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Abstract

We study the formation of bilateral agreements among rivals. All else equal, the payo§

of an agent increases in his own number of partners and decreases in the number of partners

of his rivals. We assume that agents are farisghted: they anticipate that their choice of

partners may trigger reactions from their rivals. When more cooperation among equals is

proÖtable, and when the payo§ of agents in a small clique increases in the size of the clique,

a von-Neumann-Morgenstern farsighted stable set exists. The set contains either two-clique

networks, or dominant group networks in which only connected agents are active competitors.

Network formation may thus endogenously create a barrier to entry. If the sum of payo§s

increases when the connections are more unequally distributed among rivals, the e¢cient

networks are either nested split graphs, or have a core-periphery structure. The networks

formed by farsighted rivals are not e¢cient. We show that standard economic models of

network formation among rivals satisfy the above properties.

JEL classiÖcation: C70, D20, D40.
Keywords: Network formation, Competition, Rivalry, Farsightedness, E¢ciency.

1 Introduction

Examples of cooperation between rivals are abundant. Firms who are competitors on a Önal

market jointly invest in R&D to share its costs and beneÖts, they share customer databases

or engage in cross-licensing agreements. Countries sign bilateral trade agreements, colleagues

competing for a promotion work in teams, etc. In this paper, we propose a general class of games

to analyze these environments. In a game of network formation among rivals, ex ante symmetric

agents Örst engage in bilateral cooperation and then compete. The payo§ of an agent increases

in his own number of partners (degree monotonicity) and decreases in rivalsí number of partners
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yFNRS and UniversitÈ Saint-Louis Bruxelles, CEREC, 1000 Bruxelles, Belgium.
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(negative externalities).1 In this setup, we analyze the networks formed by farsighted agents

and contrast these to the e¢cient networks, i.e. those leading to the highest sum of payo§s.

Farsighted agents forecast how other agents would react to their choice of partners, and take

a decision by comparing the current network to the end network that forms when other agents

have further deviated. Farsightedness in network formation has received increasing attention

over the past few years.2 In his survey on network formation, Jackson (2005) has stated that:

"...in large networks it might be that players have very little ability to forecast how the

network might change in reaction to the addition or deletion of a link. In such situations the

myopic solutions are quite reasonable. However, if players have very good information about

how others might react to changes in the network, then these are things that one wants to allow

for either in the speciÖcation of the game or in the deÖnition of the stability concept".

We believe that farsightedness is an appropriate assumption when studying cooperation

between competitors, as the number of competitors is usually rather small and the stakes are

high. Rivals then have the opportunity and the incentives to foresee how others might react to

changes in the network. We capture this by the notion of indirect dominance (Harsanyi 1974).

A Önal network indirectly dominates an initial network if there exists a sequence of networks

that implements the Önal network from the initial network such that at any step of the sequence

all agents who deviate have a higher payo§ in the Önal network than in the current network. We

use the stable set (von Neumann Morgenstern, 1944), based on indirect dominance as a solution

concept. The farsighted stable set is both internally stable - no network of the set indirectly

dominates another network of the set - and externally stable - every network outside the set is

indirectly dominated by a network belonging to the set. The farsighted stable set can then be

interpreted as a standard of behavior when agents are farsighted.

We show that there always exists a farsighted stable set in a game of network formation

among rivals satisfying strong degree monotonicity and minority economies to scale. It is either

composed of dominant group networks, or of 2-clique networks. In a dominant group network,

each member of the group is connected to the other group members while the remaining agents

are not connected and do not take part in the competition. Networking then endogenously

creates a barrier to entry. In a network composed of two asymmetric cliques, each agent belongs

either to a large or to a small group of connected agents, and each agent is an active competitor.

The Örst property needed to establish this result, strong degree monotonicity, implies that agents

who have the same degree Önd it worthwhile to see their degree increase. The second, minority

economies to scale, imposes that the payo§ of agents in a small clique increases in the size of

1See for instance Goyal and Moraga (2001), Goyal and Joshi (2003), Goyal and Joshi (2006a), Goyal and

Joshi (2006b), Marinucci and Vergote (2011), Grandjean et al. (2013) for models of competition in networks

competition lying in this class of games.
2Approaches to farsightedness in network formation are suggested by the work of Chwe (1994), Xue (1998),

Herings, Mauleon, and Vannetelbosch (2004), Mauleon and Vannetelbosch (2004), Page, Wooders and Kamat

(2005), Dutta, Ghosal, and Ray (2005), Herings, Mauleon, and Vannetelbosch (2004), Page and Wooders (2009),

Herings, Mauleon, and Vannetelbosch (2014), and Ray and Vohra (2014).
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the clique when they are facing another clique with the majority of agents.

We then analyze the e¢cient networks of a game of network formation among rivals when

two properties hold. The Örst property, welfare improving switch, imposes that the sum of payo§

increases after a switch - by which the degree of one agent increases while that of a less connected

agent decreases - when the agents whose degree decreases remains active in the competition.

The second, switch externality, imposes that agents not involved in the switch are not hurt by

it. We then show that the networks that maximize the sum of payo§s are nested split graphs

when agents are active in every network.3 Otherwise, when lowly connected agents may decide

not to participate to the competition, a switch may no longer be welfare improving if it leads to

the exclusion of the agent hurt by the switch. We then Önd that the e¢cient network is either

a core-periphery network or a (quasi-)nested split graph. they are either (quasi-)nested split

graphs or core-periphery networks.4

The four properties we impose are satisÖed in many models of network formation among

rivals. We show that this is the case in Goyal and Joshi (2003)ís model of R&D network formation

in Cournot oligopoly, and in Grandjean et al. (2013)ís model of network formation in a Tullock

contest.

The structure of stable and e¢cient networks is in general di§erent. There is a tension

between the networks that are formed by the agents and those that would produce the highest

sum of payo§s. In a stable network, competitors cooperate with equally connected agents while

the sum of payo§s would be higher if the links were more unequally distributed. In Goyal and

Joshi (2003)ís model of R&D network formation for example, Örms with more partners produce

more since they have a smaller marginal cost. The beneÖt of a new partnership is thus increasing

in the degree of a Örm since it a§ects a larger volume of production. Firms in the large clique

do not cooperate with those in the small one, and as such do not exploit completely the R&D

network beneÖts, leading to the aforementioned ine¢ciencies.

Our theoretical predictions mirror Öndings in the empirical literature on cooperation among

rivals. Hochberg et al. (2010) show that networking may create barriers to entry for the supply

of venture capital. Regibeau and Rockett (2011) indicate that cross-licensing agreements may

warrant antitrust scrutiny. Bekkers et al. (2002) have documented the successful attempt of

Motorola in the eighties to create a group of 5 dominant Örms in the GSM industry by forming

cross-licensing agreements with these Örms and refusing agreements with outsiders. Motorola

and its competitors have ináuenced the market structure and ended up dominating the GSM

industry. Howard (2009) provides another striking example in the seeds industry, where six of

the largest nine Örms have closely cooperated through cross-licensing agreements while the three

others have formed joint ventures to share research output and expertise. The following picture,

taken and adjusted from Howard (2009), summarizes the situation in 2013.

