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Abstract

We propose the notion of coalition-proof stability for predicting the networks

that could emerge when group deviations are allowed. A network is coalition-proof

stable if there exists no coalition which has a credible group deviation. A coalition

is said to have a credible group deviation if there is a profitable group deviation

to some network and there is no subcoalition of the deviating players which has

a subsequent credible group deviation. Coalition-proof stability is a coarsening of

strong stability. There is no relationship between the set of coalition-proof stable

networks and the set of networks induced by a coalition-proof Nash equilibrium of

Myerson’s linking game. Contrary to coalition-proof stability, coalition-proof Nash

equilibria of Myerson’s linking game tend to support unreasonable networks.
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1 Introduction

The organization of players into networks plays an important role in the determination

of the outcome of many social and economic interactions. Moreover, in many situations

(R&D networks, free-trade networks, networks of buyers and sellers, criminal networks, ...)

networks are not fixed nor randomly determined but rather emerge through the decisions

taken by the players.1

A first approach to analyze the networks that one might expect to emerge in the long

run is the stability approach. It requires that players do not benefit from altering the

structure of the network. Jackson and Wolinsky (1996) propose the notion of pairwise

stability where a network is pairwise stable if no player benefits from severing one of her

links and no two players benefit from adding a link between them. Pairwise stability only

considers deviations involving a single link at a time. That is, link addition is bilateral

(two players that would be involved in the link must agree to adding the link), link

deletion is unilateral (at least one player involved in the link must agree to deleting the

link), and network changes take place one link at a time. But, it might be that some

group of players could all be made better off by some complicated reorganization of their

links, which is not accounted for under pairwise stability. Hence, Jackson and van den

Nouweland (2005) propose the notion of strong stability that allows for group deviations

involving several links within some group of players at a time. Link addition is bilateral,

link deletion is unilateral, and multiple link changes can take place at a time. Whether a

pairwise deviation or a group deviation makes more sense depend on the setting within

which network formation takes place.

A second approach to model network formation is by means of a noncooperative game.

In Myerson’s (1991) linking game, players choose simultaneously the links they wish to

form and the formation of a link requires the consent of both players. Belleflamme and

Bloch (2004) or Goyal and Joshi (2006) propose the notion of pairwise Nash stability: a

network is pairwise Nash stable if there exists a pairwise Nash equilibrium of the Myerson’s

(1991) linking game that supports the network.2 Pairwise Nash stability only allows for

pairwise deviations. So, Dutta and Mutuswami (1997) propose the concepts of strong

stability and weak stability. A network is strongly (weakly) stable if it corresponds to a

strong (coalition-proof) Nash equilibrium of the Myerson’s (1991) linking game.3

1Jackson (2008) and Goyal(2007) provide a comprehensive introduction to the theory of social and

economic networks. Mauleon and Vannetelbosch (2016) give an overview of the solution concepts for

solving network formation games.
2Pairwise Nash stability is a refinement of pairwise stability. Pairwise Nash stability requires that a

network is immune both to the formation of a new link by any two players and to the deletion of any

number of links by any player.
3The definition of strong stability of Dutta and Mutuswami (1997) considers a deviation to be valid

only if all members of a deviating coalition are strictly better off, while the definition of Jackson and van

den Nouweland (2005) is slightly stronger by allowing for a deviation to be valid if some members are

strictly better off and others are weakly better off.
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In this paper, we adopt the first approach, i.e. the stability approach. A strongly

stable network often fails to exist because networks can be classified as not stable while

they rely on group deviations that are not credible. Hence, we propose the notion of

coalition-proof stability for predicting the networks that could emerge in the long run.

A network is said to be coalition-proof stable if there exists no coalition which has a

credible group deviation. A coalition is said to have a credible group deviation if there is

a profitable group deviation to some network and there is no subcoalition of the deviating

players which has a subsequent credible group deviation. Coalition-proof stability is a

coarsening of strong stability. In Belleflamme and Bloch (2004) model of market-sharing

agreements, there is no strongly stable network while the empty network is the unique

coalition-proof stable network.

More surprisingly, we show that there is no relationship between the set of coalition-

proof stable networks and the set of networks induced by a coalition-proof Nash equi-

librium of Myerson’s linking game. In addition, coalition-proof stability often tends to

predict the most plausible networks while some coalition-proof Nash equilibria of My-

erson’s linking game support unreasonable networks. For instance, in a model where

network components compete for a loot, coalition-proof stability predicts the emergence

of a network with a minimally winning component while there is no strongly stable net-

work and coalition-proof Nash equilibria of Myerson’s linking game sustain many more

networks. The reason why coalition-proof Nash equilibria of Myerson’s linking game sup-

port more networks and less reasonable ones has to do with the following drawback. If the

deviation by a coalition involves the deletion of links with players outside the coalition,

then a single deviating player who has just deleted a link with some player not in the

deviating coalition can form again this link in a subsequent deviation without requiring

the mutual consent of the other player. Coalition-proof stability overcomes such a draw-

back by requiring that this player belongs to the deviating coalition in the subsequent

deviation.

Similarly to strong stability, a coalition-proof stable network may fail to exist. We

then look for conditions on the utility function such that the existence of a coalition-

proof stable network is guaranteed. We show that under a componentwise egalitarian

utility function where players belonging to the same component get the same utility and

there are no externalities across components, there always exists a coalition-proof stable

network and coalition-proof stability coincides with strong stability. Moreover, if the

utility function is also top convex then both strong stability and coalition-proof stability

single out the strongly effi cient networks.

Up to now we consider (strict) group deviations where a group of players deviate only

if each of its members can be made (strictly) better off. Alternatively, we can look at

weak group deviations where a group of players deviate only if at least one of its members

is (strictly) better off while all other members are at least as well off. Although strong

stability with weak group deviations refines strong stability with strict group deviations,

we show that there is no relationship between coalition-proof stability with strict group
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deviations and coalition-proof stability with weak group deviations. However, if the net-

work utility function is link-responsive (i.e. no player is indifferent to a change in her set

of links), then both notions coincide.

Finally, there are situations where only pairwise deviations are feasible. In such situa-

tions farsighted players may look beyond the immediate consequence of adding or deleting

a link and anticipate the subsequent changes that will occur afterwards. Is coalition-

proof stability with farsighted players but restricted to pairwise deviations equivalent to

coalition-proof stability with group deviations? In general, the answer is no. Nevertheless,

the set of coalition-proof farsightedly stable networks and the set of farsightedly stable

networks coincide under the componentwise egalitarian utility function.

The paper is organized as follows. In Section 2 we introduce networks, pairwise sta-

bility and strong stability, and we consider Jackson and Watts (2002) exchange networks

model to illustrate the lack of credibility of some group deviations. In Section 3 we in-

troduce the notion of coalition-proof stability. In Section 4 we compare coalition-proof

stability with coalition-proof Nash equilibrium of the Myerson’s linking game. In Section

5 we study the existence and effi ciency of coalition-proof stable networks. In Section 6

we consider strict versus weak group deviations. In Section 7 we extend our notion of

coalition-proof stability to farsighted players. In Section 6 we conclude.

