G, g′ /∈ G. Hence, F = F# = G.

Chwe (1994) introduce the notion of largest consistent set for general social environ-

ments. By considering a network as a social environment, and by allowing only pairwise
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deviations, we obtain the definition of the largest pairwise consistent set (Page, Wood-

ers and Kamat, 2005; Herings, Mauleon and Vannetelbosch, 2009). The pairwise largest

consistent set (LPCS) contains the vNM farsightedly stable set.

Definition 12. A set of networks G ⊆ G is a pairwise consistent set if ∀ g ∈ G: (DD)

∀ ij /∈ g, ∃ g′ ∈ G, where g′ = g + ij or g′ ∈ φ(g + ij) ∩ G, such that ui(g
′) < ui(g) or

uj(g
′) < uj(g) or (ui(g

′), uj(g
′)) = (ui(g), uj(g)); ∀ ij ∈ g, ∃ g′, g′′ ∈ G, where g′ = g − ij

or g′ ∈ φ(g − ij) ∩ G, and g′′ = g − ij or g′′ ∈ φ(g − ij) ∩ G, such that ui(g
′) ≤ ui(g)

and uj(g
′′) ≤ uj(g). The largest pairwise consistent set is the pairwise consistent set that

contains any pairwise consistent set.

The set G is a pairwise consistent set if both external and internal deviations are

deterred (i.e. condition (DD)). The largest pairwise consistent set is the set that contains

any pairwise consistent set. It follows from the results in Chwe (1994) that the largest

pairwise consistent set exists, is non-empty, and satisfies (ES).

Concept Example 1 Example 2 Example 3 Example 4

FSS {g4}, {g5}, {g6} {g5}, {g6}, {g4, g7} {g1, g2, g3, g7} None

PFSS {g4}, {g5}, {g6}
{g5}, {g6},
{g4, g7},

{g1, g2, g3, g7}

{g4, g5,g7}, {g4, g6,g7},
{g5, g6,g7},
{g1, g2, g3, g7},

{g3, g4,g7}, {g1, g6,g7},
{g2, g5,g7}

{g1, g2,g3},
{g3, g4,g5},
{g1, g5,g6}

LPCS {g4, g5, g6}
{g1, g2, g3, g4,
g5, g6,, g7}

{g1, g2, g3, g7}
{g1, g2, g3,
g4, g5, g6}

Table 2: The vNM farsightedly stable sets (FSS), the pairwise farsightedly stable sets

(PFSS), and the largest pairwise consistent set (LPCS).

In Table 2 we give the vNM farsightedly stable sets (FSS), the pairwise farsightedly

stable sets (PFSS) and the largest pairwise consistent set (LPCS) found in the four ex-

amples. We observe that FSS, PFSS and LPCS often support more networks than F , F#,

A, A# or A+.

6 Experimental Data

Kirchsteiger, Mantovani, Mauleon and Vannetelbosch (2016) test whether players are

either myopic or farsighted when forming links between them. We now use their experi-

mental data to test the relevance of the new solution concepts. In Kirchsteiger, Mantovani,

Mauleon and Vannetelbosch (2016), participants are grouped by four to play a sequential

network formation game. Players are initially unconnected (i.e. they start from the empty

network). At each stage, a potential link between two players is randomly selected. If the
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link exists in the current network, then both players choose simultaneously whether to

keep the link or to delete the link. If one of the players decides to delete the link, then the

link is cut. If the link is not yet formed in the current network, then both players choose

simultaneously whether or not to add this link. Only if both players decide to add the

link, then the link is formed. The four players are informed about the linking choices of

the players involved in the selected link. All players know perfectly the resulting network

and its payoffs. Before moving to the next stage where another potential link is randomly

selected, players declare if they want to do further changes to the network (satisfaction

choice). The game ends either when all players do not want to modify the current network

or when it is randomly stopped after stage 26.11 The game is repeated three times and

groups are kept the same through repetitions. A vector of payoffs that allocates a number

of points to each player is associated to every network. Players receive points depending

only on the final network of each repetition. Participants are informed about the payoffs

associated to every possible network.
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Figure 5: Payoffs in treatment T1.