3Nested split graphs are networks such that each agent is connected to other agents with less links. The

network structures are presented in Figure 2.
4Core-periphery networks are networks where some agents (those in the core) are connected to every other

agent, while others (those in the periphery) are only connected to agents in the core.
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Figure 1: Cross-licensing agreements and joint ventures in the seeds industry

Cooperation among rivals has been studied in a coalition formation setting.5 Bloch (1995)

shows that Örms form two asymmetric coalitions in the cost reducing R&D Cournot model,

where the largest group contains 3/4 of the Örms. Yi (1997) identiÖes conditions leading to the

formation of two asymmetric coalitions in the coalitional unanimity game of Bloch (1996).

Our properties, restricted to networks composed of strongly connected components are

stronger than those of Yi (1997). Thus, forward looking agents forming coalitions according

to the rules of Bloch (1996)ís coalitional unanimity game would form two coalitions. We Önd

that the farsighted stable set is composed of networks featuring two groups, a strongly connected

component among a majority of the agents, and another group of agents that are either strongly

connected or not connected. Furthermore, the size of the groups is equivalent in the two ap-

proaches. We have identiÖed su¢cient conditions for establishing an equivalence between the

networks formed by farsighted agents and the coalitions formed among forward looking agents.

These conditions are also necessary. By means of examples, we show that the equivalence no

longer holds when strong degree monotonicity or minority economies to scale are violated.

In a network formation setting, farsightedness has been shown to lead to an asymmetric

partition of the agents in the work of Roketskiy (2012) and of Mauleon et al. (2014). In

the model of Roketskiy (2012), the payo§ of agents is the sum of two terms. The Örst is his

production, which is increasing in degree, and the second is a bonus shared among the agents

having the highest degree. Mauleon et al. (2014) study cost reducing R&D agreements, assuming

that R&D externalities perfectly spill over the network so that each member of a component

has the same marginal cost, as in a coalition.

Westbrock (2010) study e¢cient networks by extending the R&D collaboration model of

Goyal and Joshi (2003) to a network game of di§erentiated oligopoly and Önds that when

5See Bloch (2005) for a survey of this literature.
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the participation constraints are not binding, the e¢cient and proÖt maximizing networks are

interlinked stars.6 Our focus is on a class of games that includes the model of Goyal and Joshi

(2003). Our predictions are narrower than those of Westbrock (2010), and we also analyze the

case where participation constraints are binding. Kˆnig et al. (2012) study R&D collaborations

with network dependent indirect spillovers and show that the e¢cient network structure is a

nested split graph. In a standard linear quadratic utility function with local synergies (Ballester

et al., 2006), Belhadj et al. (2013) show that an e¢cient network must be a nested split graph

in network games with strategic local complementarity.

The paper is organized as follows. In Section 2 we present our framework and introduce

the notation. In Section 3, we provide two motivating examples. In Section 4 and 5, we

study respectively pairwise and farsighted stability. Section 6 characterizes the e¢cient network.

Section 7 concludes.

2 Notation and framework

2.1 Networks

Let N = f1; 2; :::; ng be a Önite set of agents. We write gi;j = 1 when a link between i and j

exists and gi;j = 0 otherwise. A network g = f(gi;j)i;j2Ng is the list of pairs of individuals who
are linked to each other. Let gN be the collection of all subsets of N with cardinality 2, so gN

is the complete network. The set of all possible networks on N is denoted by G and consists

of all subsets of gN . The network obtained by adding the link ij to an existing network g is

denoted g + ij and the network that results from deleting the link ij from an existing network

g is denoted g $ ij. For any network g, let N(g) = fi 2 N j 9 j such that ij 2 gg be the set
of agents who have at least one link in the network g. Let Ni(g) be the set of agents that are

linked to i : Ni(g) = fj 2 N j ij 2 gg. The degree of agent i in a network g is the number of
links that involve that agent: ni(g) = #Ni(g).7 A path in a network g 2 G between i and j

is a sequence of agents i1; : : : ; iK such that ikik+1 2 g for each k 2 f1; : : : ;K $ 1g with i1 = i
and iK = j. A network g is connected if for each pair of agents i and j such that i 6= j there
exists a path in g between i and j. A component h of a network g is a nonempty subnetwork

h ) g satisfying (i) for all i 2 N(h) and j 2 N(h)nfig, there exists a path in h connecting i
and j, and (ii) for any i 2 N(h) and j 2 N(g), ij 2 g implies ij 2 h. Given a network g, let
K1(g) = fi 2 N j ni(g) + nj(g) for all j 2 Ng be the set of agents with the highest degree.
For all t + 2, let Kt(g) = fi 2 N j ni(g) + nj(g) for all j 2 Nn(Ks(g))s<tg be the set of
agents with the highest degree among the agents that are not in K1(g); :::;Kt$1(g). We write

X $g Y if there is at least a link between one agent from the agent set X and one agent from

6Interlinked star networks are such that each agent with the maximal number of links is connected to each

connected agent.
7Throughout the paper we note the cardinality of a set X by the lower case letter x.
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the agent set Y in the network g. Similarly, we write X>gY if each agent in X is connected

to each agent in Y in g, and X?gY if there are no links among agents from those sets in g.

Let N$(g) = fi 2 N(g) j ni(g) / nj(g) for all j 2 N(g)g be the set of agents in g with the
smallest degree among those that are connected, and let N0(g) be the set of agents that are not

connected in g. For S ) N , let g$S = fjk 2 g j j =2 S and k =2 Sg be the set of links among the
agents outside S in the network g.

We now deÖne some networks that play an important role in our analysis (see Figure 2).

Given a set of agents S  N , a dominant group network network gS is such that the agents in
S are connected to each other in S while the agents in NnS have no links. In a k-clique network
g = gS1[ :::[gSk , the agents are partitioned into k groups such that there is a link between every
pair of agents in the same group and no link between any two agents in di§erent groups.8 We

write a 2-cliques network with a clique S involving the majority of the agent by egS = gS [gNnS .
A network g is a nested split graph with t classes if Ks(g)>gKr(g) for all r / t$s+1. The agents
in class 1 are connected to every connected agent, while the agents in class t are only connected

to the agents in class 1. Similarly, the agents in class 2 are connected to every connected agent

other than those in class t while agents in class t $ 1 are only connected to the agents in class
1 and 2, etc. In the nested split graph depicted in Figure 2, there are four classes of agents. A

line between two groups indicates that each agent from one group is connected to every agent

from the other group. In a core-periphery network, each agent in the core is connected to every

other agent while agents in the periphery are only connected to agents in the core. Finally, each

agent has the same degree in a regular network.

nested split graph

empty dominant group asymmetric cliques

regular Core-periphery complete

Figure 2: Networks

8A clique is a set of agents S ! N such that there is a link between each pair of agents in S. It is maximal if

no superset of S is a clique.
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2.2 Framework

The games of network formation among rivals G we consider involves n ex-ante identical agents
playing a two-stage game. Agents Örst form bilateral agreements in the network formation stage.