2 Network formation

Let N = {1, ..., n} be the finite set of players who are connected in some network rela-
tionship. The network relationships are reciprocal and the network is thus modeled as a

non-directed graph. A network g is a list of players who are linked to each other. We

write ij ∈ g to indicate that i and j are linked in the network g. Let gS be the set of

all subsets of S ⊆ N of size 2, so gN is the complete network. The set of all possible

networks on N is denoted by G and consists of all subsets of gN . The network obtained
by adding link ij to an existing network g is denoted g+ ij and the network obtained by

cutting link ij from an existing network g is denoted g− ij. For any network g, we denote
by N(g) = {i | ∃ j such that ij ∈ g} the set of players who have at least one link in the
network g. A path in a network g between i and j is a sequence of players i1, . . . , iK such

that ikik+1 ∈ g for each k ∈ {1, . . . , K−1} with i1 = 1 and iK = j. A non-empty network

h ⊆ g is a component of g, if for all i ∈ N(h) and j ∈ N(h) \ {i}, there exists a path in
h connecting i and j, and for any i ∈ N(h) and j ∈ N(g), ij ∈ g implies ij ∈ h.4 We
denote by C(g) the set of components of g. A component h of g is minimally connected

if h has #N(h) − 1 links (i.e. every pair of players in the component are connected by

exactly one path). The partition of N induced by g is denoted by Π(g), where S ∈ Π(g)

if and only if either there exists h ∈ C(g) such that S = N(h) or there exists i /∈ N(g)

4We use the notation ⊆ for weak inclusion and  for strict inclusion, and # refers to the notion of

cardinality.

3



such that S = {i}.
A network utility function (or payoff function) is a mapping u : G → RN that assigns

to each network g a utility ui(g) for each player i ∈ N . A network g ∈ G is strongly
effi cient relative to u if it maximizes

∑
i∈N ui(g). A network g ∈ G Pareto dominates a

network g′ ∈ G relative to u if ui(g) ≥ ui(g
′) for all i ∈ N , with strict inequality for

at least one i ∈ N . A network g ∈ G is Pareto effi cient relative to u if it is not Pareto
dominated and, a network g ∈ G is Pareto dominant if it Pareto dominates any other
network.

A simple way to analyze the networks that one might expect to emerge in the long

run is to examine a sort of equilibrium requirement that players not benefit from altering

the structure of the network. Jackson and Wolinsky (1996) define the notion of pairwise

stability. A network is pairwise stable if no player benefits from severing one of their links

and no other two players benefit from adding a link between them. Formally, a network g

is pairwise stable with respect to u if and only if (i) for all ij ∈ g, ui(g) ≥ ui(g − ij) and
uj(g) ≥ uj(g − ij), and (ii) for all ij /∈ g, if ui(g) < ui(g + ij) then uj(g) ≥ uj(g + ij).5

Two networks g and g′ are adjacent if they differ by one link. That is, g′ is adjacent to g

if g′ = g + ij or g′ = g − ij for some ij. A network g′ defeats g if either g′ = g − ij with
ui(g

′) > ui(g) or uj(g′) > uj(g), or if g′ = g + ij with ui(g′) > ui(g) and uj(g′) > uj(g).

Hence, a network is pairwise stable if and only if it is not defeated by another (necessarily

adjacent) network. In the 3-player example of Figure 1 (Mauleon and Vannetelbosch,

2016), both the partial networks g1, g2 and g3 and the complete network g7 are pairwise

stable. The empty network g0 is not pairwise stable because two players have incentives

to link to each other and the star networks g4, g5 and g6 are not pairwise stable since the

peripheral players have incentives to add the missing link to form the complete network.
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Figure 1: The networks that can be formed among three players with their utilities.

5The original definition of Jackson and Wolinsky (1996) allows for a pairwise deviation to be valid if

one deviating player is better off and the other one is at least as well off.
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The notion of pairwise stability only considers deviations by at most a pair of players

at a time. It might be that some group of players could all be made better off by some

complicated reorganization of their links, which is not accounted for under pairwise stabil-

ity. Group deviations make sense in situations where players have substantial information

about the overall structure and potential payoffs and can coordinate their actions. Dutta

and Mutuswami (1997) and Jackson and van den Nouweland (2005) propose alternative

definitions of stability that allow for group deviations. The definition of strong stability

of Dutta and Mutuswami (1997) considers a deviation to be valid only if all members

of a deviating coalition are strictly better off, while the definition of Jackson and van

den Nouweland (2005) is slightly stronger by allowing for a deviation to be valid if some

members are strictly better off and others are weakly better off. Under the definition of

Dutta and Mutuswami (1997), a network is strongly stable if it corresponds to a strong

Nash equilibrium of Myerson’s linking game.

We consider here a strict version of Jackson and van den Nouweland (2005) notion of

strong stability that refines the set of pairwise stable networks.

Definition 1. Coalition S ⊆ N is said to have a group deviation from g to g′ if

(i) ij ∈ g′ and ij /∈ g ⇒ {i, j} ⊆ S,

(ii) ij ∈ g and ij /∈ g′ ⇒ {i, j} ∩ S 6= ∅,

(iii) ui(g′) > ui(g) for all i ∈ S.

A coalition S is said to have a group deviation from the network g to the network

g′ if three conditions are satisfied. Condition (i) requires that any new links that are

added can only be between players inside S. Condition (ii) requires that there must be

at least one player belonging to S for the deletion of a link. Condition (iii) requires that

all members of S are better off. This definition identifies possible profitable changes in a

network that can be made by a coalition S.

Definition 2. A network g is strongly stable if there exists no coalition S ⊆ N which

has a group deviation from g.

Let SS be the set of strongly stable networks. In the 3-player example of Figure 1, the

complete network g7 is the unique strongly stable network. However, there are situations

where a pairwise stable network (and hence, a strongly stable network) fails to exist.

Example 1 (Exchange networks; Jackson and Watts, 2002). Four players get value from
trading goods with each other. There are two goods. Players have the same utility

function for the two goods, u(x, y) = x · y. Players form first a network. Players then

receive a random endowment which is independently and identically distributed: (1, 0)

with probability 1/2 and (0, 1) with probability 1/2. Finally, trade flows without friction

along any path and each connected component trades to a Walrasian equilibrium. Thus,
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{12, 23} and {12, 23, 13} lead to the same expected trades, but lead to different costs of
links. Ignoring the costs of links, the player’s expected utility is increasing and strictly

concave in the number of other players that she is connected to: (i) the utility of being

alone is 0; (ii) the expected utility of being connected to one player is 1/8; (iii) the

expected utility of being connected to two players is 1/6; (iv) the expected utility of being

connected to three players is 3/16. Let c = 5/96 be the cost of maintaining a link. There

is no pairwise nor strongly stable network in Jackson and Watts exchange networks model

with four players. The network {12, 34} is defeated by {12, 23, 34} which is defeated by
{12, 23} which is defeated by {12} which is defeated by {12, 34}. See Figure 2.
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Figure 2: Exchange networks (all payoffs are in 96-th’s).

Notice that the deviation by players 2 and 3 from {12, 34} to {12, 23, 34} might be
questionable since at {12, 23, 34} one of the two players has incentives to delete one of her
links. For instance, player 3 has incentives to cut the link 34 to reach the network {12, 23}
where she gets a payoff of 11/96 instead of 8/96. Hence, the deviation from {12, 34} to
{12, 23, 34} by players 2 and 3 is not credible because at {12, 23, 34} one of the deviating
players has a profitable deviation to {12, 23} that do not involve other players.

3 Coalition-proof stability

Under the notion of strong stability, some networks are declared not stable meanwhile

they rely on group deviations that are not credible. Hence, we now introduce the notion

of coalition-proof stability (CPS) that checks for the credibility of group deviations.

Definition 3. Coalition S ⊆ N is said to have a credible group deviation from g if

(i) g′ is a group deviation from g by S, and
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(ii) there exists no subcoalition T ⊂ S which has a credible group deviation from g′.

Notice the recursion in the definition of a credible group deviation. Each singleton

coalition has a credible deviation if it has a deviation; each two-player coalition has a

credible group deviation if it has a group deviation at which no player of the two has a

credible deviation; each three-player coalition has a credible group deviation if it has a

group deviation at which no player of the three and no two-player coalition among them

have a credible group deviation; and so on.

Definition 4. A network g is coalition-proof stable (CPS) if there exists no coalition

S ⊆ N which has a credible group deviation from g.

