
Shadow links

Manuel Foerster∗ Ana Mauleon† Vincent J. Vannetelbosch‡

September 25, 2018

Abstract

We propose a framework of network formation where players can form

two types of links: public links are observed by everyone and shadow links

are only observed by neighbors. We introduce a novel solution concept

called rationalizable peer-confirming pairwise stability, which generalizes

Jackson and Wolinsky (1996)’s pairwise stability notion to accommodate

shadow links. We then study the case when public links and shadow links

are perfect substitutes and relate our concept to pairwise stability. Finally,

we consider two specific models and show how false beliefs about others’

behavior may lead to segregation in friendship networks with homophily,

reducing social welfare.
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1 Introduction

People typically have incomplete information about others’ social connections.

While some connections such as family members and close friends may be easily

observable, others are only known to friends. This is advantageous if people are

homophilic and dislike being connected to people who interact with people from

another social group, e.g. for ideological or religious reasons, or because of certain

behaviors of the group. Another example is academia, where some connections

such as co-authors and colleagues are publicly known since they appear on the

CV or the website of the institution, while other connections are informal and will

only be known to some people in the social environment.

In this paper, we propose a framework of network formation in which players

can form public as well as private relationships. While public links are observed

by everyone, shadow links are private in the sense that they are only observed by

neighbors in the network. We introduce a novel solution concept called rational-

izable peer-confirming pairwise stability (RPPS), which generalizes the pairwise

stability (PS) notion by Jackson and Wolinsky (1996) (henceforth JW) to incom-

plete information about the network structure and accommodates shadow links.

Our framework provides the foundation to model and understand richer situations

of network formation when agents can form different types of relationships that

vary in visibility and potentially also in payoff consequences.

We first extend the PS concept by JW to incomplete information about the

network structure and shadow links. Players observe all links of their neighbors

in the network but only public links of other players, hence beliefs or conjectures

about others’ links are peer-confirming similar to the peer-confirming equilibrium

by Lipnowski and Sadler (2018).1 This reflects that in real life we tend to know

the behavior of close friends or peers better than that of strangers. Furthermore,

players have to infer the payoff from the network through their beliefs, because

benefits from a friendship or a scientific project are typically reaped in the long-

run, after the relationship has been formed.2 We then define a tuple of a network

and beliefs for each player to be peer-confirming pairwise stable (PPS) if no player

wants to sever a link and no two players jointly want to form or switch to a public

link or a shadow link.

1Lipnowski and Sadler (2018) augment a non-cooperative game with an exogenously given
network and assume that players have correct conjectures about the strategies of their neighbors
in the network. It is straightforward to adapt our framework to other assumptions on beliefs,
e.g. not necessarily correct beliefs about neighbors’ shadow links.

2Alternatively, we could assume that players observe their own payoff and perhaps their
neighbors’ payoffs. This would refine our solution concept.
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This solution concept is weak in the sense that it does not impose any restric-

tions on beliefs beyond confirming neighbors’ actions. Particularly, beliefs may

not be rationalizable. In a second step, we therefore introduce a refinement of

PPS that imposes common knowledge of rationality à la Rubinstein and Wolin-

sky (1994).3 A network is rationalizable peer-confirming pairwise stable (RPPS)

if there exist beliefs for each player such that the tuple of this network and these

beliefs is PPS, and additionally the same holds for each network supported by the

players’ conjectures.

We then study the case when public links and shadow links are perfect substi-

tutes, that is, both types of links yield the same payoffs and only differ in visibility.

In particular, perfect substitutes allow us to relate RPPS to PS. Not surprisingly,

RPPS is a “coarsening” of PS in the sense that each network that would be PS

under complete information is RPPS, since it can be rationalized with correct be-

liefs. Furthermore, we show that a network is RPPS if there exist beliefs such that

each player conjectures to be in a network that is PS under complete information,

and in which she does neither want to add nor to sever links unilaterally. The first

condition ensures rationalizability of beliefs as networks that are PS under com-

plete information can be rationalized with correct beliefs. The second condition

strengthens the requirements of PS. Since players may conjecture to be in different

networks, PS under complete information is not sufficient for stability. However,

broadly speaking it is sufficient that the network appears stable to everyone.

Third, we discuss social welfare. Since players may hold systematically incor-

rect yet rationalizable beliefs even in stable situations, a natural question that

begs to be asked is how to evaluate individual well-being and social welfare. The

most common approach in the literature is to use players’ expected utilities, and

we refer to the corresponding welfare measure as subjective social welfare. Alterna-

tively, we can evaluate individual well-being based on actual utilities. Notably, we

may interpret actual utility as experience utility, referring to the hedonic experi-

ence associated with an outcome and introduced by Jeremy Bentham (Kahneman

and Thaler, 2006). The corresponding welfare measure is called objective social

welfare. We demonstrate that the welfare implications of an RPPS network that

would not be stable under complete information may be ambiguous, depending

on which welfare measure is deemed appropriate.

Finally, we illustrate our framework in the context of two specific models.

3Rubinstein and Wolinsky (1994) study a non-cooperative game in which players receive
imperfect signals about others’ strategies. In equilibrium, each player’s strategy is optimal given
her signal and that it is common knowledge that all players maximize utility given their signals.
See also Gilli (1999) for a related concept.
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These models are derived from the literature on network formation and illustrate

how shadow links can enrich the setup and explain several stylized facts. The

first model considers friendships when agents belong to different communities and

may be homophilic similar to de Mart́ı and Zenou (2017). Communities may

be defined along social categories such as ethnicity, religion, education, income,

etc. Moderate individuals benefit from direct and indirect connections to others,

e.g. through information sharing or other interactions. Forming links is costly,

reflecting the time that is necessary to maintain friendships. Additionally, there

are extremists who differ from moderates in that they are homophilic and dislike

being connected to agents from the other community, modelled as a loss from

direct and indirect connections to these agents. We assume perfect substitutes

and show that extremists may stay segregated from society because each group of

extremists falsely believes that the respective other group maintains shadow links

to the moderates, reducing social welfare.4 Interestingly, this is possible even if not

a single shadow link is present. The sheer possibility of shadow links is sufficient to

rationalize such false beliefs, which may be interpreted as suspicions or mistrust.

In the second model, we propose a generalized version of the co-author model

introduced in JW. Players are interpreted as researchers and public links repre-

sent collaborations between two researchers. Following JW, the time spent on

a research project is inversely related to the number of projects a researcher is

involved in. Shadow links represent informal contacts who provide other benefits

like information, favors or discussions. Here, links are not perfect substitutes,

with benefits from informal contacts being concave in the number of contacts. We

refer to the network formed by the public links as the collaboration network. We

first show that if benefits from informal contacts are low relative to benefits from

collaborations, then stable collaboration networks are as under complete infor-

mation, fully intraconnected components of different sizes, and all other possible

connections are shadow links. Interestingly, beliefs hence are correct since they are

peer-confirming such that informal contacts are common knowledge in equilibrium.

As benefits from informal connections increase, the density of stable collaboration

networks decreases as players substitute shadow links for public links. Finally, if

benefits from informal contacts are high (but not too high), then stable collabo-

ration networks consist of separate pairs and maximize total research output as

measured by total utility from collaborations. Our generalized model can account

for the stylized fact that co-author networks consist of large but only partially

4Notably, these false beliefs do not affect expected utility so that subjective and objective
social welfare coincide.
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intraconnected components for intermediate benefits from informal contacts.