A network g induces a degree distribution of the agents (n1(g); n2(g); :::; nn(g)), where the degree

of an agent represents its strength, and is the only payo§ relevant network statistic. Each agent

i then chooses a strategy 2i 2
P
in the competition stage. The strategy set

P
is identical for

each agent in every network, it does not depend on the network and it contains the strategy

"out". An agent choosing the strategy "out" is guaranteed to get a payo§ of 0. We assume

that for each network g, there is a unique Nash equilibrium of the game in the second stage

2&(g) = (2&1(g); 2
&
2(g); :::; 2

&
n(g)), and we denote by 3i(g) the Nash equilibrium payo§ of agent

i, gross of linking costs. In a network g, the agents playing a strategy other than "out" are the

active (or participating) agents K(g). A participating agent gets a positive payo§ at the Nash

equilibrium since he would otherwise have a proÖtable deviation, 3i(g) > 0 i§ i 2 K(g).
Two properties relate the payo§ of an agent to speciÖc network conÖgurations. The Örst im-

poses that the stronger an active agent, the higher his payo§, a property called degree monotonic-

ity.

Property 1. Degree monotonicity: 3i(g0) > 3i(g) if ni(g0) > ni(g), nk(g0) = nk(g) for

all k 2 Nnfig and 3i(g0) > 0.

The second imposes that the stronger an active agent, the smaller his rivalsí payo§s, a

property called negative externalities.

Property 2. Negative externalities: 3j(g0) < 3j(g) if ni(g0) > ni(g) for some i 6= j,

nk(g
0) = nk(g) for all k 2 Nnfig, 3j(g) > 0 and 3i(g0) > 0.

These two properties imply that the payo§ of agent i is higher than the payo§ of agent j in

a network g if the degree of i is higher than the degree of j, ni(g) > nj(g) =) 3i(g) + 3j(g).
Indeed let g0 be such that ni(g0) = nj(g) and nk(g0) = nk(g) for k 2 Nnfig. Then, we have
3i(g) > 3i(g

0) by degree monotonicity, 3i(g0) = 3j(g0) by symmetry and uniqueness of the Nash

equilibrium, and 3j(g0) > 3j(g) by negative externalities. Degree monotonicity and negative

externalities imply that the degree of nonparticipating agents is smaller than the degree of

participating agents. We let Km(g) be the set of weak agents, i.e. the set of participating agents

with the smallest degree in the network g, Km(g) = fi 2 K(g) j ni(g) / nj(g) for all j 2 K(g)g.
The set of nonparticipating agents in g is E(g) = NnK(g) and the set of strong agents, i.e.
agents who have strictly more connections than the weak agents is K+(g) = K(g)nKm(g).

We assume that each link costs c + 0 to the two agents involved in the link. The net payo§ of
agent i is then given by *i(g) = 3i(g)$ cni(g). We analyze the structure of stable and e¢cient
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networks in the class of games G when some additional properties are satisÖed.9 The Örst two
properties determine the e§ect of having more collaborations on payo§.

Property 3, Strong degree monotonicity, imposes that participating agents who have the

same degree Önd it worthwhile to see their degree increase.

Property 3. Strong degree monotonicity: *i(g) < *i(g
0) for i 2 S ) Kl(g) ) K(g)

where g0 is such that nj(g0) = nj(g) + 1 for all j 2 S and nj(g0) = nj(g) for all j 2 N n S.

Strong degree monotonicity is stronger than degree monotonicity since it requires that the

beneÖt of increasing oneís degree outweighs the additional linking cost and the cost of facing

stronger competitors. This property implies that, everything else equal, more cooperation among

equals is better for them. Property 4, Minority economies to scale, imposes that the payo§ of

agents in a small clique increases in the size of the clique when they are facing another clique

with the majority of agents.

Property 4. Minority economies to scale: *i(gS [ gT ) < *i(gS [ gT[fjg) for i 2 T if
T ) K(gS [ gT ), where j =2 fS [ Tg, T \ S = ; and s + n=2.

Properties 5 and 6 determine the e§ect of a reallocation of links leading to an increase of the

degree of one agent at the expense of a less connected agent. When a network g0 can be obtained

from a network g by a mean preserving spread of links favouring i at the expense of j, we say

that g0 is obtained from g by a switch in favor of i relative to j, and write it g0 2 S(g; i; j).

DeÖnition 1. A network g0 is obtained from g by a switch in favor of i relative to j -g0 2
S(g; i; j)- if ni(g0) = ni(g) + 1, nj(g0) = nj(g)$ 1 where ni(g) + nj(g) while nk(g) = nk(g0) for
all k 2 Nnfi; jg.

A switch leads to a new pattern of collaboration where the number of partners of agents are

less equally distributed. Property 5, welfare improving switch, imposes that the sum of payo§s

in a network increases after a switch if the agent whose degree decreases remains active.

Property 5. Welfare improving switch:
P
i2N *i(g

0) >
P
i2N *i(g) if g

0 2 S(g; i; j)
and j 2 K(g) \K(g0).

Finally Property 6, switch externality, imposes that the payo§ of an agent not involved in a

switch among strong agents does not decrease.

Property 6. Switch externality: 3l(g
0) + 3l(g) for g0 2 S(g; i; j) if j 2 K+(g) and l 6= j.

In the rest of the paper, we show that Properties 1-6 are satisÖed in standard models of

bilateral cooperation among rivals, and analyze how they shape the farsighted stable set of

networks, and the set of e¢cient networks.
9Goyal and Joshi (2006a) and Hellman and Landwher (2014) also propose properties on the payo§ function in

adjacent networks, and relate these to the structure of the pairwise stable networks.
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3 Motivating examples

We show in this section that Properties 1-6 are satisÖed in Goyal and Joshi (2003)ís model of

bilateral R&D agreements among Cournot competitors and in Grandjean et al. (2013)ís model

of cooperation among rivals in a Tullock contest.

3.1 R&D cooperation in the Cournot model

In Goyal and Joshi (2003), n Örms Örst form bilateral R&D agreements to reduce their marginal

cost, and then compete ‡ la Cournot. The marginal cost of a Örm i depends linearly on its

degree ci(g) = : $ ;ni(g), where : is the marginal cost of an isolated Örm, and ; measures
the e§ect of links on marginal cost. Firms compete in quantity in a market for homogenous

products with the following linear inverse demand function p = = $
P
i2N

qi, where = > : is

the size of the market. The Nash equilibrium in the second stage is uniquely given by qi(g) =

maxf0;
(1$20)+k(g)2ni(g)$2

P
j2K(g)nfig nj(g)

k(g)+1 g, and gross payo§s are 3i(g) = qi(g)
2.10 From the

expression characterizing the optimal quantity, one observes that output and thus proÖt are

increasing in own degrees (P1)11 and decreasing in competitorsí degrees (P2). For su¢ciently

small linking costs, we show that Properties 3-6 are also satisÖed.