Kirchsteiger, Mantovani, Mauleon and Vannetelbosch (2016) run three treatments (T1,

T2, T3) where the payoffs are modified in some networks to get vNM farsighted stable sets

with different properties. Figure 5, Figure 6 and Figure 7 display, respectively, the payoffs

11The design of the termination rule allows each individual to decide unilaterally to continue playing

(at least for the first 26 stages).
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Figure 6: Payoffs in treatment T2.

that were used in the three treatments for each class of networks Ck (k = 1, ..., 11). Each

class Ck regroups networks that share the same architecture but differ in the position

occupied by each player. To identify F , F#, A, A# and A+ we need to compute φ(g) and

φ−1(g) for every g. The next proposition gives us the characterization of those concepts

for the three treatments. The proof can be found in the appendix.

Proposition 10. Consider a set of four players. Then,

(i) In T1 we have that F = F# = A = A# = A+ = {gN},

(ii) In T2 we have that F# = {g∅}, F = A = A# = {g∅} ∪ {g | g ∈ C5} ∪ {g | g ∈ C9}
and A+ = {g∅} ∪ {g | g ∈ C5}.

(iii) In T3 we have that F# = {g∅}, F = A# = {g∅} ∪ {g | g ∈ C7}, A = {g∅} ∪ {g | g ∈
C7} ∪ {g | g ∈ C10} and A+ = {g | g ∈ C7}.

In T1, since φ(gN) = ∅ and gN ∈ φ(g) for all g 6= gN (so φ−1(gN) = {g | g 6= gN}) it

follows directly that all concepts single out the complete network gN . Hence, data from

T1 cannot be used to discriminate between these concepts. In T2 and T3, the empty
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Figure 7: Payoffs in treatment T3.

network is the unique #-minimally farsighted unstable network. The set of minimally

farsighted unstable networks and the set of #-maximally farsighted absorbing networks

coincide in both T2 and T3 (i.e. F = A# in T2, T3). Hence, data from the experiment

cannot be used to discriminate between F and A#. In both T2 and T3 we get F#  F

and A+  A#. Finally, we have A# = A in T2 but A#  A in T3. Predictions are

summarized in Table 3 included the vNM farsighted stable sets.12

In general, the relationships between the concepts are as follows: F# ⊆ F (Proposition

1) and A+ ⊆ A# ⊆ A (Proposition 4). From T2 and T3, we have F#  F = A# ⊆ A and

A+  F = A# ⊆ A. Hence, we will test the following three hypothesis:

H1: F#  F , H2: A+  A#, and H3: A#  A.

The experiment took place at the University of Milan-Bicocca in 2010 for T1 and

2012 for T2 and T3. Kirchsteiger, Mantovani, Mauleon and Vannetelbosch (2016) run 16

sessions for a total of 288 participants and 72 groups (38 for T1, 18 for T2, 18 for T3).

12Since the empty network is pairwise stable in all treatments, myopia predicts the empty network in

T1, T2 and T3.
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Concept T1 T2 T3

F gN g∅, g ∈ C5, C9 g∅, g ∈ C7

F# gN g∅ g∅

A gN g∅, g ∈ C5, C9 g∅, g ∈ C7, C10

A# gN g∅, g ∈ C5, C9 g∅, g ∈ C7

A+ gN g∅, g ∈ C5 g ∈ C7

FSS {gN} {g ∈ G | g ∈ C5} {g, g′ ∈ G | g, g′ ∈ C7,#Ni(g) = #Ni(g
′)∀i}

Table 3: Predictions in the three treatments of the experiment.

Network #C T1 T2 T3 T1 T2 T3

g ∈ C1 1 (1) 21 12 26 19.4 22.2 48.1

g ∈ C2 6 (6) 11/6 2/6 7/6 1.7 0.6 2.2

g ∈ C3 3 (1) 0 0 0 0.0 0.0 0.0

g ∈ C4 12 (12) 4/12 0 6/12 0.3 0.0 0.9

g ∈ C5 4 (4) 1/4 29/4 1/4 0.2 13.4 0.5

g ∈ C6 4 (4) 0 0 0 0.0 0.0 0.0

g ∈ C7 12 (6) 1/12 2/12 10/12 0.1 0.3 1.5

g ∈ C8 3 (1) 0 0 0 0.0 0.0 0.0

g ∈ C9 12 (12) 0 8/12 0 0.0 1.2 0.0

g ∈ C10 6 (6) 5/6 0 2/6 0.7 0.0 0.6

g ∈ C11 1 (1) 65 1 2 60.2 1.9 3.7

Average number Average percentage

Table 4: Number of groups ending on average in each network of each class of networks

in the experiment. Column #C: in parenthesis the number of payoff relevant networks

in each class.