There exists a large and growing literature on network formation, including

refinements of PS (e.g. Jackson and Watts, 2002; Jackson and Van den Nouwe-

land, 2005) and extensions to farsighted agents (e.g. Dutta et al., 2005; Herings

et al., 2009; Page et al., 2005).5 These contributions investigate the stability and

efficiency of networks under complete information about the network structure.

McBride (2006a,b) relaxes this assumption by assuming that players imperfectly

monitor the network. Particularly, McBride (2006b) studies conjectural pairwise

stable networks when players do not observe the connections and payoffs of players

that are located far from them in the network. He assumes common knowledge

of each player’s observation radius and that each player best responds to her con-

jectures, which is inherently different from our notion of rationalizability. To the

best of our knowledge, we are the first to study the strategic choice of players to

form shadow links and to adapt the rationalizability concept of Rubinstein and

Wolinsky (1994) to networks.

The paper is organized as follows. In Section 2 we introduce the model and

notation. Section 3 defines RPPS. In Section 4 we study the case when public

links and shadow links are perfect substitutes. Section 5 discusses social welfare.

Two specific models on segregation and homophily in friendship networks and

co-authorships with informal contacts are presented in Section 6. In Section 7 we

conclude and discuss our assumptions on beliefs and the observability of payoffs.

2 Model and notation

We consider a set N = {1, 2, . . . , n}, with n ≥ 3, of players or agents. The network

relations among these players are captured by a symmetric matrix g ∈ {0, 1, 2}n×n,

where each entry gij such that i 6= j captures the type of direct relation between

players i ∈ N and j ∈ N . We refer to gij = 1 as a public link and to gij = 2

as a shadow link between i and j, and gij = 0 indicates that no link is present.

The collection of all networks is denoted by G = {g ∈ {0, 1, 2}n×n | gij = gji, gii =

0 for all i, j ∈ N}. We say that there is a path from player i to player j 6= i in

network g ∈ G if there are players i = i1, i2, . . . , iM−1, iM = j such that gimim+1 6= 0

for m ∈ {1, 2, . . . ,M − 1}. di(g) = #{j ∈ N | gij 6= 0} denotes the number of

links or degree of player i in network g, and dpubi (g) = #{j ∈ N | gij = 1} denotes

the number of public links.

5We refer to Jackson (2008) for an overview.
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For a given network g, we denote the restriction to player i’s links by gi =

(gij)j∈N and the restriction to links among players other than i by g−i = (gjk)j,k 6=i.

With a slight abuse of notation, we write g = (gi, g−i). The restriction of G to

networks among players other than i is denoted by G−i = G|N\{i} and the restriction

to public links by GPub = G|{0,1}n×n . Moreover, let g(ij → t), t ∈ {0, 1, 2}, denote

the network obtained from g when changing the relation between i and j from gij

to t, i.e.

(g(ij → t))kl =

{
t, if kl = ij or kl = ji

gkl, otherwise
for all k, l ∈ N.

The payoff allocated to each player i across networks is determined by a utility

function ui : G → R. We say that public links and shadow links are perfect

substitutes with respect to a profile of utility functions (ui)i∈N if ui(g) = ui(g
′) for

all i ∈ N and g, g′ ∈ G such that gij = 0 if and only if g′ij = 0. Notice that in this

case, public links and shadow links only differ in visibility.

Player i knows her own links gi in network g and receives a private signal si(g)

about the links among the other players g−i, defined as

(si(g))jk =

{
(g−i)jk, if gij 6= 0, gik 6= 0 or (g−i)jk = 1

0, otherwise
for all j, k 6= i.

Players observe all links of their neighbors or peers in the network, but only public

links of other players, i.e. shadow links of these players are not observed. Notice

that the private signals do not contain information on payoffs, i.e. players have

to infer the payoffs from the network through their beliefs.6 The payoff functions

and the signal functions are common knowledge, but the actual signals are private

information.

Let ∆(G−i) denote the set of probability distributions on G−i. Then,

Ui(gi, µi) =
∑

g′−i∈G−i

µi(g
′
−i)ui(gi, g

′
−i)

denotes the expected payoff of player i with links gi under the (subjective) belief

µi ∈ ∆(G−i) about the links among other players. We require the players’ beliefs

not to contradict their signals.

6It is straightforward to adapt the private signals to other assumptions, e.g. such that players
do not observe their neighbors’ shadow links, or such that players observe their own payoff and
perhaps their neighbors’ payoffs.
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Definition 1 (Consistent beliefs). We say that the beliefs (µi)i∈N are consistent

with the private signals (si(g))i∈N obtained in network g ∈ G if si(gi, g
′
−i) = si(g)

for all i ∈ N and g′−i ∈ G−i such that µi(g
′
−i) > 0. We refer to the tuple of network

and beliefs (g, (µi)i∈N) as consistent if (µi)i∈N are consistent with (si(g))i∈N .

Since players observe all links of their neighbors but only public links of other

players, consistent beliefs are peer-confirming similar to the peer-confirming equi-

librium by Lipnowski and Sadler (2018).

3 Peer-confirming pairwise stability and ratio-

nalizability

We first consider the case without shadow links and define the PS concept by JW

under complete information.

Definition 2 (Pairwise stability, JW). The network g ∈ GPub is pairwise stable

(PS) with respect to (ui)i∈N if

(i) for all distinct i, j ∈ N such that gij = 1,

ui(g) ≥ ui(g(ij → 0)) and uj(g) ≥ uj(g(ij → 0)), and

(ii) for all distinct i, j ∈ N such that gij = 0,

ui(g) < ui(g(ij → 1)) implies uj(g) > uj(g(ij → 1)).

A network is PS if no player wants to sever a link (condition (i)), and no two

players jointly want to form a link (condition (ii)).7 Next, we extend this notion

to incomplete information and shadow links, which requires the introduction of

beliefs or conjectures of the players about other players’ links. Players revise their

links based on their conjectures about other players’ behavior. In equilibrium,

these conjectures are consistent with the players’ private signals, that is, they are

peer-confirming.

Definition 3 (Peer-confirming pairwise stability). The tuple (g, (µi)i∈N) is peer-

confirming pairwise stable (PPS) with respect to (ui)i∈N if

7We follow JW by assuming weak blocking of links, i.e. players only block a link if it would
make them strictly worse off.
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(i) for all distinct i, j ∈ N such that gij 6= 0,

Ui(gi, µi) ≥ Ui(g(ij → 0)i, µi) and Uj(gj, µj) ≥ Uj(g(ij → 0)j, µj),

(ii) for all distinct i, j ∈ N and t ∈ {1, 2}\{gij},

Ui(gi, µi) < Ui(g(ij → t)i, µi) implies Uj(gj, µj) > Uj(g(ij → t)j, µj), and

(iii) (µi)i∈N are consistent with (si(g))i∈N .

Moreover, g is PPS under correct beliefs with respect to (ui)i∈N if additionally

µi(g−i) = 1 for all i ∈ N .

Similar to PS, a tuple of a network and beliefs is PPS if no player wants to

sever a link given her conjecture about other players’ links (condition (i)), and no

two players jointly want to form or change to a public link or a shadow link given

their conjectures (condition (ii)). Additionally, we require that the players’ beliefs

are consistent with their private signals (condition (iii)).