The concept of coalition-proof stability is weaker than that of strong stability: fewer

group deviations are allowed, since some are declared not credible because of their lack

of internal consistency. Let CPS be the set of coalition-proof stable networks. In the

exchange networks model, there is no strongly stable network. But, the profitable group

deviation from {12, 34} to {12, 23, 34} by players 2 and 3 is not credible because at

{12, 23, 34} one of the deviating player has a profitable deviation to {12, 23} that do not
involve other players. Hence, {12, 34} is a coalition-proof stable network.

Example 2 (Market sharing agreements; Belleflamme and Bloch, 2004). There are n ≥ 3

firms and each firm i has a home market and can be active on the foreign markets. For

any market i, let ni be the number of active firms on the market. Let π
j
i (ni) be the profit

of firm j on market i. Firms can sign bilateral market sharing agreements that refrains

them from entering on the other firm’s market. Let g be a network of market sharing

agreements: ij ∈ g means that firms i and j are linked by a market sharing agreement
and are not active on each other’s market, while ij /∈ g means that firm i is present on

market j and firm j on market i. On each market, active firms compete à la Cournot

with zero marginal cost and a linear inverse demand given by p = 10 − q. Then, profits
on markets are simply given by πji (ni) = 100/(ni + 1)2. The total payoff of firm i is given

by the sum of the profits firm i gets on its home market and on all foreign markets for

which it has not formed market sharing agreements:

ui(g) = πii(ni) +
∑
j:ij /∈g

πij(nj).

(i) We first argue that all networks g 6= g∅ are not strongly stable since any firm i such

that n > ni ≥ nj for all j ∈ N has incentives to cut all its links.6 Indeed, ui(g) =

100/(ni + 1)2 +
∑

j:ij /∈g 100/(nj + 1)2 and ui(g′) = 100/(n+ 1)2 +
∑

j:ij /∈g 100/(nj + 1)2 +∑
k:ik/∈g′,ik∈g 100/(nk + 1)2 with g′ = g \ {jk ∈ g | j = i or k = i}. Since n > ni ≥ nj

for all j ∈ N , we have that 100(n − ni)/(ni + 2)2 ≤
∑

k:ik/∈g′,ik∈g 100/(nk + 1)2 and

100/(ni+1)2 < 100/(n+1)2+100(n−ni)/(ni+2)2. Hence, ui(g) < ui(g
′). In other words,

6In other words, the firm with less market sharing agreements (but at least one) has incentives to put

an end to all its market sharing agreements.
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firms having the less number of market sharing agreements among firms that do have

market sharing agreements have incentives to cancel all its market sharing agreements.

Since this deviation involves only a single firm, it is a credible one. Hence, all networks

g 6= g∅ are not coalition-proof stable. (ii) We next argue that the empty network g∅ is

not strongly stable since the grand coalition N has a group deviation to the complete

network gN . Indeed, ui(g∅) = 100n/(n + 1)2 < ui(g
N) = 100/4 for all i ∈ N . However,

any group deviation from g∅ to some g is not credible since there is some {i} who has
a credible group deviation from g as shown in (i). Hence, the empty network g∅ is the

unique coalition-proof stable network.

Proposition 1. In the market sharing networks model, there is no strongly stable network
while the empty network g∅ is the unique coalition-proof stable network.

4 Myerson’s linking game

An alternative way to model network formation is Myerson’s (1991) linking game G =

〈N, (Σi)i∈N , (Ui)i∈N〉where players choose simultaneously the links they wish to form and
where the formation of a link requires the consent of both players. A strategy of player

i ∈ N is a vector σi = (σi1, ..., σii−1, σii+1, ..., σin) where σij ∈ {0, 1} for each j ∈ N \ {i}.
If σij = 1, player i wishes to form a link with player j. Let Σi be the strategy set of

player i and Σ be the set of strategy profiles. Given the strategy profile σ = (σ1, ..., σn),

the network g(σ) is formed where ij ∈ g(σ) if and only if σij = 1 and σji = 1. The payoff

function of player i is given by Ui(σ) = ui(g(σ)) for all σ ∈ Σ, with g(σ) = {ij | σij = 1

and σji = 1}.7

Definition 5 (Aumann, 1959). A strategy profile σ∗ ∈ Σ is a strong Nash equilibrium of

Myerson’s linking game 〈N, (Σi)i∈N , (Ui)i∈N〉 if there is no S ⊆ N and σ ∈ Σ such that

(i) σi = σ∗i for all i /∈ S and (ii) Ui(σ) > Ui(σ
∗) for all i ∈ S.

Let SNE ≡ {g(σ) ∈ G | σ is a strong Nash equilibrium of Myerson’s linking game

〈N, (Σi)i∈N , (Ui)i∈N〉} be the networks induced by a strong Nash equilibrium of Myerson’s
linking game. It corresponds to Dutta and Mutuswami (1997) set of strongly stable

networks.

Proposition 2. SS = SNE

Proof. (⇐) Suppose that σ with g(σ) = g is a strong Nash equilibrium of Myerson’s

linking game. Suppose on the contrary that g is not strongly stable. That is, there is a

7Gilles and Sarangi (2010) extend Myerson’s linking game to include additive link formation costs:

if player i attempts to form a link with player j (i.e. σij = 1), then player i incurs a cost cij ≥ 0

regardless of σji. Bloch and Jackson (2006, 2007) compare pairwise stable networks with those based on

the Nash equilibria of Myerson’s linking game, and those based on equilibria of a link formation game

where transfers are possible.
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group deviation by S ⊆ N to g′ such that (i) ij ∈ g′ and ij /∈ g ⇒ {i, j} ⊆ S, (ii) ij ∈ g
and ij /∈ g′ ⇒ {i, j} ∩ S 6= ∅, (iii) ui(g′) > ui(g) for all i ∈ S. We now show that there
is a group deviation by S from σ with g(σ) = g to σ′ with g(σ′) = g′. Take (a) for all

j /∈ S, σ′j = σj, (b) for all i, j ∈ S, σ′ij = σ′ji = 1 if and only if ij ∈ g′, (c) for all i ∈ S,
for all j /∈ S, σ′ij = 0 if and only if ij /∈ g′. Since Ui(σ′) = ui(g(σ′)) = ui(g

′) > Ui(σ) =

ui(g(σ)) = ui(g) for all i ∈ S, it then contradicts that σ is a strong Nash equilibrium of

Myerson’s linking game. Thus, g is strongly stable.

(⇒) Suppose that g is strongly stable. Take σ such that, for all i, j ∈ N , σij = 1 if

and only if ij ∈ g. Suppose that σ is not a strong Nash equilibrium of Myerson’s linking

game. That is, there is S ⊆ N and σ′ with g(σ′) = g′ such that (i) σ′i = σi for all i /∈ S
and (ii) Ui(σ′) > Ui(σ) for all i ∈ S. Since σij = σji = 0 and σ′ij = σ′ji = 1 we have that

ij ∈ g′ and ij /∈ g implies that {i, j} ⊆ S. Since σij = σji = 1 and σ′ij = 0 or σ′ji = 0 we

have that ij ∈ g and ij /∈ g′ ⇒ {i, j} ∩ S 6= ∅. Since Ui(σ′) > Ui(σ) for all i ∈ S we have
that ui(g(σ′)) = ui(g

′) > ui(g(σ)) = ui(g) for all i ∈ S. So, there is a group deviation by
S from g to g′. It then contradicts that g is strongly stable. Thus, σ with g(σ) = g is a

strong Nash equilibrium of Myerson’s linking game.

For the Myerson’s linking gameG = 〈N, (Σi)i∈N , (Ui)i∈N〉 and any fixed strategy profile
σ, let GS

σ =
〈
S, (Σi)i∈S, (Ũi)i∈S

〉
be the reduced Myerson’s linking game for coalition

S given σ where Ũi(σ′) = Ui(σ
′
S, σN\S). The reduced game is obtained by fixing the

strategies of all the players outside S and defining the utility of every player given this

fixed strategy choices.