Lemma 1. The Cournot model with linear cost reducing R&D ci(g) = : $ ;ni(g) and inverse
demand function p = =$

P
i2N

qi satisÖes P3-P6 when linking costs are small.

All proofs are in the appendix. Only own degree and the sum of Örmsí degrees are payo§

relevant in this game. When participation constraints are not binding, the distribution of Örmsí

degrees a§ects the allocation of production among the competitors but does not a§ect the

total output. After a switch, the output of the Örms whose degree remains constant are thus

unchanged. It follows that a switch increases the industry proÖts since the production does

not change but the total costs of production have decreased as some units are transfered from

the Örm whose degree decreases to the Örm whose degree increases, and the latter produces the

good at smaller marginal costs (P5). When more collaborations are formed, the proÖt of a Örm

increases if its degree increases in the same proportion than others.

It follows that strong degree monotonicity and minority economies to scale are satisÖed,

because the number of news links of competitors is at most n$ 1 in the Örst case and 2s$ 1 in
the second, where s < n=2 is the size of the minority clique.

3.2 Bilateral agreements in the Tullock contest

Grandjean et al. (2013) consider n agents who participate in a contest to win a prize. Each

contestant i chooses the level of e§ort ei to make. The marginal cost of e§ort is unitary C(ei) = ei.
10Goyal and Joshi (2003) assume that Örms always produce positive quantities, that is they assume that

(# " $) > (n" 1)(n" 2)'. Goyal and Moraga (2001), Deroian and Gannon (2008), Westbrock (2010), Mauleon
et al. (2014) also analyze this model, and rule out the issue of participation.
11We sometimes write Px to refer to Property x.
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The prize is allocated to the individuals according to the proÖle of e§orts of all agents according

to the contest success function pi(ei; e$i) = ei=
P
j2N ej . The valuation of an agent for the

good is decomposed into a Öxed component v, and a variable component that depends on the

degree of the agent : vi(g) = v + ni(g)B. The Nash equilibrium in the second stage is given

by e&i (g) = maxf0; k(g)$1k(g) hk(g)(g)(1 $
k(g)$1
vi(g)

hk(g)(g)

k(g) )g, where hk(g)(g) = k(g)=(
P
j2K(g) 1=vj(g))

is the harmonic mean of the largest k(g) valuations.12 It follows that gross payo§s are given by

vi(g)(e
&
i (g)=

P
j2N e

&
j (g))

2. E§ort and thus payo§ is increasing in own degrees and decreasing

in competitorsí degrees, so that this game belongs to G. For su¢ciently small linking costs,
we show that it also satisÖes strong degree monotonicity, minority economies to scale, welfare

improving switch and switch externality.

Lemma 2. The Tullock contest with contest success function pi(ei; e$i) = ei=
P
j2N ej, linear

cost of e§ort C(ei) = ei, and valuation vi(g) = v+ni(g)B satisÖes (P1)$ (P4) for small linking
costs.

When participation constraints are not binding, the intuition for this result is as follows.

The sum of e§orts of competitors is highest the more equally the degree are distributed. The

payo§ of an agent not involved in a switch then increases after a switch since the same e§ort

leads to higher chances of winning the prize (switch externality). The sum of e§orts is lower

after a switch, and the expected valuation of the agent getting the prize increases. These two

e§ects leads to higher welfare (welfare improving switch). When equal contestants form new

collaborations, their valuations and their chance of getting the prize increases (strong degree

monotonicity). When the size of a minority clique increases, each member of the clique gets the

prize with higher probability even if the new clique member increases his e§ort more than the

others (minority economies to scale).

4 Pairwise stable networks

Jackson and Wolinsky (1996) have introduced the notion of pairwise stability to characterize the

networks immune to a single link addition or deletion. A network is pairwise stable if no agent

beneÖts from severing one of her links and no two agents beneÖt from adding a link between

them, with one beneÖting strictly and the other at least weakly.

DeÖnition 2. A network g is pairwise stable if
(i) *i(g) + *i(g $ ij) and *j(g) + *j(g $ ij) for each ij 2 g.
(ii) *i(g + ij) > *i(g), then *j(g + ij) < *j(g) for each ij =2 g.

In a game 1 2 G satisfying strong degree monotonicity, each participating agent with the
same degree is connected in a pairwise stable network. Let GPS be the set of pairwise stable

12Hillman and Riley (1989) show that the participation of all agents is not guaranteed when the valuations of

agents is too asymmetric.
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networks. Let G& = fg 2 G jij 2 g if i; j 2 Kt(g) ) K(g), and ij =2 g if fi; jg * K(g)g be the
set of networks such that each participating agent with the same degree is connected, and where

nonparticipating agents are not connected. A pairwise stable network belongs to this set.

Proposition 1. Let 1 2 G. We have GPS ) G& if A1 holds.

A pairwise stable network is composed of cliques of agents having the same degree. Agents in

di§erent cliques do not have the same degree. Also, each agent in a clique has the same number

of links towards agents in other cliques. The complete network is always pairwise stable. If

an agent deviates from the complete network by cutting a link, he either reaches a network g0

where he is not participating or where he is participating but not connected to some agents

with the same degree. In both cases he is better o§ by maintaining his links. Dominant group

networks fall into this class provided isolated agents do not participate. A dominant group

network is pairwise stable if in addition two isolated agents do not participate by forming a link.

Network formation can thus endogenously create a barrier to entry for ex ante symmetric agents.

Dominant group networks are the only pairwise stable network in the linear Cournot or Tullock

model since any two participating agents are better o§ by forming a link in these games, not

only those with the same degree. A network composed of completely connected components of

di§erent sizes is also in G&. Such a network is pairwise stable if agents in di§erent components

are not better o§ by forming a link.

5 von Neumann-Morgenstern farsighted stability

In this section, we analyze the formation of networks among rivals when agents are farsighted,

i.e. they anticipate how other agents would react to their choice of partners. We use the notion of

indirect dominance of Harsanyi (1974) to account for farsighted behavior. A network g indirectly

dominates a network g0 if there exists a sequence of networks that implements g over g0 such

that in every network in the sequence gk, all deviating agents have a higher payo§ in the end

network g than in the current network gk. In a network gk in the sequence from g0 to g, any

group of agents S ) N may enforce the network gk+1 over gk if the links that are created involve

two agents from S while those that are deleted involve at least an agent from S.

Formally, enforceability and indirect dominance are deÖned as follows.

DeÖnition 3. Given a network g, a coalition S ) N is said to be able to enforce a network g0

if

(i) ij 2 g but ij =2 g0 =) fi; jg \ S 6= ;
(ii) ij =2 g but ij 2 g0 =) fi; jg ) S

DeÖnition 4. A network g is indirectly dominated by a network g0, or g 5 g0, if there exists

a sequence of networks g0; g1; :::; gT (where g0 = g and gT = g0) and a sequence of coalitions

S0; S1; :::; ST$1 such that for any t 2 f1; 2; :::; Tg,
(i) 3i(gT ) > 3i(gt$1) for all i 2 St$1, and
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(ii) coalition St$1 can enforce the network gt over gt$1.