This concept is weak in the sense that it does not impose any restrictions on

beliefs beyond consistency. Particularly, a player’s belief may support a network

that is not rationalizable, that is, there do not exist beliefs such that the tuple

of this network and these beliefs is PPS. We therefore introduce a refinement of

PPS that imposes common knowledge of rationality à la Rubinstein and Wolinsky

(1994).

Definition 4 (Rationalizable peer-confirming pairwise stability). (i) The set of

networks G ⊆ G is rationalizable with respect to (ui)i∈N if for all g ∈ G there

exist beliefs (µi)i∈N such that

(a) the tuple (g, (µi)i∈N) is PPS with respect to (ui)i∈N , and

(b) for all i ∈ N and g′−i ∈ G−i such that µi(g
′
−i) > 0, (gi, g

′
−i) ∈ G.

(ii) The network g ∈ G is rationalizable peer-confirming pairwise stable (RPPS)

with respect to (ui)i∈N if there exists a rationalizable set G ⊆ G such that

g ∈ G.

First, a set of networks is rationalizable if for each network in the set, there

exist beliefs such that the tuple of network and beliefs is PPS. In addition, the

support of these beliefs needs to be restricted to this set. Second, a network is
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RPPS if it is contained in a rationalizable set. In other words, a network is RPPS

if there exist beliefs such that the tuple of network and beliefs is PPS, and common

knowledge of rationality requires that the same holds for each network supported

by these beliefs.

The following example illustrates our concept in the context of perfect substi-

tutes and shows that a network may be RPPS although it would not be stable

under complete information.

Example 1. Consider n = 5 players and that public links and shadow links are

perfect substitutes, i.e. each link in the following networks can be either a public

link or a shadow link (up to permutations of the players; all other networks are

assumed to give zero payoff):

1 1

0 0

0
g1

1 1

1 1

0
g2

3 2

1 1

3
g3

4 7

4 4

7
g4

6 6

6 6

6
g5

Without shadow links the network g4 is the unique PS network (up to permuta-

tions). We show that g5 is RPPS if all links are shadow links. Consider the set

G = {g4,i for all i ∈ N, g5,s} shown in Figure 1. First, g4,i is PPS under correct

i+1 i+2

i i+4

i+3
s

s

s
s

g4,i

1 2

5 4

3s

s

s

s

s

g5,s

Figure 1: The rationalizable set G in Example 1. Shadow links are denoted by s.
Player names are given in italics.

beliefs for all i since g4 is PS under complete information. Second, consider g5,s
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and the following beliefs:

µi(g
4,i
−i) ≥ 1/2 and µi(g

5,s
−i ) = 1− µi(g4,i−i) for all i ∈ N. (1)

Each player conjectures that she is in the center of a “line” network with at

least probability 1/2, and otherwise in the actual network g5,s. These beliefs are

consistent with the private signals as all links are shadow links, and no player

wants to add or sever a link. Therefore, all networks in G are PPS under beliefs

with support on G, which implies that G is rationalizable and g5,s RPPS.

Before we turn to a comprehensive analysis of perfect substitutes, we first

derive some basic insights in the general model. We say that a player does not

object a network if she does not want to alter any of her links.

Definition 5 (No objection). We say that player i ∈ N does not object the

network g ∈ G if for all j ∈ N , j 6= i, and t ∈ {0, 1, 2}\{gij}, ui(g) ≥ ui(g(ij → t)).

The next lemma says that we can find beliefs such that the tuple of the actual

network and these beliefs is PPS if for each player there is a network that she does

not object and that is consistent with her signal.

Lemma 1. There exist beliefs (µi)i∈N such that the tuple (g, (µi)i∈N) is PPS with

respect to (ui)i∈N if for all i ∈ N there exists g′−i ∈ G−i such that i does not object

(gi, g
′
−i) and si(gi, g

′
−i) = si(g).

Proof. Consider any i ∈ N and the belief µi(g
′
−i) = 1. By assumption, this belief

is consistent with si(g). Additionally, since i does not object (gi, g
′
−i), we have

that for all j ∈ N , j 6= i, and t ∈ {0, 1, 2}\{gij},

Ui(gi, µi) = ui(gi, g
′
−i) ≥ ui((gi, g

′
−i)(ij → t)) = Ui(g(ij → t)i, µi),

i.e. the tuple (g, (µi)i∈N) is PPS with respect to (ui)i∈N , which finishes the proof.

Furthermore, a network is RPPS if it is PPS under correct beliefs since in this

case the set that only contains this network is rationalizable.

Lemma 2. The network g ∈ G is RPPS with respect to (ui)i∈N if it is PPS under

correct beliefs with respect to (ui)i∈N .
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4 Perfect substitutes

We investigate the case when public links and shadow links are perfect substitutes,

that is, both types of links yield the same payoffs and only differ in visibility. This

allows us to relate RPPS to JW’s PS under complete information. To do so, we

first define the network that obtains when we turn all links into public links.

Definition 6 (Complete information equivalent network). The complete informa-

tion equivalent network g̃ ∈ GPub of a network g ∈ G is defined by

g̃ij =

{
1, if gij 6= 0

0, otherwise
for all i, j ∈ N.

The following result establishes that if the agents’ conjectures are correct, then

stability is as in JW.

Proposition 1. The network g ∈ G is PPS under correct beliefs with respect to

(ui)i∈N if and only if the network g̃ is PS with respect to (ui)i∈N .

Proof. Suppose g ∈ G is PPS under correct beliefs with respect to (ui)i∈N . As

beliefs are correct, this is equivalent to

(i) for all distinct i, j ∈ N such that gij 6= 0,

ui(g) ≥ ui(g(ij → 0)) and uj(g) ≥ uj(g(ij → 0)), and

(ii) for all distinct i, j ∈ N and for t ∈ {1, 2}\{gij},

ui(g) < ui(g(ij → t)) implies uj(g) > uj(g(ij → t)).

Finally, as links are perfect substitutes and by definition of g̃, this is equivalent to

(i) for all distinct i, j ∈ N such that g̃ij = 1,

ui(g̃) ≥ ui(g̃(ij → 0)) and uj(g̃) ≥ uj(g̃(ij → 0)), and

(ii) for all distinct i, j ∈ N such that g̃ij = 0,

ui(g̃) < ui(g̃(ij → 1)) implies uj(g̃) > uj(g̃(ij → 1)),

i.e. g̃ is PS with respect to (ui)i∈N , which finishes the proof.
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Moreover, in combination with Lemma 2, it follows that a network is RPPS if

its complete information equivalent network is PS.

Corollary 1. The network g ∈ G is RPPS with respect to (ui)i∈N if the network

g̃ is PS with respect to (ui)i∈N .

Particularly, this result implies that with perfect substitutes RPPS is a “coars-

ening” of PS in the sense that each network that would be PS under complete

information is RPPS. The next theorem shows that for a network to be RPPS,

it is sufficient that there exist beliefs such that each player conjectures to be in a

network whose complete information equivalent network is PS, provided that she

does not object this network and that it does not contradict her signal.

Theorem 1. The network g ∈ G is RPPS with respect to (ui)i∈N if for all i ∈ N
there exists g′−i ∈ G−i such that

(i) i does not object (gi, g
′
−i),

(ii) si(gi, g
′
−i) = si(g), and

(iii) ˜(gi, g′−i) is PS with respect to (ui)i∈N .

Proof. Consider the set G = {g, (g1, g′−1), (g2, g′−2), . . . , (gn, g′−n)} and suppose that

g′−i is as desired for all i ∈ N .8 It is left to show that G is rationalizable.