Definition 6 (Bernheim, Peleg and Whinston, 1987). A coalition-proof Nash equilibrium
(CPNE) of the Myerson’s linking game G = 〈N, (Σi)i∈N , (Ui)i∈N〉 is defined recursively.
For n = 1, σ∗i is a coalition-proof Nash equilibrium (CPNE) if and only if Ui(σ

∗
i ) ≥ Ui(σi)

for any σi ∈ Σi. Let n > 1 and assume that CPNE have been defined for all m < n.

Then,

(i) σ∗ is self-enforcing for G if and only if, for all S  N , σ∗S is a CPNE of G
S
σ∗.

(ii) σ∗ is a CPNE if and only if it is self-enforcing and there does not exist another

self-enforcing strategy σ such that Ui(σ) > Ui(σ
∗) for all i ∈ N .

Let CPNE ≡ {g(σ) ∈ G | σ is a coalition-proof Nash equilibrium of Myerson’s linking
game 〈N, (Σi)i∈N , (Ui)i∈N〉} be the networks induced by a coalition-proof Nash equilibrium
of Myerson’s linking game. It corresponds to Dutta and Mutuswami (1997) set of weakly

stable networks.

Example 3 (Contest networks). Each component of a network is a team. Teams compete
for winning the loot. The loot is divided among the winning team based on the network

architecture. A team is winning only if the majority of players belong to the team. Within

the winning team, the loot is divided equally among the players who have the most links.
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For any team S ∈ Π(g) of connected players, let d(S) = maxi∈S di. Formally, the payoff

of player i ∈ S, S ∈ Π(g), is given by

ui(g) =


B/#{j ∈ S | dj = d(S)} − cdi if #S > n/2 and di = d(S);

−cdi otherwise.

In Figure 3 we depict the networks and the payoffs in the case of three players. In the

empty network, there is no winner and all players get 0; in the partial networks, the team

composed of the two linked players wins the loot and they share it equally (B/2); in the

star networks, there is a single team and the player in the center gets the whole loot (B);

in the complete network, the three players share equally the loot (B/3).
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Figure 3: Contest networks among three players with their utilities.

In the contest networks model, coalition-proof Nash equilibria of the Myerson’s linking

game support unreasonable networks. Indeed, coalition-proof stability predicts the emer-

gence of a network with a minimally winning component while there is no strongly stable

network and coalition-proof Nash equilibria of Myerson’s linking game sustain many more

networks.

Proposition 3. In the contest networks model with B > n(n − 1)c, SS = ∅, CPS =

{gS∗ | (n+ 2)/2 ≥ #S∗ > n/2} while CPNE = {gS | #S > n/2}.

Proof. (a) We first show that SS = ∅ and CPS = {gS∗ | (n+ 2)/2 ≥ #S∗ > n/2}.
(ia) Take any g such that there is some i ∈ N(g) with ui(g) < 0. In g, either i belongs to

a loosing component or i belongs to the winning component but she has less links than

some other member(s) of the winning component. Then, player i has incentives to cut all

her links and the deviation from g to g \ {jk ∈ g | j = i or k = i} is credible. Hence,
g /∈ SS and g /∈ CPS (and g /∈ CPNE).
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Thus, the only candidates for being strongly stable or coalition-proof stable are net-

works such that players who have links belong to the winning component and have the

same number of links: g such that #C(g) = 1, #Ni(g) = #Nj(g) for all i, j ∈ S ∈ Π(g),

and #S > n/2.

(iia) Take any g such that #C(g) = 1 and #Ni(g) = #Nj(g) for all i, j ∈ S ∈ Π(g),

#S > (n + 2)/2 ≥ #S∗ > n/2. The members of any coalition S∗  S have incentives to

deviate from g to gS
∗
. Moreover, this deviation is credible since gS

∗ ∈ CPS as shown in
(va). Hence, g /∈ SS and g /∈ CPS.
(iiia) Take the empty network g∅. The members of any coalition S∗  S have incentives

to deviate from g∅ to gS
∗
. Moreover, this deviation is credible since gS

∗ ∈ CPS as shown
in (va). Hence, g∅ /∈ SS and g∅ /∈ CPS.
Thus, the only candidates for being strongly stable or coalition-proof stable are net-

works g such that g ⊆ gS
∗
, #C(g) = 1 and #Ni(g) = #Nj(g) for all i, j ∈ S∗ ∈ Π(g).

(iva) Any network g such that g  gS
∗
, #C(g) = 1 and #Ni(g) = #Nj(g) for all

i, j ∈ S∗ ∈ Π(g) are not strongly stable nor coalition-proof stable since two players i and

j such that i, j ∈ S∗ and ij /∈ g have incentives to add this link to form g + ij and to

get B/2 − cdi by sharing together the entire loot B. Moreover, this is a credible group
deviation for S = {i, j}. Hence, g /∈ SS and g /∈ CPS.
(va) The network gS∗ /∈ SS since the members of coalition S∗ have a group deviation
to the circle network among the members of S∗ (g′ such that g′  gS

∗
, #C(g′) = 1 and

#Ni(g
′) = #Nj(g

′) = 2 for all i, j ∈ S∗ ∈ Π(g)) where they get the same benefits than in

gS
∗
but incur less costs. However, this group deviation from gS

∗
to the circle network g′ is

not credible since there is a subcoalition {i, j}  S∗ such that ij /∈ g′ who has a credible
deviation by adding the link ij to g′ to form g′ + ij and to share together the entire loot

B. Similarly, any group deviation from gS
∗
to g′′ such that g′′  gS

∗
, #C(g′′) = 1 and

#Ni(g
′′) = #Nj(g

′′) = k for all i, j ∈ S∗ ∈ Π(g) with 2 < k < #S∗ − 1 is not credible.

Hence, gS
∗ ∈ CPS.

Thus, we have SS = ∅ and CPS = {gS∗ | (n+ 2)/2 ≥ #S∗ > n/2}.
(b) We next show that CPNE = {gS | #S > n/2}.

(ib) Take any σ such that there is some i ∈ N(g(σ)) with Ui(σ) = ui(g(σ)) < 0. Then, σ

is not a strong Nash equilibrium nor a coalition-proof Nash equilibrium of the Myerson’s

linking game since there is {i} and σ′ with σ′j = σj for all j 6= i and σ′i = (0, 0, ..., 0, 0) such

that Ui(σ) = ui(g(σ)) < Ui(σ
′) = ui(g(σ′)). The deviation from σ to σ′ is self-enforcing

since {i} is a singleton.
(iib) Take any σ such that #C(g(σ)) = 1, #Ni(g(σ)) = #Nj(g(σ)) 6= #S − 1 for all

i, j ∈ S ∈ Π(g), #S > n/2, and σl = (0, 0, ..., 0, 0) for all l /∈ S. Then, σ is not a

strong Nash equilibrium nor a coalition-proof Nash equilibrium of the Myerson’s linking

game since there is {i, j}  S and σ′ with σ′k = σk for all k 6= i, j, σ′i = σi except

that σij = 0 while σ′ij = 1, σ′j = σj except that σji = 0 while σ′ji = 1 such that

Ui(σ) = ui(g(σ)) < Ui(σ
′) = ui(g(σ′)) and Uj(σ) = uj(g(σ)) < Uj(σ

′) = uj(g(σ′)). This

deviation from σ to σ′ is self-enforcing since no player belonging to {i, j} has an incentive
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to deviate from σ′ by cutting one of her links.