Each group played three consecutive rounds. Table 4 gives us the number of groups ending

on average in each network of each class of networks in the experiment. The column #C

gives us the number of different networks within each class.13 Table 4 can be interpreted

as follows. In T1, 19.4% of the groups end up in the empty network while 60.2% end up

in the complete network. In T2, 22.2% of the groups end up in the empty network while

13.4% end up in a network where player i is isolated and players j, k, l form a complete

network between them.14 In T3, half of the groups end up in the empty network.

Using a proportion test, it turns out that H1 and H2 are consistent with the data: F#

is significantly different of F (P -value < 0.001) and A+ is significantly different of A#

13From the experimental data, we only have the number of groups ending in each class in the experi-

ment. The average number of groups ending in any given network is then equal to the number of groups

ending in each class divided by the number of different networks in the class.
14There are four different networks in class C5. In total 53.6% of the groups end up in class C5.

18



(P -value < 0.001). Only H3 is rejected (P -value of 0.83). It is not surprising since in

T2 both A# and A lead to the same predictions. In T3, A predicts more networks but

networks in which nearly no groups were ending up. Hence, A# is even not significantly

different from A in T3 (P -value of 0.68).

Result 1. In the experiment:

(i) The set of #-minimally farsighted unstable networks is a significant refinement of

the set of minimally farsighted unstable networks.

(ii) The set of +-maximally farsighted absorbing networks is a significant refinement of

the set of #-maximally farsighted absorbing networks.

(iii) The set of #-maximally farsighted absorbing networks is not significantly different

from the set of maximally farsighted absorbing networks.

Concept T1 T2 T3 T1 T2 T3 T3*

F 60.2 90.7 66.7 75.6 100 92.8 94.7

F# 60.2 22.2 48.1 75.6 29.3 92.8 68.9

A 60.2 90.7 70.4 75.6 100 92.8 94.7

A# 60.2 90.7 66.7 75.6 100 92.8 94.7

A+ 60.2 75.9 18.5 75.6 100 0 25.8

FSS 60.2 53.7 18.5 75.6 70.7 0 25.8

x 0 2.5 2.5

Table 5: Percentage of networks predicted by each concept among the networks in which

at least x% of the groups were ending up. In the column T3* the percentage is computed

considering only the number of payoff relevant networks in each class.

Since A# and F are not significantly different of A, we only focus on F , F# and A+

and we compare those concepts with respect to the following two criteria. A first criteria

is the percentage of networks predicted by each concept. A higher percentage is better.

Table 5 gives us the percentage of networks predicted by each concept among the networks

in which at least x% of the groups were ending up.15 A second criteria is the percentage

of networks predicted by each concept among the networks in which less than 2.5% of the

groups were ending up. A lower percentage is better. Table 6 gives us the percentage of

networks predicted by each concept among the networks in which less than 2.5% of the

groups were ending up. We observe that, with respect to the first criteria, A+ is (weakly)

dominated by F , and with respect to the second criteria, A+ is (weakly) dominated by

15In the column T3* the percentage is computed considering the number of payoff relevant networks

in each class. For instance, the number of groups ending on average in a representative network of class

C7 becomes 3% (instead of 1.5% in Table 4) since there are only 6 different payoff relevant networks in

this class.
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F#. With respect to the first criteria, F# is (weakly) dominated by F , but with respect

to the second criteria, F# is not dominated by one of the other concepts. Conversely,

with respect to the first criteria, F is not dominated by one of the other concepts, while

with respect to the second criteria, F is (weakly) dominated by F#.16 Based on these two

criteria, we cannot discriminate between F (and A#) and F#. However, both perform

better than A+ and FSS for fitting the data. F (and A#) predicts most networks that

occur with positive probability while F# is good at selecting the network with the highest

percentage among those predicted by F . This observation is confirmed by Table 7 that

gives us the mean percentage of a network predicted by a given concept. Thus, F (and

A#) predicts the most relevant networks17 while F# provides narrower but more robust

predictions.