Consider first network g. It follows from (i) and (ii) and Lemma 1 that

(g, (µi)i∈N) is PPS, where µi(g
′
−i) = 1 for all i ∈ N . Furthermore, the second

condition in Definition 4 (i) is fulfilled as (gi, g
′
−i) ∈ G for all i ∈ N . Second,

consider network (gi, g
′
−i), for any i ∈ N . It follows from (iii) and Proposition 1

that (gi, g
′
−i) is PPS under correct beliefs. The latter implies that also the second

condition in Definition 4 (i) is fulfilled, which finishes the proof.

To illustrate this result, we revisit Example 1.

Example 2. Consider n = 5 players and the payoffs from Example 1. Recall

that without shadow links only the network g4 is PS and that g5 is RPPS if all

links are shadow links. We show that this also follows from Theorem 1. Consider

the network g5,s together with the conjectured networks g′−i = g4,i−i for all i ∈ N

shown in Figure 1. It is straightforward to verify that g′−i satisfies the conditions

in Theorem 1 for all i, implying that g5,s is RPPS.

8Notice that networks (gi, g
′
−i) and (gj , g

′
−j), i 6= j, may be identical.
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We can also state Theorem 1 as follows if we restrict our attention to networks

without public links. In this case, consistency only requires conjectures to be

correct with respect to neighbors’ links.

Corollary 2. The network g ∈ G|{0,2}n×n is RPPS with respect to (ui)i∈N if for

all i ∈ N there exists g′ ∈ GPub such that

(i) i does not object g′,

(ii) gij = 0 if and only if g′ij = 0 for all j ∈ N ,

(iii) gjk = 0 if and only if g′jk = 0 for all j ∈ N such that gij 6= 0 and all k 6= i,

and

(iv) g′ is PS with respect to (ui)i∈N .

This result allows us to easily check whether some network with only shadow

links is RPPS: it is sufficient that for each player there is a PS network such that

she does not object the latter, has the same neighbors and her neighbors also have

the same neighbors in both networks. Notice that with public links consistency

would require public links to be present as well in the PS network.

The previous results require a PS network under complete information, which

may not exist. The next example illustrates that since RPPS is a “coarsening” of

PS, there can be an RPPS network even if no PS network exists.

Example 3 (RPPS without PS). Consider n = 7 players and the following payoffs

(up to permutations of the players):

7 7

9

7

66

9
g1

7

7

7 7

7 7

0
g2

9 11

9 11

13

13

0
g3

12

8

14 16

12 14

16
g4
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Furthermore, suppose that all adjacent networks yield lower payoffs and that there

exists an improving path (under complete information) from any other network

to one of the networks depicted above.9 Then, there does not exist a PS network.

Nevertheless, the networks g4,1 and g4,2 shown in Figure 2 are RPPS. To see this,

first set G = {g4,1, g4,2}. Second, take g4,1 and assign correct beliefs to everyone

except the player in the center, i.e. µi(g
4,1
−i ) = 1 for i 6= 1. To player 1 we assign the

belief that she is in g4,2, µ1(g
4,2
−1) = 1. Under these beliefs, g4,1 is PPS. Analogously,

also g4,2 is PPS under beliefs with support on G. Therefore, G is rationalizable

and its networks RPPS.

2 3 4

1 7 6

5
sg4,1

3 4 5

2 1 7

6

s

g4,2

Figure 2: The rationalizable set G in Example 3. Shadow links are denoted by s.
Player names are given in italics.

Finally, we provide an example showing that also RPPS networks may not

exist.

Example 4 (No RPPS). Consider n = 4 players and the following payoffs (up

to permutations of the players; all other networks are assumed to give zero payoff):

7 7

0 0

g1

7 7

7 7

g2

10 13

10 13

g3

6 11

11 0

g4

There does not exist a PS network. Furthermore, notice that a player with zero

links wants to add a link and a player with two links wants to delete a link inde-

pendent of her beliefs (as long as they are consistent with her signal). Therefore,

9An improving path (under complete information) from a network g ∈ GPub to a network
g′ 6= g is a finite sequence of networks g = g1, g2, . . . , gK = g′ such that for k = 1, 2, . . . ,K − 1
either (i) gk+1 = gk(ij → 0) for some distinct i, j ∈ N such that ui(gk+1) > ui(gk) or uj(gk+1) >
uj(gk), or (ii) gk+1 = gk(ij → 1) for some distinct i, j ∈ N such that ui(gk+1) > ui(gk) and
uj(gk+1) ≥ uj(gk).
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there are no beliefs such that g1, g3 or g4 together with these beliefs is PPS. Thus,

as g2 is not PS and hence a rationalizable set G would have to include some of

the other networks, there is no RPPS network.

5 Social welfare and experience utility

Players may hold systematically incorrect yet rationalizable beliefs even in stable

situations. A natural question that begs to be asked is how to evaluate individual

well-being and social welfare. The most common approach in the literature is to

use players’ expected utilities to measure subjective well-being. Following the lit-

erature on network formation, social welfare is then given by the sum of individual

expected utilities.

Definition 7 (Subjective social welfare). Subjective social welfare of a consistent

tuple (g, (µi)i∈N) is defined as
∑

i∈N Ui(gi, µi).

Alternatively, we can evaluate individual well-being and social welfare based on

actual utilities. Here, the idea is that what matters are the actual benefits from a

relationship, e.g. a friendship or a scientific project, which are typically reaped in

the long-run. This parallels the notion of experience utility introduced by Jeremy

Bentham, which refers to the hedonic experience associated with an outcome,

as opposed to decision utility that can be inferred from choices (Kahneman and

Thaler, 2006). Indeed, since players in our model maximize expected utilities,

not actual utilities, inferring actual utilities directly from choices is not possible.

Hence, we may interpret actual utilities as experience utilities in our framework.

Formally, using actual utilities to evaluate social welfare boils down to the common

notion of social welfare in the literature on network formation.

Definition 8 (Objective social welfare). Objective social welfare of a network

g ∈ G is defined as
∑

i∈N ui(g).

We will employ objective social welfare also to evaluate welfare under complete

information. Following the literature, we will refer to the network that yields

the highest objective social welfare as strongly efficient. Since agents may hold

incorrect beliefs, the following holds.

Remark 1. Subjective social welfare of a consistent tuple may be higher than

objective social welfare in the strongly efficient network.
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To illustrate these welfare measures, we revisit Example 1. We demonstrate

that the welfare implications of an RPPS network that would not be stable under

complete information may be ambiguous.

Example 5. Consider n = 5 players and the payoffs from Example 1. Recall that

without shadow links only the network g4 is PS and that g5,s (g5 with all shadow

links) is RPPS. Objective social welfare in g5,s (30) is higher than welfare in g4

under complete information (26), while subjective social welfare is lower under

beliefs that are rationalizable (at most 25, see (1)). Thus, whether network g5,s

is better than the PS network g4 from a societal point of view depends on the

welfare measure deemed appropriate.

6 Two specific models

We propose two specific models of network formation with shadow links. These

models are derived from the literature and illustrate different ways how shadow

links can enrich the setup and explain several stylized facts. The first model

considers friendship networks and perfect substitutes. Second, we study a co-

author model in which shadow links represent informal contacts of researchers.