(iiib) Take any σ such that g(σ) = gS, #S > n/2 and σl = (0, 0, ..., 0, 0) for all l /∈ S.
Then, σ is not a strong Nash equilibrium of the Myerson’s linking game. In σ, we have

σij = 1 and σji = 1 for all i, j ∈ S. There are profitable deviations from σ to σ′ by coalition

S ′, S ′∩S 6= ∅, such that g(σ′) ⊆ gS
′
, #C(g(σ′)) = 1, #Ni(g(σ′)) = #Nj(g(σ′)) < #S− 1

for all i, j ∈ S ′, and #S ′ > n/2. (a) If S ′ = S then there is {i, j}  S ′ and σ′′ with

σ′′k = σ′k for all k 6= i, j, σ′′i = σ′i except that σ
′
ij = 0 while σ′′ij = 1, σ′′j = σ′j except

that σ′ji = 0 while σ′′ji = 1 such that Ui(σ′) = ui(g(σ′)) < Ui(σ
′′) = ui(g(σ′′)) and

Uj(σ
′) = uj(g(σ′)) < Uj(σ

′′) = uj(g(σ′′)). The deviation from σ′ to σ′′ is self-enforcing

since no player belonging to {i, j} has an incentive to deviate from σ′′ by cutting one of her

links. Hence, the first deviation by S ′ from σ to σ′ is not self-enforcing and σ is a coalition-

proof Nash equilibrium of the Myerson’s linking game. (b) If S ′ 6= S then there is i ∈ S ′∩S
and j ∈ S \ S ′ and σ′′ with σ′′k = σ′k for all k 6= i, j, σ′′i = σ′i except that σ

′
ij = 0 while

σ′′ij = 1, σ′′j = σ′j = σj with σji = 1 such that Ui(σ′) = ui(g(σ′)) < Ui(σ
′′) = ui(g(σ′′)).

The deviation from σ′ to σ′′ is self-enforcing since it involves only player i and she has an

incentive to deviate from σ′ by linking to player j. Hence, the first deviation by S ′ from

σ to σ′ is not self-enforcing and σ is a coalition-proof Nash equilibrium of the Myerson’s

linking game. So, any σ such that g(σ) = gS, #S > n/2 and σl = (0, 0, ..., 0, 0) for all

l /∈ S is a coalition-proof Nash equilibrium of the Myerson’s linking game.

(ivb) Take σ such g(σ) = g∅. There is a deviation from σ to σ′ such that g(σ′) = gN

by the grand coalition. Hence, σ is not a strong Nash equilibrium of the Myerson’s

linking game. Moreover, this deviation is self-enforcing since any deviation from σ′ by

any coalition S  N is not self-enforcing as shown in (iiib). Hence, σ such g(σ) = g∅ is

not a coalition-proof Nash equilibrium of the Myerson’s linking game.

So, σ is a coalition-proof Nash equilibrium of the Myerson’s linking game if and only

if g(σ) = gS, #S > n/2 and σl = (0, 0, ..., 0, 0) for all l /∈ S.

The contest networks model highlights a drawback of CPNE in the Myerson’s linking

game. If the deviation by a coalition involves the deletion of links with players outside

the coalition, then a single deviating player who has just deleted a link with some player

not in the deviating coalition can form again this link in a subsequent deviation without

requiring the mutual consent of the other player. CPS overcomes such a drawback by

requiring that this player belongs to the deviating coalition in the subsequent deviation.

This drawback is the reason why coalition-proof Nash equilibria of Myerson’s linking game

sustain many more networks and less reasonable ones.

The above contest networks model seems to suggest that CPNE would be a coarsening

of CPS. However, the next example shows that there is no relationship between both

concepts. In Figure 4 we depict some networks and their payoffs for an example with four

players. For all other network configurations, the four players get a payoffof −10. Solving

this example we get that g1 ∈ CPNE and g0 /∈ CPNE while g1 /∈ CPS and g0 ∈ CPS.
Intuitively, the group deviation by {1, 3} from σ∗ where σ∗12 = 0, σ∗13 = 1, σ∗14 = 1,
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σ∗2k = 0, k = 1, 3, 4, σ∗31 = 1, σ∗32 = 0, σ∗34 = 1, σ∗41 = 1, σ∗42 = 0, σ∗43 = 1 (with g(σ∗) = g1)

to σ′ where σ′12 = 0, σ′13 = 1, σ′14 = 0, σ′2k = 0, k = 1, 3, 4, σ′31 = 1, σ′32 = 0, σ′34 = 0,

σ′41 = 1, σ′42 = 0, σ′43 = 1 (with g(σ′) = g2) is not self-enforcing. Given σ′, player 3

has incentives to switch from σ′31 = 1, σ′32 = 0, σ′34 = 0 to σ′′31 = 0, σ′′32 = 0, σ′′34 = 1

with g(σ′′) = g3. Hence, the group deviation from σ where σ12 = 1, σ13 = 0, σ14 = 0,

σ21 = 1, σ23 = 0, σ24 = 1, σ3k = 0, k = 1, 2, 4, σ41 = 0, σ42 = 1, σ43 = 0 (with g(σ) = g0)

to σ∗ where σ∗12 = 0, σ∗13 = 1, σ∗14 = 1, σ∗2k = 0, k = 1, 3, 4, σ∗31 = 1, σ∗32 = 0, σ∗34 = 1,

σ∗41 = 1, σ∗42 = 0, σ∗43 = 1 (with g(σ∗) = g1) becomes self-enforcing and so g0 /∈ CPNE
while g1 ∈ CPNE. But, the group deviation by {1, 3} from g1 to g2 is credible. At g2 nor

{1} nor {3} has a deviation alone. Thus, the group deviation by {1, 3, 4} from g0 to g1 is

not credible since {1, 3}  {1, 3, 4} has a credible group deviation from g1 to g2. Hence,

g0 ∈ CPS while g1 /∈ CPS.
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Figure 4: No relationship between CPS and CPNE.

5 Existence and effi ciency

Similarly to SS, a CPS network may fail to exist. Take Jackson and Wolinsky (1996)

coauthor model with three players. Payoffs for each possible network are given in Figure

5. The complete network g7 is the unique pairwise stable network8 but is not strongly

stable since a coalition of players {i, j} have a group deviation to the network {ij} where
they both get a payoff of 3 instead of 2.5. Moreover, this group deviation is credible since

none of the deviating players has an incentive to cut the link afterwards. Consider now

the group deviation by {i, j} from {ik, kj} to {ij, ik, kj}. This deviation is credible since
nor {i} nor {j} has a deviation at {ij, ik, kj}. A similar reasoning holds for the group
deviation by {i, j} from {ik} to {ij, ik} and from g∅ to {ij}. Hence, there is no CPS
network in the coauthor model with three players.

We now look for conditions on the utility function such that the existence of CPS or

8From the exchange networks example and the coauthor example we observe that there is no relation-

ship between pairwise stability and coalition-proof stability.
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Figure 5: The co-author model with three players.

SS is guaranteed. Let

g(S) =

{
g ⊆ gS

∣∣∣∣∣
∑

i∈N(g) ui(g)

#N(g)
≥
∑

i∈N(g′) ui(g
′)

#N(g′)
∀g′ ⊆ gS, g′ 6= ∅

}
be the set of networks with the highest average payoff out of those that can be formed

by players in S ⊆ N . Suppose that u is a componentwise egalitarian utility function such

that (i) players belonging to the same component get the same utility and (ii) there are no

externalities across components (i.e. payoffs of players belonging to a component in a given

network do not depend on the structure of other components). Given a componentwise

egalitarian utility function u such that (i) ui(g) = uj(g) for all i, j ∈ S ∈ Π(g) and

(ii) ui(g) = ui(h) with h ∈ C(g) and i ∈ N(h), find a network ĝ through the following

algorithm due to Banerjee (1999). Pick some h1 ∈ g(N). Next, pick some h2 ∈ g(N \
N(h1)). At stage k pick some hk ∈ g(N \ ∪l≤k−1N(hl)). Since N is finite this process

stops after a finite number K of stages. The union of the components picked in this way

defines a network ĝ. We denote by Ĝ the set of all networks that can be found through

this algorithm.9

Proposition 4. Take any componentwise egalitarian utility function u such that (i)

ui(g) = uj(g) for all i, j ∈ S ∈ Π(g) and (ii) ui(g) = ui(h) with h ∈ C(g) and i ∈ N(h).