We use the notion of indirect dominance in the stable set of von Neumann and Morgenstern

(1944). A farsighted stable set of networks is such that no network in the set indirectly dominates

another network in the set (internal stability) and each network not in the set is indirectly

dominated by a network in the set (external stability). In this sense, a deviation from a stable

network leading to a network outside the set is not accounted for since the network reached is

itself unstable.

DeÖnition 5. A set of networks G ) G is a von Neumann-Morgenstern farsighted stable
set of a game 1 2 G if

(i) for all g 2 G, there does not exist g0 2 G such that g 5 g0, and

(ii) for all g0 =2 G, there exists g 2 G such that g0 5 g.

We show that a von Neumann-Morgenstern farsighted stable set always exists in a network

formation game among rivals satisfying strong degree monotonicity and minority economies to

scale. Let es 2 f1; :::; ng be the minimal size of a large clique S such that the remaining agents do
not participate in the clique network egS : K(egS) = S and K(egSnfkg) = N for k 2 S. Farsighted
agents either form one large clique to drive the remaining agents out of the market, or they form

a smaller one to reduce the number of strong competitors and accommodate full participation.

By excluding a member from the large clique, each strong competitor becomes weaker but is

facing fewer strong competitors. When the size of the large clique is smaller than es, the excluded
member joins the smaller clique so that each weak competitor becomes stronger. We denote by

bs 2 fes; :::; ng the size of the large clique that maximizes the per capita value b3 of its members
when the remaining agents are excluded, and by s 2 f1; :::; es $ 1g the size of the large clique
that maximizes the per capita value of its members 31 when the remaining are accommodated

and form a smaller clique. For i 2 S, we have bs 2 argmaxs2fes;:::;ng *i(gS), b3 = maxs2fes;:::;ng

*i(g
S), s 2 argmaxs2f1;:::;es$1g *i(egS) and 31 = maxs2f1;:::;es$1g *i(egS).13

In Proposition 2, we show that the set of dominant group networks of size bs is a von Neumann-
Morgenstern farsighted stable set if and only if b3 > 31 when the game satisÖes strong degree

monotonicity.

Proposition 2. Let 1 2 G satisfy Property 1. Then, GFS1 = fgS j s = bsg is a vNM farsighted

stable set i§ b3 > 31.

The intuition for Proposition 2 is as follows. No network in the set gT is indirectly dominated

by another gT
0
since in every path from gT to gT

0
, each member of T has a payo§ of b3 in the Örst

network g0 where some members of T modify the network, and thus does not beneÖt from the

deviation. Thus internal stability is satisÖed. Also, each network g0 outside the set is indirectly

dominated by a network g in the set. To see this, let us construct a path from g0 to g where at

each step in the path, agents with a payo§ smaller than b3 delete their links until a network g00

13For simplicity, we assume that argmaxs)es *i(gS) and argmaxs*es+1 *i(egS) are singleton sets.
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is reached where either bs agents are isolated, or each connected agent has a payo§ greater than
b3. In the Örst case, unconnected agents form a complete component, leading to the exclusion

of the remaining agents who then delete their links to save linking costs. In the second case,

there are less than es connected agents since the payo§ of a connected agent with the smallest
degree in a network with s + es connected agents is smaller than in a clique among s agents
-and is thus smaller than b3- by negative externalities and strong degree monotonicity. In g00,
unconnected agents create links until they all have the same degree as an agent i with the lowest

degree in g00, or until they are completely connected. In the Örst case, agent i has the lowest

degree at the current network. He would be better o§ in the complete network - and thus in

the end network- by negative externalities and strong degree monotonicity. In the other case,

each agent participates since agents with lowest degree have more than n $ es links while the
agents with the highest degree have less than es links. The payo§ of agent i is then smaller than
31 -and thus than b3 by assumption- by negative externalities and strong link monotonicity. At
the current network, the agents with no links in g00 and agent i delete their links. The path

proposed is such that at each step, at least one additional agent cuts his links. After a Önite

number of iterations, bs agents are isolated and form a complete component. The remaining

agents do not participate and delete their useless links. By construction, the path does not

reach a dominant group network of size bs in an intermediate step, as we would then have agents
deleting their links at a network where their payo§ is positive and ending up not participating

in the Önal network. It follows that the condition b3 > 31 is su¢cient for the set GFS1 to be a
vNM farsighted stable set. It is also necessary since a network composed of two cliques of size

s and n$ s is not indirectly dominated by a network in the set when b3 / 31.
In Proposition 3, we show that the set of networks composed of two cliques of size s and

n$ s is a von Neumann-Morgenstern farsighted stable set if and only if b3 > 31 when the game
satisÖes strong link monotonicity and minority economies to scale.

Proposition 3. Let 1 2 G satisfy Properties 1 and 2. The set GFS2 = fg ) gN j g = egS such
that #S = sg is a vNM farsighted stable set if and only if 31 > b3,.

The intuition for Proposition 3 is as follows. No network in the set egT is indirectly dominated
by another egT 0 since in every path from egT to egT 0 , each member of T has a payo§ greater than 31
in the Örst network g0 where some members of T modify the network by negative externalities.

Thus internal stability is satisÖed. Also, each network g0 outside the set is indirectly dominated

by a network g in the set. To show this, we construct a path from g0 to g where at each step in the

path, agents with a payo§ smaller than 31 delete their links until a network g00 is reached where

either s agents are isolated, or each connected agent has a payo§ greater than 31. In the Örst

case, unconnected agents form a complete component, while the agents with the lowest degree

among the remaining agents successively delete their links and then form the second clique. The

payo§ of an agent who is in the small clique in the end network is smaller than 32 at a network

where he deviates, either by minority economies to scale if he deletes links or by strong degree

monotonicity when the second clique is formed. In the second case, unconnected agents create
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links until they all have the same degree as an agent i with the lowest degree in g00, or until they

are completely connected. The payo§ of the agents with less links than agent i is smaller than

31 at the current network by negative externalities and strong degree monotonicity, and delete

their links looking forward to the end network where they are in the large clique. It follows

that the condition 31 > b3 is su¢cient for the set GFS2 to be a vNM farsighted stable set. It is

also necessary since a network composed of one clique of size bs is not indirectly dominated by a
network in the set when b3 + 31.

Propositions 2 and 3 thus establish existence of a von Neumann-Morgenstern farsighted

stable set of networks GFS , where GFS = GFS1 if b3 > 31 while GFS = GFS2 if b3 < 31. The

agents are partitioned into two groups fS&; N n S&g where the size s& of the large group S&

is bs if b3 > 31 or s if b3 < 31. The partition of the agents in a farsighted stable network is

then equivalent to the subgame perfect equilibrium of Blochís (1996) coalition unanimity game.