6.1 Segregation and homophily in friendship networks

We consider friendships when agents belong to different communities similar to

de Mart́ı and Zenou (2017). Communities may be defined along social categories

such as ethnicity, religion, education, income, etc. Individuals benefit from direct

and indirect connections to others, which can be interpreted as positive external-

ities from information transmission (e.g. of trends or job offers). These benefits

decay with distance and may depend on community membership, while forming

links is equally costly within and across groups.10 To capture this, we consider

a variation of the connections model introduced in JW and perfect substitutes.

Additionally, we introduce extremists who dislike being connected to agents from

the other community, modelled as negative externalities.

Formally, each agent i ∈ N belongs to a community (or group) γi ∈ {A,B}
and is of type φi ∈ {φ, φ}, where φi = φ > 0 if i is a moderate and φi = φ < 0

if i is an extremist. We denote the set of agents who belong to community γ

by Nγ = {i ∈ N | γi = γ}, the subset of moderates of this group by Nγ =

10Alternatively, we could also assume that linking costs depend on community membership as
in de Mart́ı and Zenou (2017).
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{i ∈ N | γi = γ, φi = φ}, and the cardinalities by nγ = #Nγ and nγ = #Nγ,

respectively. Preferences are given by

ui(g) =
∑

j∈Nγi\{i}

δtij + φi
∑
j /∈Nγi

δtij − c · di(g),

where tij denotes the number of links in the shortest path from i to j in g (with

tij = +∞ if there is no path from i to j), 0 < δ < 1 captures the idea that the

value of a connection is proportional to proximity, and c > 0 denotes the cost of

forming a link incurred by each of the players. Notice that we recover the classical

version of the connections model studied in JW if all agents belong to the same

community, N = NA. In the subsequent analysis, we assume φ = 1, φ = −1 and

c < δ, so that moderates benefit equally from all connections and prefer to be

at least indirectly connected to everyone. We consider nγ ≥ nγ + 2 ≥ 4 for all

γ ∈ {A,B}, so that each community consists of several moderates and extremists,

and restrict attention to some equilibria for reasons of brevity.

We begin our analysis by studying stable networks under complete information.

Consider low linking costs, c < δ−δ2. Then, moderates prefer to be directly linked

to each other. The following result provides conditions under which the extremists

of one group are segregated from the rest of society, while the other group is fully

intraconnected, i.e. each pair of agents from the group is directly connected.

Proposition 2. Suppose c < δ − δ2.

(i) In any PS network, the agents in NA ∪NB are fully intraconnected.

(ii) If δ − δ2(nA − nB + 1)− δ3(nA − nA) < c, then the network g1 in which the

agents in each of the sets NA∪NB, NA and NB\NB are fully intraconnected

and no other links are present is PS.

Proof. (i) Take any agents i, j ∈ NA ∪NB and g such that gij = 0. The benefit

from linking is at least δ− δ2− c > 0 for both agents, which finishes the first

part.

(ii) We know from the first part that moderate agents have no incentives to

sever a link. Furthermore, the same holds for extremist agents with respect

to agents from the same group. This implies that no agent in the considered

network has incentives to sever a link. It is left to show that no agent has

incentives to form an additional link. We know already that moderates would

prefer to form a link. Therefore consider i ∈ NA\NA and j ∈ NB\NB. Agent
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i is already directly connected to all other agents of her group, so she could

only form a link to an agent from the other community. This yields at most

−δ + δ2 − c < 0 and is therefore not optimal. Similarly, also agent j has no

incentives to connect to a group-A agent. It is left to check whether j has

incentives to connect to a moderate from her own group. Agent j prefers

not to form a link with agent k ∈ NB if and only if

uj(g
1) > uj(g

1(jk → 1))

⇔(δ − c)(nB − nB − 1) > (δ − c)(nB − nB) + δ2(nB − 1− nA)− δ3(nA − nA)

⇔c > δ − δ2(nA − nB + 1)− δ3(nA − nA),

which finishes the proof.

The condition in the second part of Proposition 2 is likely to hold if group A

is the majority group within the moderates. In this case, we obtain the following

result.

Corollary 3. Suppose c < δ − δ2. If nA > nB and δ ≥
√

2− 1, then the network

g1 is PS.

Proof. Suppose nA > nB and δ ≥
√

2− 1. Then,

δ − δ2(nA − nB + 1)− δ3(nA − nA) ≤ δ − 2δ2 − δ3 ≤ 0 < c.

Applying Proposition 2 (ii) finishes the proof.

Second, we consider intermediate linking costs, δ − δ2 < c < δ. Then, mod-

erates do not necessarily want to be directly linked to each other. We provide

conditions under which the extremists of one of the groups are segregated from

the rest of society, while all other agents form a star.

Proposition 3. Suppose c > δ − δ2.

(i) If c ≤ δ + δ2(nA − nB − 2), then any network g2A that consists of the two

star components NA ∪NB with center in NA and NB\NB is PS.

(ii) If c ≤ −δ + δ2(nA − nB), then any network g2B that consists of the two star

components NA ∪NB with center in NB and NB\NB is PS.

Proof. See Appendix A.
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Notice that the condition on the cost in the second part of Proposition 3 is

strong since extremists are directly connected to an agent from the other group,

who connects them to the other agents of their own group. The condition in the

first part is easier to satisfy: it always holds if group A is the majority group

within the moderates.

Corollary 4. Suppose c > δ − δ2. If nA > nB, then any network g2A is PS.

Proof. Suppose nA > nB. Then,

δ + δ2(nA − nB − 2) ≥ δ + δ2(nA − nB − 1) ≥ δ > c.

Applying Proposition 3 (i) finishes the proof.

Next, we consider shadow links and perfect substitutes. We derive conditions

such that the extremists from both groups stay segregated, because they falsely

believe that the extremists from the other group are connected to the moderates.

Proposition 4. Suppose that nA > nB.

(i) If c < δ − δ2, δ ≥
√

2− 1 and

δ − δ2 − c
δ2

< δ(nB − nB)− (nA − nB),

then the network g1,s in which the agents in each of the sets NA∪NB, NA\NA

and NB\NB are fully intraconnected with public links and no other links are

present is RPPS.

(ii) If c > δ − δ2 and

δ + c

δ2
< nB − nB − (nA − nB) = nB − nA,

then any network g2A,s that consists of the three star components NA ∪ NB

with center in NA and public links, NA\NA and NB\NB with shadow links

and no other links are present is RPPS.

Proof. See Appendix A.

Proposition 4 shows that if there are enough extremists within the minority

group (nB−nB) relative to the difference between the number of moderates of both

communities (nA − nB), then extremists from both groups may stay segregated,
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because they suspect the extremists of the respective other group to be connected

to the moderates. Each group of extremists falsely believes that the respective

other group maintains shadow links to the moderates, hence to be in a network

whose complete information equivalent network is PS. Therefore, such beliefs are

rationalizable and the network RPPS. Notice however that this requires the size

of the minority group to be substantial, i.e. larger than the number of moderates

within the majority group.

Finally, we establish that segregation of both groups reduces social welfare.

Extremists’ false beliefs do not affect their expected utility since they are segre-

gated from the rest of society (they only affect their incentives to connect with the

rest of society). Therefore, subjective social welfare of the networks in Proposition

4 coincides with objective social welfare under the considered beliefs such that we

can restrict our attention to objective social welfare.

Proposition 5. Objective social welfare is strictly lower

(i) in network g1,s than in network g1.