We have CPS = SS = Ĝ.

Proof. (i) Take any g ∈ Ĝ where g = ∪Kk=1hk with hk ∈ g(N \ ∪l≤k−1N(hl)). Players

belonging to N(h1) in g will never engage in a group deviation since they can never be

(strictly) better off than in g. Players belonging to N(h2) in g will only engage in a group

deviation if they can end up in some h such that ui(h) > ui(h2). Suppose there exists some

9More than one network my be picked up through this algorithm since players may be permuted or

even be indifferent between components of different sizes.
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h such that ui(h) > ui(h2). Since h2 ∈ g(N \ N(h1)) it follows that N(h) ∩ N(h1) 6= ∅.
Given that players in N(h1) will never engage in a group deviation, players belonging to

N(h2) can never end up (strictly) better off than in g. So, players belonging to N(h2) in g

will never engage in a group deviation. Players belonging to N(hk) in g will only engage

in a group deviation if they can end up in some h such that ui(h) > ui(hk). Suppose

there exists some h such that ui(h) > ui(hk). Since hk ∈ g(N \ ∪l≤k−1N(hl)) it follows

that N(h) ∩ {∪l≤k−1N(hl)} 6= ∅. Given that players in ∪l≤k−1N(hl) will never engage in

a group deviation, players belonging to N(hk) can never end up (strictly) better off than

in g. So, players belonging to N(hk) in g will never engage in a group deviation; and so

on. Thus, SS ⊇ Ĝ and CPS ⊇ Ĝ.

(ii) Take any g′ /∈ Ĝ. We show that there always exist a credible group deviation from g′.

(Step 1.) If there exists some h1 ∈ g(N) such that h1 ∈ C(g′) then go to Step 2.

Otherwise, pick some h1 ∈ g(N). In g′ all players are strictly worse off than the players

belonging to N(h1). Then, we have that all members of N(h1) have a group deviation

from g′ to g′′ = g′|N\N(h1) ∪ h1. Indeed, players who belong to N(h1) delete their links

in g′ with players not in N(h1) and build the missing links of h1. So, g′ /∈ SS. Since
h1 ∈ g(N), it is a credible group deviation. Indeed, there is no S ⊂ N(h1) that has a

group deviation at g′′ = g′|N\N(h1) ∪ h1. So, g′ /∈ CPS.
(Step 2.) If there exists some h2 ∈ g(N \ N(h1)) such that h2 ∈ C(g′) then go to

Step 3. Otherwise, pick some h2 ∈ g(N \N(h1)). In g′ all the remaining players who are

belonging to N \N(h1) are strictly worse off than the players belonging to N(h2). Then,

we have that all members of N(h2) have a group deviation from g′ to g′′ = g′|N\N(h2)∪h2.
Indeed, players who belong to N(h2) delete their links in g′ with players not in N(h2) and

build the missing links of h2. So, g′ /∈ SS. Since h2 ∈ g(N \N(h1)), it is a credible group

deviation. Indeed, there is no S ⊂ N(h2) that has a group deviation at g′′ = g′|N\N(h2)∪h2.
So, g′ /∈ CPS.
(Step k.) If there exists some hk ∈ g(N \{N(h1)∪...∪N(k−1)}) such that hk ∈ C(g′)

then go to Step k + 1. Otherwise, pick some hk ∈ g(N \ {N(h1) ∪ ... ∪N(k − 1)}). In g′

all the remaining players who are belonging to N \ {N(h1) ∪ ... ∪ N(k − 1)} are strictly
worse off than the players belonging to N(hk). Then, we have that all members of N(hk)

have a group deviation from g′ to g′′ = g′|N\N(hk) ∪ hk. Indeed, players who belong to
N(hk) delete their links in g′ with players not in N(hk) and build the missing links of hk.

So, g′ /∈ SS. Since hk ∈ g(N \ {N(h1) ∪ ... ∪N(k − 1)}, it is a credible group deviation.
Indeed, there is no S ⊂ N(hk) that has a group deviation at g′′ = g′|N\N(hk) ∪ hk. So,
g′ /∈ CPS.
(Step K.) Pick some hK ∈ g(N \ {N(h1) ∪ ... ∪N(K − 1)}). In g′ all the remaining

players who are belonging to N \ {N(h1) ∪ ... ∪ N(K − 1)} are strictly worse off than
the players belonging to N(hK). Then, we have that all members of N(hK) have a group

deviation from g′ to g′′ = g′|N\N(hK) ∪ hK . Indeed, players who belong to N(hK) delete

their links in g′ with players not in N(hK) and build the missing links of hK . So, g′ /∈ SS.
Since hK ∈ g(N \ {N(h1)∪ ...∪N(K− 1)}, it is a credible group deviation. Indeed, there
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is no S ⊂ N(hK) that has a group deviation at g′′ = g′|N\N(hK) ∪ hK . So, g′ /∈ CPS.
Thus, g′ /∈ Ĝ ⇒ g′ /∈ CPS and g′ /∈ Ĝ ⇒ g′ /∈ SS. It then follows from (i) that

SS = Ĝ and CPS = Ĝ.

The network utility function u is top convex if some strongly effi cient network maxi-

mizes the per-capita sum of utilities among players. Let ρ(u, S) = maxg⊆gS
∑

i∈S ui(g)/#S.

The network utility function u is top convex if ρ(u,N) ≥ ρ(u, S) for all S ⊆ N . Suppose

again that u is such that (i) players belonging to the same component get the same utility

and (ii) there are no externalities across components. If u is also top convex then both

strong stability and coalition-proof stability single out the strongly effi cient networks,

independently of strict or weak group deviations.

Proposition 5. Take any componentwise egalitarian utility function u such that (i)

ui(g) = uj(g) for all i, j ∈ S ∈ Π(g) and (ii) ui(g) = ui(h) with h ∈ C(g) and i ∈ N(h).

If u is top convex, then CPS = SS = E.

Proof. Top convexity of u implies that all components of a strongly effi cient network must

lead to the same per-capita sum of utilities (if some component led to a lower per-capita

sum of utilities than the average, then another component would have to lead to a higher

per-capita sum of utilities than the average which would contradict top convexity). Top

convexity also implies that under a componentwise egalitarian utility function any g ∈ E
Pareto dominates all g′ /∈ E. Then, it is immediate that E ⊆ SS and E ⊆ CPS, and
{g′} ∩ SS = ∅ and {g′} ∩CPS = ∅ for all g′ ∈ G \ E. Hence, CPS = SS = E.

Grandjean, Mauleon and Vannetelbosch (2011) show that, when players are farsighted,

the set of strongly effi cient networks is the unique pairwise farsightedly stable set if and

only if u is top convex. So, strong stability or coalition-proof stability selects the networks

that are stable when players are farsighted if u is top convex.

6 Strict versus weak group deviations

Two different notions of a group deviation or move can be found in the game-theoretic

literature. Up to now we have considered (strict) group deviations where a group of players

deviate only if each of its members can be made (strictly) better off. Alternatively, we

could look at weak group deviations where a group of players deviate only if at least one

of its members is (strictly) better off while all other members are at least as well off.

Weak group deviations make sense when very small transfers among the deviating group

of players are allowed.

Definition 7. Coalition S ⊆ N is said to have a weak group deviation from g to g′ if

(i) ij ∈ g′ and ij /∈ g ⇒ {i, j} ⊆ S,

(ii) ij ∈ g and ij /∈ g′ ⇒ {i, j} ∩ S 6= ∅,
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(iii) ui(g′) ≥ ui(g) for all i ∈ S and there is j ∈ S such that uj(g′) > uj(g).