Concept T1 T2 T3 T3*

F 0 59.5 37.3 0

F# 0 0 0 0

A 0 59.5 44.8 11.9

A# 0 59.5 37.3 0

A+ 0 0 37.3 0

FSS 0 0 37.3 0

Table 6: Percentage of networks predicted by each concept among the networks in which

less than 2.5% of the groups were ending.

Treatment F F# A A# A+ FSS

T2 5.31 22.20 5.31 5.31 15.16 13.40

T3 5.09 48.10 3.67 5.09 1.50 1.50

T2+T3 5.20 35.15 4.49 5.20 8.33 7.45

Table 7: Mean percentage of a network predicted by a given concept.

The analysis suggests that the frequency of a network g depends negatively on #φ(g)

and positively on #φ−1(g). Table 8 shows the naive regression of the percentage per

representative network on #φ(g), #φ−1(g) and #φ−1(g) − #φ(g), and it confirms this

intuition. Moreover, #φ(g) impacts more the frequency of a network than #φ−1(g).

Thus, both the stability requirement and the reachability requirement seem to matter for

predicting the most frequent networks with a higher importance of the former.

16With respect to the first criteria, FSS is (weakly) dominated by A+ and F , and with respect to the

second criteria, FSS is (weakly) dominated by A+ and F#.
17When we separate the networks between those with a frequency higher than 1% and the others, F

(and A#) has the highest correlation with this binary criteria.
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Percentage per network

T1 T2 T3 All All All All

#φ(g) -1.602 -0.383 -1.119 -0.640+ -1.059**

(0.211) (0.294) (0.166) (0.063) (0.001)

#φ−1(g) 0.143 0.124 0.191 0.219+ 0.347**

(0.655) (0.355) (0.315) (0.050) (0.000)

#φ−1(g)−#φ(g) 0.304**

(0.000)

constant 24.45 8.309 24.63 12.02 23.42** -1.358 4.650*

(0.290) (0.329) (0.182) (0.113) (0.000) (0.609) (0.021)

Num. obs. 11 11 11 33 33 33 33

adj. R-sq 0.433 0.449 0.227 0.369 0.305 0.314 0.368

P -values in parentheses, + P < 0.10, * P < 0.05, ** P < 0.001

Table 8: Regression of the percentage per representative network on #φ(g), #φ−1(g) and

#φ−1(g)−#φ(g).

7 Conclusion

We have proposed the notion of minimal farsighted instability to predict the networks that

are more likely to be observed in the long run when agents are farsighted.18 A network

is said to be minimally farsighted unstable if there is no other network which is more

farsightedly stable, where the comparison between two networks is made by comparing

(in the set inclusion or cardinal sense) their sets of farsighted defeating networks. But,

selecting a network that is more farsightedly stable than another one might be a more

robust prediction if at the same time the former is more likely to be reached than the latter

one. Hence, we have also proposed to compare networks in terms of their reachability. A

network is said to be maximally farsighted absorbing if there is no other network which is

more farsightedly absorbing, where the comparison between two networks is now made by

comparing both their sets of farsighted defeating networks (i.e. in terms of their stability)

and their sets of farsighted defeated networks (i.e. in terms of their reachability).

We have provided some general results that are helpful for characterizing minimally

farsighted unstable networks and maximally farsighted absorbing networks, and we have

investigated their relationships with set-valued notions of farsightedness. In terms of

computational complexity, minimal farsighted instability turns to be much less demanding

than set-valued concepts of farsightedness. Indeed, in addition to the computation of the

set of farsighted defeating networks for each network, most set-valued concepts require to

consider all possible combinations of networks into a set. We have used experimental data

18An alternative approach for solving the lack of farsighted stability is to require the consent of partners

or neighbours for adding or deleting links. See Caulier, Mauleon and Vannetelbosch (2013) and Caulier,

Mauleon, Sempere-Monerris and Vannetelbosch (2013).
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to show the relevance of the new solution concepts. It turns out that the set of minimally

farsighted unstable networks (F ) is not significantly different than the set of maximally

farsighted absorbing networks (A). The set of cardinally+ maximally farsighted absorbing

networks (A+) performs better than the vNM farsighted stable set (FSS). Finally, the set

of minimally farsighted unstable networks (F ) predicts most networks that occur with

positive probability while the set of cardinally minimally farsighted unstable networks

(F#) is good at selecting the network with the highest percentage among those predicted

by F . Both F and F# outperform on average A+ and FSS.
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Appendix

Experimental Data: Proof of Proposition 10

Let gi be a generic network in class Ci and ci ⊆ Ci a generic proper subset of the

corresponding class. We will write gi → g with g ∈ Cj, and gi → g with g ∈ cj, when the

generic network gi in class Ci reaches with a farsighted improving path all the networks

in class Cj or only a proper subset cj of Cj, respectively.