(ii) in any network g2A,s than in any network g2A.

Proof. See Appendix A.

Our results show how false yet rationalizable beliefs may lead to a segregated

society and lower social welfare under incomplete information about the network

structure. In particular, this may happen even if not a single shadow link is

present, the sheer possibility is enough to rationalize beliefs under which segre-

gation of both extremist groups occurs. We can interpret such false beliefs as

suspicions or mistrust, which are typically sowed by extremist groups to divide

societies (Gunaratna et al., 2013).

6.2 A co-author model with informal contacts

We propose a generalized version of the co-author model introduced in JW. Players

are interpreted as researchers who spend time writing papers and links represent

collaborations between two researchers. The time a researcher spends on a project

is inversely related to the number of projects he or she is involved in. We extend

the model by assuming that public links represent collaborations as described,

while shadow links represent informal contacts that provide informal benefits, e.g.
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through exchange of information, favors or discussions. More precisely, we consider

the utility function

ui(g) =
∑
j:gij=1

(
1

dpubi (g)
+

1

dpubj (g)
+

1

dpubi (g)dpubj (g)

)
+ b ·

√ ∑
j:gij=2

dj(g),

where b > 0 measures the importance of benefits from informal connections. Each

researcher has one unit of time which she allocates equally across her projects,

indicated by public links. The output of each project depends on the total time

the two collaborators invest in it, 1/dpubi (g) + 1/dpubj (g), and on some synergy

term, 1/(dpubi (g)dpubj (g)), that is inversely proportional to the number of projects of

each author. Furthermore, each researcher derives benefits from informal contacts,

indicated by shadow links, which are concave in the sum of the contacts’ degrees.

Notice that we recover the setup of JW if we set b = 0. Also notice that while

there are no direct linking costs, a new public link decreases the strength of the

synergy term with existing links. However, agents always benefit from adding a

shadow link if they do not have a link, yet. Furthermore, no negative externalities

come along with shadow links, which yields the following remark.

Remark 2. Any stable or strongly efficient network is completely connected, but

the composition of link types may differ.

In the following, we characterize RPPS networks by the public links that are

present and usually omit that the rest of the connections are shadow links. Inter-

estingly, beliefs thus have to be correct as they are peer-confirming, i.e. informal

connections are common knowledge in stable networks. Moreover, subjective and

objective social welfare coincide in such networks. For any network g ∈ G, the

public (or collaboration) network gpub is defined by

gpubij =

{
1, if gij = 1

0, otherwise
for all i, j ∈ N.

We say that gpub is a subset of (g′)pub if gpubij = 1 implies (g′)pubij = 1, i.e. if the

former is less densely connected than the latter.

We first consider efficient networks. Recall that in JW, the strongly efficient

network, for n even, consists of n/2 separate pairs. We show that, as long as ben-

efits from informal contacts are not too large, we obtain the same result regarding

collaborations, and otherwise the empty public network is strongly efficient.
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Proposition 6. Suppose that n is even. Strongly efficient networks g are such

that gpub consists of n/2 separate pairs if and only if

b ≤ 3√
n− 1(

√
n− 1−

√
n− 2)

, (2)

and otherwise the empty public network is strongly efficient. In each case, all other

connections are shadow links.

Proof. By Remark 2, any strongly efficient network is completely connected. Hence,

it is left to determine the collaboration network gpub of strongly efficient networks

g. First, if b is small enough, then the same collaboration networks are strongly

efficient as in JW, i.e. gpub consists of n/2 separate pairs. Second, as b grows,

it will eventually be more efficient to change these public links to shadow links.

Consider a network g such that gpub consists of n/2 separate pairs and suppose

that gjk = 1. Keeping the public link between j and k is efficient if and only if

n∑
i=1

ui(g) ≥
n∑
i=1

ui(g(jk → 2))

⇔n(3 + b
√

(n− 2)(n− 1)) ≥ (n− 2)(3 + b
√

(n− 2)(n− 1)) + 2b(n− 1)

⇔3 ≥ b
√
n− 1(

√
n− 1−

√
n− 2)

⇔b ≤ 3√
n− 1(

√
n− 1−

√
n− 2)

,

which is (2). As changing the link between j and k has no externalities on other

pairs, the empty public network is strongly efficient if (2) does not hold, which

finishes the proof.

Notice that if (2) does not hold and so the network without any collaborations

is strongly efficient, then the marginal gain from informal connections is always

larger than the marginal gain from collaborations, which would be an extreme as-

sumption. Hence, for reasonable values of b, we obtain the same efficient networks

regarding collaborations as JW.

Next, we consider stable networks. Recall that in JW, PS networks consist of

fully intraconnected components, with each component having a different number

of members. We obtain the same result regarding collaborations if b is small. For

intermediate values of b, the density of public links decreases in b, until components

are dissolved eventually. As with efficient networks, the network without any

collaborations is stable if b is very large.
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Proposition 7. There exists a threshold b̄ > 0 such that

(i) RPPS networks g are such that gpub consist of fully intraconnected com-

ponents, with each component having a different number of members (if

c1 < c2 < · · · < ck indicate component sizes, then 1 < c2l ≤ cl+1 for all

l = 1, 2, . . . , k − 1) if b ≤ b̄,

(ii) RPPS networks g are such that gpub are non-empty subsets of the networks

from part (i), with the link density decreasing in b, if

b̄ < b ≤ 3√
n− 1(

√
n− 1−

√
n− 2)

, and (3)

(iii) RPPS networks g are such that gpub is empty otherwise.

In each case, all other connections are shadow links.

Proof. By Remark 2, any RPPS network is completely connected, which implies

that beliefs have to be correct. Hence, it is left to determine the collaboration

network gpub of RPPS networks g. First, if b is not larger than some threshold

b̄, then the same collaboration networks are stable as in JW, i.e. gpub consist of

fully intraconnected components, with each component having a different number

of members. In particular, if c1 < c2 < · · · < ck indicate the component sizes,

then 1 < c2l ≤ cl+1 for all l = 1, 2, . . . , k − 1.

Second, as b grows, shadow links become more attractive relative to public

links and agents will eventually change from public links to shadow links. Thus,

collaboration networks are subsets of the collaboration networks in JW, with the

link density decreasing in b.

Finally, recall from the proof of Proposition 6 that the change of a separate

pair to a shadow link has no externalities on other agents. Hence, the threshold

from which on the empty public network is RPPS is given by (2), which finishes

the proof.

Notably, Proposition 7 (ii) shows that our model can account for the stylized

fact that actual co-author networks consist of large but only partially intracon-

nected components. Together with Proposition 6, it follows that for large values

of b RPPS networks are efficient since link density is decreasing in b.

Corollary 5. RPPS networks are strongly efficient if and only if

b ≥ 1

4
√
n− 1(

√
n− 2−

√
n− 3)

. (4)
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Proof. It follows from Proposition 6 and Proposition 7 that the empty public

network is RPPS if and only if it is strongly efficient, which is the case if b is large.

If b is below this range, then the strongly efficient public network consists of n/2

separate pairs by Proposition 6. Hence, it is left to determine the lower bound of

the range on which this network is RPPS.

Consider a network g such that the public network gpub consists of n/2 separate

pairs and suppose that gij = 2. Agents i and j have no incentives to change to a

public link if and only if

ui(g) ≥ ui(g(ij → 1))⇔3 + b
√

(n− 2)(n− 1) ≥ 13/4 + b
√

(n− 3)(n− 1)

⇔b ≥ 1

4
√
n− 1(

√
n− 2−

√
n− 3)

,

which finishes the proof.