A coalition S is said to have a weak group deviation from the network g to the network

g′ if three conditions are satisfied. Condition (i) requires that any new links that are added

can only be between players inside S. Condition (ii) requires that there must be at least

one player belonging to S for the deletion of a link. Condition (iii) requires that some

members of S are better off and other members of S are at least as well off.

Definition 8 (Jackson and van den Nouweland, 2005). A network g is w-strongly stable
if there exists no coalition S ⊆ N which has a weak group deviation from g.

Let wSS be the set of w-strongly stable networks. It corresponds to Jackson and van

den Nouweland (2005) set of strongly stable networks. Obviously, wSS ⊆ SS.

Definition 9. Coalition S ⊆ N is said to have a credible weak group deviation from g if

(i) g′ is a weak group deviation from g by S, and

(ii) there exists no subcoalition T ⊂ S which has a weak credible group deviation from

g′.

Definition 10. A network g is w-coalition-proof stable if there exists no coalition S ⊆ N

which has a weak credible group deviation from g.

Let wCPS be the set of w-coalition-proof stable networks. The next two examples

show that there is no relationship between wCPS and CPS whereas wSS is a refinement

of SS. Take N = {1, 2} with u1(g∅) = u2(g
∅) = 0, u1({12}) = 0 and u2({12}) = 1. Then,

wCPS = {{12}} while CPS = {g∅, {12}}. In the example of Figure 6, we get wCPS =

{g0, g7} while CPS = {g4, g7}. The network g0 is coalition-proof stable under weak group
deviations but not under (strict) group deviations. The only profitable deviation from

g0 is to g4 and it involves all players. But, under weak group deviations, this deviation

is not credible since at g4 players 2 and 3 have incentives to move to g7. Hence, g0 is

coalition-proof stable under weak group deviations. However, at g4 player 3 would block

the deviation to g7 under (strict) group deviations. Hence, the deviation from g0 to g4 is

credible and g0 is not coalition-proof stable under (strict) group deviations.

We now provide a condition on the utility function such that wCPS = CPS. Let

Li(g) = {jk ∈ g | j = i or k = i} be the set of player i’s links and Li(g
N \ g) =

{ij ∈ gN | j 6= i and ij /∈ g} be the set of player i’s links not in g. So, ij /∈ g is

equivalent to ij ∈ Li(g
N \ g). Ilkiliç and Ikizler (2019) introduce the property of link-

responsiveness. Under link-responsiveness, no player is indifferent to a change in her set

of links. Formally, the network utility function u is link-responsive on g if and only if we

have ui(g + l′ − l) 6= ui(g), for all i ∈ N , and for all l ⊆ Li(g) and l′ ∈ Li(gN \ g) such

that g + l′ − l 6= g.

Proposition 6. Take any link-responsive u. We have wSS = SS and wCPS = CPS.
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Figure 6: No relationship between wCPS and CPS.

Proof. We first show that S ⊆ N has a weak group deviation from g to g′ if and only

if S ⊆ N has a (strict) group deviation from g to g′. (⇐) If S ⊆ N has a (strict)

group deviation from g to g′, S ⊆ N has obviously a weak group deviation from g to

g′ (independently of link-responsiveness). (⇒) Suppose that S ⊆ N has a weak group

deviation from g to g′. We have that (i) ij ∈ g′ and ij /∈ g ⇒ {i, j} ⊆ S, (ii) ij ∈ g

and ij /∈ g′ ⇒ {i, j} ∩ S 6= ∅, (iii) ui(g′) ≥ ui(g) for all i ∈ S and there is j ∈ S such
that uj(g′) > uj(g). (i) and (ii) implies that Li(g) 6= Li(g

′) for all i ∈ S. By link-

responsiveness, we have ui(g′) 6= ui(g) for all i ∈ S. Thus, ui(g′) > ui(g) for all i ∈ S and
S ⊆ N has a (strict) group deviation from g to g′. Hence, wSS = SS. From Definition

3 and Definition 9 it follows that S ⊆ N has a credible weak group deviation from g

to g′ if and only if S ⊆ N has a credible (strict) group deviation from g to g′. Hence,

wCPS = CPS.

7 Coalition-proof farsightedly stable networks

There are situations where only pairwise deviations are feasible. Pairwise deviations

involve a single link at a time: link addition is bilateral, link deletion is unilateral and

network changes take place one link at a time. In such situations farsighted players may

look beyond the immediate consequence of adding or deleting a link and anticipate the

subsequent changes that will occur afterwards.10 One raising question is whether or when

coalition-proof stability with farsighted players but restricted to pairwise deviations is

equivalent to coalition-proof stability with group deviations.

Definition 11. A farsighted improving path from a network g to a network g′ for a

10Alternative notions of farsightedness for network formation are suggested by Dutta, Ghosal and Ray

(2005), Herings, Mauleon and Vannetelbosch (2009, 2019), Page and Wooders (2009) among others.
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coalition S ⊆ N is a finite sequence of networks g1, . . . , gK with g1 = g and gK = g′ such

that for any k ∈ {1, . . . , K − 1} either

(i) gk+1 = gk − ij for some ij such that Ui(gK) > Ui(gk) and i ∈ S or Uj(gK) > Uj(gk)

and j ∈ S; or

(ii) gk+1 = gk + ij for some ij such that Ui(gK) > Ui(gk), Uj(gK) > Uj(gk) and i, j ∈ S.

If there exists a farsighted improving path from a network g to a network g′ for a given

coalition S ⊆ N , then we write g →S g
′. The set of all networks that can be reached from

a network g ∈ G for a given coalition S ⊆ N by a farsighted improving path is denoted

by φS(g), φS(g) = {g′ ∈ G | g →S g
′}.

Definition 12. Coalition S ⊆ N is said to have a farsighted deviation from g to g′ if

g′ ∈ φS(g).

Definition 13. A network g is farsightedly stable if there exists no coalition S ⊆ N which

has a farsighted deviation from g.

Definition 14. Coalition S ⊆ N is said to have a credible farsighted deviation from g if

(i) g′ is a farsighted deviation from g by S (i.e. g′ ∈ φS(g)), and

(ii) there exists no subcoalition T ⊂ S which has a credible farsighted deviation from

g′.

Definition 15. A network g is coalition-proof farsightedly stable if there exists no coali-
tion S ⊆ N which has a credible farsighted deviation from g.

Let CPFS be the set of coalition-proof farsightedly stable networks and let FS be the

set of farsightedly stable networks. We now show that CPFS and FS coincide under the

componentwise egalitarian utility function.

Proposition 7. Take any componentwise egalitarian utility function u such that (i)

ui(g) = uj(g) for all i, j ∈ S ∈ Π(g) and (ii) ui(g) = ui(h) with h ∈ C(g) and i ∈ N(h).

We have CPFS = FS = Ĝ.

Proof. (i) Take any g ∈ Ĝ where g = ∪Kk=1hk with hk ∈ g(N \ ∪l≤k−1N(hl)). Players

belonging toN(h1) in g who are looking forward will never engage in a move since they can

never be strictly better off than in g given the componentwise egalitarian utility function

u. Players belonging to N(h2) in g who are forward looking will only engage in a move

if they can end up in some h such that ui(h) > ui(h2). Suppose there exists some h such

that ui(h) > ui(h2). Since h2 ∈ g (N \N(h1)) it follows that N(h) ∩ N(h1) 6= ∅. Given
that players in N(h1) will never engage in a move, players belonging to N(h2) can never

end up strictly better off than in g under the componentwise egalitarian utility function

u. So, players belonging to N(h2) in g will never engage in a move. Players belonging to
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N(hk) in g who are forward looking will only engage in a move if they can end up in some

h such that ui(h) > ui(hk). Suppose there exists some h such that ui(h) > ui(hk). Since

hk ∈ g (N \ ∪l≤k−1N(hl)) it follows that N(h) ∩ {∪l≤k−1N(hl)} 6= ∅. Given that players
in ∪l≤k−1N(hl) will never engage in a move, players belonging to N(hk) can never end up

strictly better off than in g under the componentwise egalitarian utility function u. So,

players belonging to N(hk) in g will never engage in a move; and so on. Thus, φS(g) = ∅
for all S ⊆ N . Hence, FS ⊇ Ĝ and CPFS ⊇ Ĝ.