Minimally unstable and maximally absorbing networks in T1

In treatment 1 (T1) the set of networks that can be reached from gi by some farsighted

improving path are:

φ(g∅) = {g | g ∈ C10 ∪ C11}
φ(g2) = {g | g ∈ C1 ∪ C10 ∪ C11}
φ(g3) = {g | g ∈ C1 ∪ c2 ∪ c5 ∪ C10 ∪ C11}
φ(g4) = {g | g ∈ C1 ∪ c2 ∪ c5 ∪ C10 ∪ C11}
φ(g5) = {g | g ∈ C1 ∪ c2 ∪ C10 ∪ C11}
φ(g6) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ c5 ∪ C10 ∪ C11}
φ(g7) = {g | g ∈ C1 ∪ c2 ∪ c3 ∪ c4 ∪ C5 ∪ C10 ∪ C11}
φ(g8) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ C5 ∪ c7 ∪ C10 ∪ C11}
φ(g9) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ c5 ∪ c6 ∪ c7 ∪ C10 ∪ C11}
φ(g10) = {g | g ∈ c2 ∪ c4 ∪ c5 ∪ c6 ∪ C11}
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Network T1 T2 T3

#φ(g) #φ−1(g) #φ(g) #φ−1(g) #φ(g) #φ−1(g)

g ∈ C1 7 56 4 46 12 50

g ∈ C2 8 29 11 19 14 21

g ∈ C3 14 4 19 4 21 0

g ∈ C4 11 7 13 7 19 5

g ∈ C5 11 30 9 51 19 12

g ∈ C6 17 6 23 0 28 6

g ∈ C7 18 3 23 3 16 62

g ∈ C8 24 0 29 2 23 2

g ∈ C9 18 0 14 52 27 0

g ∈ C10 11 57 28 1 29 49

g ∈ C11 0 63 22 0 18 0

Table 9: Number of defeating networks (#φ(g)) and number of defeated networks

(#φ−1(g)) for each network in each class of networks of the experiment.

φ(gN) = ∅.
Remember that a network g ∈ G is minimally farsighted unstable if there is no g′ 6= g

such that g′ �σ(⊆) g; i.e., φ(g′)  φ(g). It follows that gN is the unique minimally

farsighted unstable network. Notice that g∅ is more farsightedly stable than all networks

g 6= g10, gN .

A network g ∈ G is maximally farsighted absorbing if there is no g′ 6= g such that

g′ �α(⊆) g; i.e., φ(g′) ⊆ φ(g) and φ−1(g) ⊆ φ−1(g′) with one inclusion holding strictly.

Since φ(gN) = ∅ and gN ∈ φ(gi) for all gi 6= gN , it also holds that gN is the unique

maximally farsighted absorbing network.

A network g ∈ G is #-minimally farsighted unstable if there is no g′ 6= g such that

g′ �σ(#) g; i.e., #φ(g′) < #φ(g). Thus, gN is the #-minimally farsighted unstable

network.

A network g ∈ G is #-maximally farsighted absorbing if there is no g′ 6= g such that

g′ �α(#) g; i.e., #φ(g′) ≤ #φ(g) and #φ−1(g) ≤ #φ−1(g′) with one inequality holding

strictly. Then, gN is the #-maximally farsighted absorbing network.

A network g ∈ G is +-maximally farsighted absorbing if there is no g′ 6= g such that

g′ �α(+) g; i.e., #φ(g′) − #φ−1(g′) < #φ(g) − #φ−1(g). Again, gN is the +-maximally

farsighted absorbing network.