The following example illustrates our results.

Example 6. Consider n = 6 players. If b ≤ 1/(3
√

5(
√

3−
√

2)), then collaboration

networks that consist of a fully intraconnected component of 4 players and a pair

are RPPS. These are the same collaboration networks as in JW under complete

information. If
√

5/(18(
√

3 −
√

2)) ≤ b ≤ 1/(2
√

5(2 −
√

3)), then collaboration

networks that consist of a “wheel” of 4 players and a pair are RPPS. If 1/(4
√

5(2−√
3)) ≤ b ≤ 3/(5−2

√
5), then collaboration networks that consist of three separate

pairs are RPPS, see Figure 3. Otherwise, the empty collaboration network is

RPPS. Notice that the parameter ranges partially overlap and that 1/(4
√

5(2 −√
3)) is also the threshold from which on stable and efficient networks coincide.

b ≤ 1
3
√
5(
√
3−
√
2)

√
5

18(
√
3−
√
2)
≤ b ≤ 1

2
√
5(2−

√
3)

1
4
√
5(2−

√
3)
≤ b ≤ 3

5−2
√
5

Figure 3: Collaboration networks that are RPPS in the co-author model with
informal contacts depending on the parameter b, for n = 6.

Finally, we briefly discuss which values of b are desirable for society. One pos-

sible objective function for the social planner is total research output as measured
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by total utility from collaborations in a network g,

∑
i∈N

∑
j:gij=1

(
1

dpubi (g)
+

1

dpubj (g)
+

1

dpubi (g)dpubj (g)

)
,

which ignores informal benefits and is independent of the level of b.11 The planner

can use the level of informal benefits as a regulation tool (as far as possible)

to set an intermediate level of b at which n/2 separate pairs are RPPS, which

maximizes total research output. In practise, this may imply increasing benefits

from informal contacts. The planner could achieve this by increasing researchers’

benefits from “networking events” such as conferences or committee meetings,

for instance through monetary incentives or reducing institutional frictions like

bureaucracy.

7 Discussion and conclusion

We propose a framework of network formation in which players can form public

links as well as shadow links, which are only observed by neighbors in the net-

work. Incomplete information about others’ social connections is ubiquitous in our

societies, with some connections such as family members typically being easily ob-

servable, while others are only known to friends. We introduce the novel solution

concept RPPS, which generalizes JW’s PS to incomplete information and shadow

links. RPPS requires deterrence of pairwise deviations and rationalizability of

players’ beliefs à la Rubinstein and Wolinsky (1994).

Our framework provides the foundation to model and understand richer situ-

ations of network formation. To illustrate this potential, we propose two specific

models with shadow links. These models are derived from the literature on net-

work formation and explain several stylized facts. First, in a friendship model with

different communities and homophily, the sheer possibility of shadow links is suffi-

cient to rationalize false beliefs that lead to segregation of extremists from society

and lower social welfare. Second, in a co-author model where shadow links rep-

resent informal contacts of researchers, intermediate benefits from these contacts

yield collaboration networks that consist of large but only partially intraconnected

components.

The introduction of incomplete information to the framework of JW requires

11Notice that our welfare measures are not suitable for this purpose since they depend on b.
Moreover, it is not clear why the social planner would care about informal benefits per se.
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assumptions on beliefs and the observability of payoffs. We assume peer-confirming

beliefs similar to the peer-confirming equilibrium by Lipnowski and Sadler (2018),

reflecting that people tend to know the behavior of close friends or peers better

than that of strangers. We believe that this approach is plausible in many settings,

but in any case it is straightforward to adapt our framework to other assumptions,

for instance not necessarily correct beliefs about neighbors’ shadow links. More

generally, we could assume that beliefs confirm the behavior of players up to some

distance k in the network, akin to imperfect monitoring of the network structure

(McBride, 2006a,b). Increasing the parameter k would refine our solution concept.

Particularly, with perfect substitutes and a large enough value of k, RPPS and

PS would largely coincide, the only remaining difference being that beliefs still

would not need to confirm the behavior of players in other components. Further-

more, we assume that players have to infer the payoff from the network through

their beliefs, reflecting that benefits from a relationship are typically reaped in the

long-run. As with beliefs, it is straightforward to adapt our framework to other

assumptions, for instance observation of the own payoff. In general, beliefs could

confirm not only the behavior of players up to some distance in the network, but

also payoffs. This would as well refine our solution concept.

Future research should further exploit the potential of our framework to en-

rich various settings of network formation. Another avenue is to extend RPPS

beyond pairwise deviations and myopic players. Furthermore, experimental in-

vestigations on network formation with incomplete information and shadow links

would advance our understanding of people’s behavior in such situations.
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A Appendix

Proof of Proposition 3

(i) Consider i ∈ NA ∪NB. Severing a link yields a benefit of at most c− δ < 0

and is hence not beneficial. Furthermore, agent i also does not want to add

a link to any agent in NA ∪NB, which would yield δ− δ2− c < 0. Similarly,

also agent j ∈ NA\NA does not want to add a link to any agent in NA∪NB.

Furthermore, agent j prefers to maintain her link to the center of the star,

k ∈ NA such that dk(g) = nA + nB − 1, if and only if

uj(g
2A) ≥ uj(g

2A(jk → 0))⇔δ − c+ δ2(nA − 2− nB) ≥ 0

⇔δ + δ2(nA − nB − 2) ≥ c. (5)

Finally, consider l ∈ NB\NB. First, also agent l does not want to sever any

link, which would yield a benefit of at most c − δ < 0. Second, regarding

the addition of a link, the most profitable is either to link to a moderate of

her own group, i′ ∈ NB, or the center of the star k, who would both benefit

from the link.12 First, agent l prefers not to form a link with agent i′ if and

only if

ul(g
2A) > ul(g

2A(li′ → 1))⇔ 0 > δ − c− δ2 + δ3(nB − 1− nA + 1)

⇔ c > δ − δ2 − δ3(nA − nB). (6)

Second, agent l prefers not to form a link with agent k if and only if

ul(g
2A) > ul(g

2A(lk → 1))⇔ 0 > −δ − c− δ2(nA − 1− nB)

⇔ c > −δ − δ2(nA − nB − 1). (7)

12Linking to an agent from the other group that is not the center of the star, i′′ ∈ NA such
that di′′(g) = 1, yields a lower benefit than linking to i′.
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Notice that (5) is equivalent to nA − nB ≥ (c− δ + 2δ2)/δ2, which yields

δ − δ2 − δ3(nA − nB) ≤ δ − δ(c+ 2δ2) < δ − δ(δ + δ2) < c,

that is, (6). Similarly, (5) implies −δ− δ2(nA − nB − 1) ≤ −c− δ2 < c, that

is, (7), which establishes the claim.