One could interpret a coalition in the coalition formation approach to be a complete component

in a network formation setting. This interpretation is in line with the applications discussed

in both literatures, as cooperation matters only through the number of partners of agents. For

instance Blochís (1995) model of group formation and Goyal and Joshiís (2003) model of network

formation among agents competing in Cournot both lead to the same proÖle of marginal costs,

and thus to the same equilibrium payo§, when a clique structure in Goyal and Joshi mirrors

a group structure in Bloch. The rules of the coalition unanimity game are as follows. Agents

are ranked according to an exogenous rule of order. The Örst agent proposes the formation of a

coalition. If all members of this proposed coalition agree, then the coalition is formed and can

no longer be dissolved and the game continues in which the Örst agent in the updated ranking

after removing the Örst coalition, makes the next proposal. If one agent rejects the proposal, he

becomes the initiator in the next round. The proposer of a coalition and its potential members

must thus foresee the coalition structure that will eventually prevail in order to decide on the

current coalitional proposal. Yi (1997) shows that ex ante symmetric agents form the partition

fS&; N n S&g in this game provided (i) when 2 coalitions merge, the remaining agents are worse
o§, (ii) a member of a coalition is better o§ if his coalition merges with a larger coalition, (iii) a

member of a coalition is better o§ if he leaves a coalition to join another of larger size, and (iv)

members of any coalition of size s / n=2 do not want to exclude a member. negative externalities
and strong degree monotonicity imply that conditions (i)-(iii) are satisÖed. Whether negative

externalities, strong degree monotonicity and minority economies to scale imply (iv) remains an

open question.14

We now show that minority economies to scale is necessary for our results. Consider N =

f1; 2; :::; 6g Örms competing in quantities. The marginal cost of an agent i depends on his degree
in the network g in the following way: ci(g) = c(ni(g)) where c(0) = 1

2 ; c(1) =
44
100 ; c(2) =

43
100 ; c(3) =

42
100 ; c(4) =

41
100 and c(5) =

81
200 . The linear inverse demand curve is p = 1 $

P
i2N

qi.

14 If not, the partition fS!; NnS!g could be the outcome of a game of network formation among farsighted
agents but not a subgame perfect equilibrium of the coalition unamity game.
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The participation constraints never bind and hence:

qi =
1

n+ 1

"
1$ nc(ni(g)) +

P
j2Nnfig

c(ni(g))

#

The cost of forming a link is equal to " > 0; where " is arbitrarily small. This game satisÖes

negative externalities and strong degree monotonicity. Minority economies to scale is violated

since agents in the group of two Örms prefer to keep the isolated agent without connections

rather than forming a clique with him. Assuming that the marginal cost of a Örm in a coalition

of size s is given by c(s$ 1), the equilibrium coalition structure of the coalition unanimity game

is a partition of the six agents into a group of 3 agents, another of 2 agents and a singleton.

Let g1 = gS1 [ gS2 be a network composed of two cliques S1 = f1; 2; 3g ; S2 = f4; 5g. Abusing
notation we write g1 = f123; 45; 6g : The set of permutations of g1 which do not mutually
indirectly dominate each other is given by G1 = fg1; g2; g3; g4; g5; g6g where:

g1 = f123; 45; 6g

g2 = f123; 46; 5g

g3 = f123; 56; 4g

g4 = f126; 45; 3g

g5 = f136; 45; 2g

g6 = f236; 45; 1g

The set G1 is internally stable. One can see that every other permutation of g1 is indirectly

dominated by a network in G1. It follows that every von Neumann Morgenstern farsighted

stable set G containing solely g1 and permutations of it is a subset of G1. But then, G does not

satisfy external stability as no network in the set indirectly dominates g7 = f16; 23; 24; 35g for
instance. Existence of a vNM farsighted stable set when minority economies to scale is violated

remains an open question.

When dominant group networks are farsighted stable GFS = GFS1, a farsighted stable

network g is also pairwise stable. Indeed, an agent does not Önd it proÖtable to delete a link

from g by strong degree monotonicity, while an isolated agent does not gain by adding a link

since he would remain inactive. When asymmetric cliques are farsighted stable GFS = GFS2,

a farsighted stable network is pairwise stable if two agents from di§erent cliques do not Önd

it proÖtable to add a link as connected agents do not want to cut a link by strong degree

monotonicity.

6 E¢ciency

In this section, we discuss the relationship between the network architecture and welfare for a

game 1 2 G satisfying Properties 3 and 4. A network is e¢cient if it maximizes the sum of
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payo§s of the agents W (g) =
P
i2N *i(g).

DeÖnition 6. A network g 2 G is e¢cient if W (g) +W (g0) for all g0 2 G.

Switch externalities implies that the set of active agents does not shrink after a switch among

strong agents. A switch among strong agents then improves welfare by welfare improving switch.

Welfare improving switch is silent on the e§ect of a switch leading to the exclusion of the agent

whose degree decreases. A switch would in that case weaken an almost inactive agent, and

would then be almost equivalent as reinforcing a single agent. This could harm welfare in some

applications, as is illustrated in the following example.

Example 1. Take the Tullock contest model among n = 11 agents. Suppose the common

valuation for the good is v = 0 and the e§ect of cooperation on valuation is B = 1. Let the

network g be such that agent 1 is connected to all agents, agent 2 is connected to agents 3 and 4

and agent 3 is connected to agent 5, that is g = fi1i2; i1i3; :::; i1i11; i2i3; i2i4; i3i5g. The valuation
of contestants for the prize is given by v1 = 10; v2 = 4; v3 = 3 and vk / 2 for k + 4. Then,

agents 1; 2 and 3 participate and get respectively a payo§ of 31(g) = 5; 003, 32(g) = 0; 288, and

33(g) = 0; 002. Let the network g0 be obtained from g by replacing the link i3i5 by the link i2i5.

Agent 3 does not participate in g0 and payo§s are 31(g0) = 4; 444 and 32(g0) = 0; 555 so that

the welfare decreases. The allocation of the prize is less e¢cient in g0. The probability agent 1

gets the prize falls from 0,71 in g to 0,66 in g0.

Nested split graphs have been introduced in applied mathematics by Cvetkovic and Rowlin-

son (1990) and Mahadev and Peled (1995). Agents in a nested split graph can be decomposed

into t classes such that an agent in class s is connected to each agent in class 1 to t$ s+ 1. If
the network g is a nested split graph with t classes, then Ks(g)>gKr(g) for all r / t$s+1. The
agents in class 1 are connected to every connected agent, so that there is at most one component

in the network. One easily sees that a network is immune to switches if and only if it is a nested

split graph. It follows that the e¢cient network is a nested split graph if agents are active in

every network conÖguration.

Proposition 4. The e¢cient network is a nested split graph if K(g) = N for all g 2 G.

Intuitively, if it was not the case, it would be possible to improve welfare by letting an agent

replace a link by another so that his new partner has more connections than the original one.