Minimally unstable and maximally absorbing networks in T2

Let us denote Bg the networks that are adjacent to g,

Bg = {g′ | g′ = g + ij ∨ g − ij, for some ij} ,
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and let Bg be its complement. In treatment 2 (T2) the set of networks that can be reached

from gi by some farsighted improving path are:

φ(g∅) = {g | g ∈ C5}
φ(g2) = {g | g ∈ C1 ∪ C5 ∪ c9}
φ(g3) = {g | g ∈ C1 ∪ c2 ∪ C5 ∪ C9}
φ(g4) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ C5 ∪ c9}
φ(g5) =

{
g | g ∈ C9 ∩ Ag5

}
φ(g6) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ C5 ∪ C9}
φ(g7) = {g | g ∈ C1 ∪ c2 ∪ c3 ∪ c4 ∪ C5 ∪ C9}
φ(g8) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ C5 ∪ c7 ∪ C9}
φ(g9) = {g | g ∈ c4 ∪ (C5 ∩ Ag9) ∪ (C9 \ g9)}
φ(g10) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ C5 ∪ c7 ∪ c8 ∪ C9}
φ(gN) = {g | g ∈ C5 ∪ C9 ∪ C10}.

Note that g∅ is more farsightedly stable than all networks g 6= g5, g9. Moreover, neither

g5 nor g9 are more farsightedly stable than g∅. Thus, g∅ is minimally farsighted unstable.

Note also that it is not always true that (C9 \ g9) ⊇ (C9 ∩ Bg5) since g9 could belong to

(C9 ∩Bg5). Then, also g5, g9 are minimally farsighted unstable.

The maximally farsighted absorbing networks are g∅, g5 and g9. Indeed:

φ−1(g∅) = {g | g ∈ C2 ∪ C3 ∪ C4 ∪ C6 ∪ C7 ∪ C8 ∪ C10};
φ−1(g5) = {g | g ∈ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C6 ∪ C7 ∪ C8 ∪ c9 ∪ C10 ∪ C11} and

φ−1(g9) = {g | g ∈ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C7 ∪ C8 ∪ c9 ∪ C10 ∪ C11}.
From Table 9, we have that g∅ is the #-minimally farsighted unstable network. Notice

that the network g∅ is #-more farsightedly absorbing than the network g2, but not more

than g5 and g9. Finally, g∅ and g5 are the +-maximally farsighted absorbing networks.

Minimally unstable and maximally absorbing networks in T3

In treatment 3 the set of networks that can be reached from gi by some farsighted im-

proving path are:

φ(g∅) = {g | g ∈ C7}
φ(g2) = {g | g ∈ C1 ∪ C7 ∪ c10}
φ(g3) = {g | g ∈ C1 ∪ c2 ∪ C7 ∪ C10}
φ(g4) = {g | g ∈ C1 ∪ c2 ∪ c5 ∪ C7 ∪ c10}
φ(g5) = {g | g ∈ C1 ∪ c2 ∪ C7 ∪ c10}
φ(g6) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ c5 ∪ C7 ∪ C10}
φ(g7) = {g | g ∈ (C7 \ g s.t. di(g) = di(g

7) for all i ∈ N) ∪ C10}
φ(g8) = {g | g ∈ C1 ∪ c4 ∪ C7 ∪ C10}
φ(g9) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ c5 ∪ c6 ∪ C7 ∪ C10}
φ(g10) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ c5 ∪ c6 ∪ C7 ∪ c8 ∪ C10 \ g10}
φ(g11) = {g | g ∈ C7 ∪ C10}.
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Note that g∅ is more farsightedly stable than all networks g 6= g7. Moreover, g7 is not

more farsightedly stable than g∅. Thus, g∅ and each g7 are minimally farsighted unstable

networks. The maximally farsighted absorbing networks are also g∅, g7 and g10. Indeed:

φ−1(g∅) = {g | g ∈ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ C8 ∪ C9 ∪ C10};
φ−1(g7) = {g | g ∈ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ c7 ∪ C8 ∪ c9 ∪ C10 ∪ C11} and

φ−1(g10) = {g | g ∈ c2 ∪ C3 ∪ c4 ∪ c5 ∪ C6 ∪ C7 ∪ C8 ∪ C9 ∪ C10 \ g10 ∪ C11}.
From Table 9, we have that g∅ is the #-minimally farsighted unstable network. Remark

that the network g7 is #-more farsightedly absorbing than all other networks except g∅.

Finally, g7 is the +-maximally farsighted absorbing network.
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