(ii) Take any g′ /∈ Ĝ. We show that there always exist a credible farsighted deviation

from g′ to some g ∈ Ĝ.
(Step 1.) If there exists some h1 ∈ g(N) such that h1 ∈ C(g′) then go to Step 2

with g1 = g′. Otherwise, two cases have to be considered. (A) There exists h ∈ C(g′)

such that h1  h for some h1 ∈ g(N). Then, take h1 ∈ g(N) such that there does not

exist h′1 ∈ g(N) with h1  h′1  h. From g′, let the players who belong to N(h1) and

who look forward to g ∈ Ĝ delete successively their links that are not in h1 to reach

g1 = g′ − {ij | i ∈ N(h1) and ij /∈ h1}. Along the sequence from g′ to g1 all players

who are moving always prefer the end network g to the current network. (B) There does
not exist h ∈ C(g′) such that h1  h with h1 ∈ g(N). Pick h1 ∈ g(N) such that there

does not exist h′1 ∈ g(N) with h′1  h1. From g′, let the players who belong to N(h1)

and who are looking forward to g ∈ Ĝ such that h1 ∈ C(g) first delete successively their

links not in h1 and then build successively the links in h1 that are not in g′ leading to

g1 = g′ − {ij | i ∈ N(h1) and ij /∈ h1}+ {ij | i ∈ N(h1), ij ∈ h1 and ij /∈ g′}. Along the
sequence from g′ to g1 all players who are moving always prefer the end network g to the

current network. Once g1 and h1 are formed, we move to Step 2.

(Step 2.) If there exists some h2 ∈ g(N \N(h1)) such that h2 ∈ C(g1) then go to Step

3 with g2 = g1. Otherwise, two cases have to be considered. (A) There exists h ∈ C(g′)

such that h2  h for some h2 ∈ g(N \ N(h1)). Then, take h2 ∈ g(N \ N(h1)) such that

there does not exist h′2 ∈ g(N \ N(h1)) with h2  h′2  h. From g1 let the players who

belong to N(h2) and who look forward to g ∈ Ĝ such that h1 ∈ C(g) and h2 ∈ C(g)

delete successively all their links that are not in h2 to reach g2 = g1 − {ij | i ∈ N(h2)

and ij /∈ h2}. Along the sequence from g1 to g2 all players who are moving always prefer

the end network g to the current network. (B) There does not exist h ∈ C(g′) such that

h2  h with h2 ∈ g(N \ N(h1)). Pick h2 ∈ g(N \ N(h1)) such that there does not exist

h′2 ∈ g(N \N(h1)) with h′2  h2. From g1 let the players who belong to N(h2) and who

are looking forward to g ∈ Ĝ such that h1 ∈ C(g) and h2 ∈ C(g) first delete successively

their links not in h2 and then build successively the links in h2 that are not in g1 leading

to g2 = g1 − {ij | i ∈ N(h2) and ij /∈ h2} + {ij | i ∈ N(h2), ij ∈ h2 and ij /∈ g1}. Along
the sequence from g1 to g2 all players who are moving always prefer the end network g to

the current network. Once g2 and h2 are formed, we move to Step 3.

(Step k.) If there exists some hk ∈ g(N \ {N(h1) ∪ ... ∪ N(k − 1)}) such that
hk ∈ C(gk−1) then go to Step k + 1 with gk = gk−1. Otherwise, two cases have to be

considered. (A) There exists h ∈ C(g′) such that hk  h for some hk ∈ g(N \ {N(h1) ∪
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...∪N(k− 1)}). Then, take hk ∈ g(N \ {N(h1)∪ ...∪N(k− 1)}) such that there does not
exist h′k ∈ g(N \ {N(h1) ∪ ... ∪ N(k − 1)}) with hk  h′k  h. From gk−1 let the players

who belong to N(hk) and who look forward to g ∈ Ĝ such that h1 ∈ C(g), h2 ∈ C(g), ...,

hk ∈ C(g) delete successively their links not in hk to reach gk = gk−1−{ij | i ∈ N(hk) and

ij /∈ hk}. Along the sequence from gk−1 to gk all players who are moving always prefer

the end network g to the current network. (B) There does not exist h ∈ C(g′) such that

hk  h with hk ∈ g(N \{N(h1)∪ ...∪N(k−1)}). Pick hk ∈ g(N \{N(h1)∪ ...∪N(k−1)})
such that there does not exist h′k ∈ g(N \ {N(h1) ∪ ... ∪N(k − 1)}) with h′k  hk. From

gk−1 let the players who belong to N(hk) and who are looking forward to g ∈ Ĝ such that
h1 ∈ C(g), h2 ∈ C(g), ..., hk ∈ C(g) first delete successively their links not in hk and then

build successively the links in hk that are not in gk−1 leading to gk = gk−1−{ij | i ∈ N(hk)

and ij /∈ hk} + {ij | i ∈ N(hk), ij ∈ hk and ij /∈ gk−1}. Along the sequence from gk−1

to gk all players who are moving always prefer the end network g to the current network.

Once gk and hk are formed, we move to Step k+ 1; and so on until we reach the network

g =
⋃K
k=1 hk with hk ∈ g(N \ ∪i≤k−1N(hi)).

Thus, we have build a farsightedly improving path from g′ to g. That is, g ∈ φS(g′)

for some S ⊆ N . Since φS(g) = ∅ for all S ⊆ N , for all g ∈ Ĝ, there is no farsighted

deviation from g. Hence, the farsighted deviation from g′ /∈ Ĝ to g ∈ Ĝ is credible. Thus,
g′ /∈ Ĝ ⇒ g′ /∈ CPFS and g′ /∈ Ĝ ⇒ g′ /∈ FS. It then follows from (i) that FS = Ĝ and

CPFS = Ĝ under any componentwise egalitarian utility function.

Combining Proposition 4 with Proposition 7 we have that CPFS = CPS under any

componentwise egalitarian utility function.

Corollary 1. Take any componentwise egalitarian utility function u such that (i) ui(g) =

uj(g) for all i, j ∈ S ∈ Π(g) and (ii) ui(g) = ui(h) with h ∈ C(g) and i ∈ N(h). We have

CPFS = CPS.

8 Conclusion

We have proposed the notion of coalition-proof stability for predicting the networks that

could emerge when group deviations are allowed. A network is coalition-proof stable if

there exists no coalition which has a credible group deviation. A coalition is said to have

a credible group deviation if there is a profitable group deviation to some network and

there is no subcoalition of the deviating players which has a subsequent credible group

deviation. Obviously, coalition-proof stability is a coarsening of strong stability. But,

there is no relationship between the set of coalition-proof stable networks and the set

of networks induced by a coalition-proof Nash equilibrium of Myerson’s linking game.

Contrary to coalition-proof stability, coalition-proof Nash equilibria of Myerson’s linking

game often support unreasonable networks.

The concept of coalition-proof stability could be useful in the study of the formation of

a network of bilateral free trade agreements. Goyal and Joshi (2006) show that global free
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trade, represented by the complete network, is pairwise stable, implying that global free

trade, if reached, will prevail. However, the complete network is not the unique pairwise

stable network. Is global free trade strongly stable or coalition-proof stable? Can global

free trade be obtained from the empty network or any preexisting free trade network

through coordination among some group of countries?11
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