For a given network g, let C$(g) be the set of networks g0 where the degree distribution of

the participating agents does not change while the sum of degrees of nonparticipating agents

decreases. Formally, C$(g) = fg0 2 G j nl(g) = nl(g
0) for all l 2 K(g),

P
k2E(g) nk(g) >P

k2E(g) nk(g
0) and maxl2E(g) nl(g) + maxl2E(g) nl(g

0)g. When agents do not participate in
some network conÖguration, an e¢cient network is immune to switches among strong agents,

and minimizes the linking costs given the degree distribution of the participating agents.

Let G be the set of networks satisfying these constraints. Formally,

G = fg 2 G j (i) C$(g) = f;g and (ii) @g0 2 G such that g0 2 S&(g; i; j) for i; j 2 K+(g)g
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In a network g 2 G, nonparticipating agents are not connected among each other and the
connections among highly connected agents form a nested split graph. Let us decompose the

set G into three sets G = G1 [G2 [G3. Participating agents have the same degree in a network
in G1. Strong agents form a clique in a network in G2. Finally, the nested split graph among

strong agents involve more than one class of agents in a network in G3. Formally,

G1 = fg 2 G j K1(g) = K(g)g
G2 = fg 2 G j K1(g)  K(g) and g$NnK+(g) = g

K+(g)g
G3 = fg 2 G j K1(g)  K(g) and g$NnK+(g) 6= gK

+(g)g

We now show that networks in G are either core-periphery or quasi nested split graphs.

Proposition 5 shows that if each participating agent has the same degree in a network g 2 G,
then they should all have the same number of links to other participating agents. In addition, they

should primarily be connected among each other so as to minimize the linking costs. Networks

in G1 are regular networks on a set of agents, ranging from the empty to the dominant group

network, and core-periphery networks where agents in the core form a clique while agents in the

periphery are only connected to those in the core and are not active. Core-periphery networks

range from the dominant group network to the nested split graph with two groups.

Proposition 5. Let g 2 G1. Let K(g) = fi1; i2; :::; ik(g)g be such that ni1(g$E(g)) + ni2(g$E(g)) +
::: + nik(g)(g$E(g)). If ni1(g$E(g)) = k(g) $ 1, then K1(g)>K1(g). Otherwise, if ni1(g$E(g)) <
k(g)$ 1, then ni1(g$E(g)) = ni2(g$E(g)) = ::: = nik+1(g$E(g)), and nik(g$E(g)) 2 fni1(g$E(g))$
1; ni1(g$E(g))g.

The intuition for Proposition 5 is as follows. Let a network g in G1 be such that the

participating agents are not entirely connected among each other. There is then at most one

link from a participating agent to a nonparticipating agent as it would otherwise be possible

to replace two links by one and keep the degree of participating agents una§ected.15 If strong

degree monotonicity holds, G1 is only composed of core-periphery networks. Dominant group

and core-periphery networks where the periphery is completely connected to the core are the

only nested-split graphs belonging to G1. Every other network in G1 is not e¢cient if the set of

participating agents is unchanged after a switch in favor of a participating agent at the expense

of another.

In a network g in G2, the strong agents (those in K+(g)) are completely connected among

each other. We show in Proposition 6 that the network g is a nested split graph if weak

agents (those in Km(g)) are only connected to strong agents. Otherwise, almost all strong

agents are connected to each participating agent, and to nonparticipating agents if there is at

15A link between an agent in the core and a peripheral agent may be needed since participating agents each

have the same degree. Let g 2 G1 be such that each of 5 participating agents have 3 links, then one agent

in the core is connected to a peripheral agent. If N = f1; 2; 3; 4; 5; 6g, an example of such a network is g =
f13; 14; 15; 23; 24; 25; 34; 56g.
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least one link between a nonparticipating agent and a weak agent. Some strong agents are

connected to all connected agents, while others may only be connected to other strong agents

in a nested split graph. There are then at most 7 classes of agents K1(g) = T1nfig, K2(g) = T1,
K3(g) = S1, K4(g) = K+(g)nS1, K5(g) = Km(g), K6(g) = E1(g), K7(g) = E2(g), where

i 2 T1  S1 ) K+(g), and E1(g) [ E2(g) = E(g). If the network g 2 G2 is not a nested split
graph, almost all strong agents are at least connected to all participating agent.

Proposition 6. Let g 2 G2, then
(i) If X $g Km(g), where X 2 fKm(g); E(g)g, then (Km(g) [X)>gK+(g)nfi1g
(ii) If (E(g) [Km(g))?gKm(g), then
(ii.a) Km(g)>gS1 and Km(g)?gS1 for some S1 ) K+(g)

(ii.b) E(g)?gNnT1 for some T1  S1, E(g)>gT1nfig for some i 2 T1

The intuition for Proposition 6 is as follows. If weak agents are only connected to strong

agents, they should be connected to the same set of agents S1 as switches would otherwise

be possible by changing the partner of a weak agent. For the same reason, nonparticipating

agents are connected only to agents that are connected to all the others. A network g in

G2 may involve connections among the weak agents. In that case almost all weak agents are

connected to almost all strong agents to avoid a switch. Indeed, if two weak agents are not

connected to two strong agents, a switch could be obtained replacing a link among two weak

agent and another link among two strong agents by a link between the two weak agents and

the same strong agent. It follows that the strong agent with the lowest degree -i1- should

have some connections towards other agents since he has more links than weak agents. Thus,

all weak agents should be connected to almost all strong agents to avoid switches. Indeed, it

would otherwise be possible to replace a link involving i1 by another involving another strong

agent. There may also be connections between weak agents and nonparticipating agents in the

network g. Nonparticipating agents should then be connected to almost all strong agents. For

example, if the participating agents form a clique, then the strong agent with lowest degree

i1 should be connected to nonparticipating agents since he has more links than weak agents.

Each nonparticipating agent connected to i1 should be connected to all strong agent as a switch

would otherwise be possible. Thus, if a nonparticipating agent is not connected to a strong

agents other than i1, it would be possible to replace a link involving i1 by this missing link.

The nested split graph g& that connects the strong agents in a network g 2 G3 contains more
than one class of agents. Proposition 7 shows that networks in G3 are nested split graphs. Weak

agents are only connected to strong agents, while nonparticipating agents are only connected to

agents that are connected to all participating agents.

Proposition 7. Let g 2 G3. Then,
(i) Km(g)>gS1 and Km(g)?gNnS1 for some S1  K1(g$NnK+(g))
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(ii) E(g)?gNnT1 for some T1  S1, E(g)>gT1nfig for some i 2 T1, and if niE (g) > njE (g)
for iE ; jE 2 E(g), then E(g)nfjEg>gfig.

The intuition for Proposition 7 is as follows. Let g be a network in G3, and suppose g& is the

set of links connecting agents in K+(g) under the network g. The network g& is a nested split

graph with more than one class of agents. Let Km0(g&) be the set of agents from K+(g) with

the lowest degree in g&. Agents from this class are connected to those in K1(g&), and not to

those in K2(g&); :::;Km0(g&) since g& is a nested split graph. Since they are not connected among

each other, they cannot be connected to nonparticipating agents. They are not connected either

to the weak agents as those should then be connected to all agents in K+(g), and a switch

would then be possible.16 The weak agents are not connected to all the agents in K1(g&) as

they would then have a higher degree than agents in Km0(g&). In turn, this implies that they

are connected to a subset S1 of agents in K1(g&), and not to others. If nonparticipating agents

have some connections, they are completely connected to some agents T1 who are connected to

all the other agents.