(ii) The incentives for agents i ∈ NA ∪ NB are as in part (i). For agent j ∈
NA\NA, linking to any agent inNA∪NB yields a benefit of at most δ−δ2−c <
0 and is hence not beneficial. Furthermore, agent j prefers to maintain her

link to the center of the star, k ∈ NB such that dk(g
2B) = nA + nB − 1, if

and only if

uj(g
2B) ≥ uj(g

2B(jk → 0))⇔− δ − c+ δ2(nA − 1− nB + 1) ≥ 0

⇔− δ + δ2(nA − nB) ≥ c. (8)

Finally, consider l ∈ NB\NB. First, also agent l does not want to sever any

link, which would yield a benefit of at most c− δ < 0. Second, regarding the

addition of a link, the most profitable is to link to a moderate of her own

group, i′ ∈ NB, either such that di′(g
2B) = 1 or such that i′ = k is center of

the star, who would benefit from the link.13 In the first case, agent l prefers

not to form a link with agent i′ if and only if

ul(g
2B) > ul(g

2B(li′ → 1))⇔ 0 > δ − c+ δ2 − δ3(nA − nB + 2)

⇔ c > δ + δ2 − δ3(nA − nB + 2). (9)

In the second case, agent l prefers not to form a link with agent i′ = k if and

only if

ul(g
2B) > ul(g

2B(li′ → 1))⇔ 0 > δ − c− δ2(nA − nB + 1)

⇔ c > δ − δ2(nA − nB + 1). (10)

Notice that (8) is equivalent to nA − nB ≥ (δ + c)/δ2, which yields

δ + δ2 − δ3(nA − nB + 2) ≤ δ − 2δ3 − δc < δ − δ2 < c,

that is, (9). Similarly, (8) implies δ − δ2(nA − nB + 1) ≤ −δ2 − c < c, that

13Linking to an agent from the other group, i′′ ∈ NA, yields a lower benefit than linking to
i′ ∈ NB such that di′(g

2B) = 1.
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is, (10), which finishes the proof.

Proof of Proposition 4

(i) We define the following networks:

• g1,s+A: g1,s+Aij = 1 if and only if g1,sij = 1 and g1,s+Aij = 2 if and only if

i ∈ NA\NA and j ∈ NA or vice versa.

• g1,s+B: g1,s+Bij = 1 if and only if g1,sij = 1 and g1,s+Bij = 2 if and only if

i ∈ NB\NB and j ∈ NB or vice versa.

We show that the set G = {g1,s, g1,s+A, g1,s+B} is rationalizable, which implies

that g1,s is RPPS.

First, notice that g̃1,s+A is PS by Corollary 3. Second, by Proposition 2,

g̃1,s+B is PS if

δ − δ2(nB − nA + 1)− δ3(nB − nB) < c⇔ δ − δ2 − c
δ2

< nB − nA + δ(nB − nB).

Hence, by Proposition 1, g1,s+A and g1,s+B are PPS under correct beliefs.

Finally, consider g1,s and the following beliefs: µi(g
1,s
−i ) = 1 if i ∈ NA ∪

NB, µi(g
1,s+B
−i ) = 1 if i ∈ NA\NA, and µi(g

1,s+A
−i ) = 1 if i ∈ NB\NB.

Notice that these beliefs are consistent since extremists from both groups

are segregated from the rest of society and assign probability 1 to networks

from G. No agent has incentives to sever any link as c < δ − δ2 and all

connections are either between moderates or between extremists of the same

group. Moderates are connected to each other and therefore cannot add

additional links among themselves. For extremists, the most profitable would

be to link to a moderate from their group. However, it follows from the proof

of Proposition 2 that group-A (-B) extremists do not object g1,s+B (g1,s+A),

which is the network they conjecture to be in. Hence, (g1,s, (µi)i∈N) is PPS,

which establishes the claim.

(ii) Fix i ∈ NA, i′ ∈ NA\NA, i′′ ∈ NB\NB and define the following networks:

• g2A,s+A: g2A,s+Aij = g2A,s+Aji = 1 ∀j ∈ (NA∪NB)\{i}, g2A,s+Aij = g2A,s+Aji =

2 ∀j ∈ NA\NA, g2A,s+Ai′′j = g2A,s+Aji′′ = 2 ∀j ∈ (NB\NB)\{i′′}, and

g2A,s+Aij = 0 otherwise.
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• g2A,s+B: g2A,s+Bij = g2A,s+Bji = 1 ∀j ∈ (NA ∪ NB)\{i}, g2A,s+Bij =

g2A,s+Bji = 2 ∀j ∈ NB\NB, g2A,s+Bi′j = g2A,s+Bji′ = 2 ∀j ∈ (NA\NA)\{i′},
and g2A,s+Bij = 0 otherwise.

We show that the set G = {g2A,s, g2A,s+A, g2A,s+B} is rationalizable, which

implies that g2A,s is RPPS.

First, notice that g̃2A,s+A is PS by Corollary 4. Second, by Proposition 3 (ii),

g̃2A,s+B is PS if

c ≤ −δ + δ2(nB − nA)⇔ δ + c

δ2
≤ nB − nA.

Hence, by Proposition 1, g2A,s+A and g2A,s+B are PPS under correct beliefs.

Finally, consider g2A,s and the following beliefs: µi(g
2A,s
−i ) = 1 if i ∈ NA ∪

NB, µi(g
2A,s+B
−i ) = 1 if i ∈ NA\NA, and µi(g

2A,s+A
−i ) = 1 if i ∈ NB\NB.

Notice that these beliefs are consistent since extremists from both groups

are segregated from the rest of society and assign probability 1 to networks

from G. No agent has incentives to sever any link as c < δ and all connections

are either between moderates or between extremists from the same group.

Moderates already form a star and therefore do not want to add additional

links among themselves since c > δ − δ2. The same holds for extremists

of each group, hence the most profitable for them would be to link to a

moderate from their group or to the center (who is from the other group in

case of group-B extremists). However, it follows from the proof of Proposition

3 that group-A (-B) extremists do not object g2A,s+B (g2A,s+A), which is

the network they conjecture to be in. Hence, (g2A,s, (µi)i∈N) is PPS, which

finishes the proof.

Proof of Proposition 5

(i) First, objective social welfare in network g1 is

nA(nA + nB − 1)(δ − c) + nB
(
(nA + nB − 1)(δ − c) + (nA − nA)δ2

)
+(nA − nA)

(
(nA − 1)(δ − c)− nBδ2

)
+ (nB − nB)(nB − nB − 1)(δ − c).

(11)
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Second, objective social welfare in network g1,s is

(nA + nB)(nA + nB − 1)(δ − c) + (nA − nA)(nA − nA − 1)(δ − c)

+(nB − nB)(nB − nB − 1)(δ − c).
(12)

Finally, subtracting (12) from (11) yields 2nA(nA − nA)(δ − c) > 0, which

establishes the claim.

(ii) First, objective social welfare in any network g2A is

(nA + nB − 1)(δ − c) + (nA + nB − 1)
(
δ − c+ (nA + nB − 2)δ2

)
+(nA − nA)

(
δ − c+ (nA − 2− nB)δ2

)
+(nB − nB − 1)(δ − c) + (nB − nB − 1)

(
δ − c+ (nB − nB − 2)δ2

)
.

(13)

Second, objective social welfare in any network g2A,s is

(nA + nB − 1)(δ − c) + (nA + nB − 1)
(
δ − c+ (nA + nB − 2)δ2

)
+(nA − nA − 1)(δ − c) + (nA − nA − 1)

(
δ − c+ (nA − nA − 2)δ2

)
+(nB − nB − 1)(δ − c) + (nB − nB − 1)

(
δ − c+ (nB − nB − 2)δ2

)
.

(14)

Finally, subtracting (14) from (13) yields 2(δ−c)+2 (nA(nA − nA)− 1) δ2 >

0, which finishes the proof.
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