The e¢cient networks of a game in 1 2 G satisfying Properties 3 and 4 belong to the set of
network G. Networks in G other than nested split graphs are not immune to switches at the

expense of a weak agent. They are thus not e¢cient if the agent whose degree is reduced by a

switch remains active. Otherwise a network in G may not be e¢cient because another network

in G generates a higher welfare.

When agents are active in every network conÖguration, the complete network and the dom-

inant group network of size n $ 1 are the only networks that may be both stable and e¢cient.
E¢cient networks are nested split graphs. If there is more than one class of agents in an e¢cient

network, the agents in the lower classes are not connected but they have the same degree and

thus would be better o§ by forming a link by strong degree monotonicity. In a stable network

with more than one clique, welfare could be increased by changing the partner of an agent in a

small clique.

If agents may prefer not to participate, inactive agents are not connected in a stable network,

while they could be connected to the most connected agents in an e¢cient network. Stable

asymmetric cliques are ine¢cient. Indeed, welfare could be improved by cutting a link in the

two cliques, and adding two links between the agents in the small clique that are not connected

and an agent in the large clique.

7 Conclusion

In this paper, we have studied the formation of bilateral agreements when cooperation between

pairs of agents creates negative externalities on the remaining ones. This occurs for example
16To see this, notice that if weak agents are connected to agents in K1(g

!), they cannot be completely connected

in g as they would otherwise have more links than agents in Km0(g
!). It is then possible to form a link among

weak agents, cut the links between those agents and agent i in Km0(g
!), and add a link between i and some other

agent j in K+(g) to whom he is not connected, leading to a network g0 2 S(g; j; i).
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when Örms share patents through cross licencing agreements or share the cost of joint R&D

projects, when countries sign bilateral trade agreements, etc. In these applications, the number

of competitors is usually rather small and the stakes at hand are important. This motivates

us to depart from the standard stability notions in network formation that assume that agents

are myopic. Rather, we analyze the networks formed by farsighted agents, that is by agents

who forecast how other agents would react to their choice of partners, and take a decision by

comparing the current network to the end network that forms when other agents have further

deviated. We use the notion of von Neumann Morgenstern farsighted stable set, which can be

interpreted as a standard of behavior when agents are farsighted.

We show that there always exists a farsighted stable set in a game of network formation

among rivals satisfying strong degree monotonicity and minority economies to scale. It is either

composed of dominant group networks, where isolated agents are excluded from the market, or of

networks composed of two asymmetric cliques. Our results thus support two empirically relevant

properties of observed R&D and cross-licensing networks: barriers to entry and clustering.

We then show that the e¢cient network is a nested split graph when the game satisÖes

welfare improving switch if agents are active in every network. Otherwise, if agents may prefer to

leave the market in some network conÖgurations, the e¢cient networks are either (quasi-)nested

split graphs or core-periphery networks when welfare improving switch and switch externality

are satisÖed. As a result, the structure of stable and e¢cient networks is in general di§erent,

resulting in a tension between the networks that are formed by the agents and those that would

produce the highest sum of payo§s.

The four properties we impose are satisÖed in many models of network formation among

rivals. We show it is the case in Goyal and Joshi (2003)ís model of R&D network formation in

Cournot oligopoly, and in Grandjean et al. (2013)ís model of network formation in a Tullock

contest.

We conclude this paper with some directions for future research. First, we have identiÖed

one farsighted stable set out of possibly many. We do not know at this stage whether other

candidates exist, and if some exist, identifying all the candidates is probably not a realistic task.

One could restrict the candidates to be considered, for example by only considering the sets

composed of one network and its permutations. One could also analyze whether our properties

could be strenghtened to guarantee that our candidate is unique.

Second, one could go in the other direction and study which networks would form if our

properties were weakened. In particular, one could ask whether a set composed of a k-cliques

network and its permutations could be farsightedly stable if minority economies to scale were

not satisÖed.

Third, it would be interesting to analyze the case of positive externalities, where the for-

mation of an agreement between two agents beneÖt the other agents. This occurs for instance

in Belleáamme and Bloch (2004)ís model of market sharing agreements, where Örms may com-

mit not to compete in each otherís market, thereby reducing competition in these markets and
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increasing the proÖt of outsiders.
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8 Appendix

Proof of Lemma 1.
(P1) Let g 2 G. Let S ) Kl(g) ) K(g). For all i 2 S, let ni(g0) = ni(g) + 1 and for all

i =2 S, let ni(g0) = ni(g). We show that 3i(g0)$3i(g) = qi(g0)2$qi(g)2 > 0 for i 2 S if i 2 K(g0).
Let us write qi(g0)2$ qi(g)2 = (qi(g0)$ qi(g))(qi(g0)+ qi(g)). We show that qi(g0)$ qi(g) > 0.

Notice that if S ) K(g), then K(g0) ) K(g).
By negative externalities, we have K(g0) ) K(g).
(i) If K(g) = K(g0), then qi(g0)$ qi(g) = H(k(g)$ (s$ 1))=(k(g) + 1) > 0
(ii) If K(g0)  K(g), then let *i be the unique Nash equilibrium payo§ of agent i in a game

among the agents in K(g0) who have the same marginal cost as in the network g. By negative

externalities, *i > *i(g) for all i 2 K(g0). From step 1, we know that *i(g0) > *i.

(P2) Let g = gT [ gS , where T \ S = ;, T [ S  N , and s / (n $ 1)=2 < t. We show

that if S ) K(g), then *i(g0) > *i(g) where g0 = gT [ gS[fjg and g = gT [ gS[fjg for i 2 S,
j 2 NnfS [ Tg.

We have 3i(g0) > 3i(g) if

(=$ H0) + k(g0)Hs$ t(t$ 1)H $ s2H
k(g0) + 1

>
(=$ H0) + k(g)H(s$ 1)$ t(t$ 1)H $ (s$ 1)2H

k(g) + 1

(i) Suppose that K(g) = K(g0). Then, 3i(g0) > 3i(g) if
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k(g)s$ t(t$ 1)$ s2 > k(g)(s$ 1)$ t(t$ 1)$ (s$ 1)2

s < t+ 1

(ii) Suppose that K(g) = N and K(g0) = T [ S [ fjg. Then, 3i(g0) > 3i(g) if

1

t+ s+ 2

&
(=$ H0) + (t+ s+ 1)Hs$ t(t$ 1)H $ s

2H
'

>
1

n+ 1

(
(=$ H0) + nH(s$ 1)$ t(t$ 1)H $ (s$ 1)

2H
)

which can be rewritten as

1

t+ s+ 2

*+
n$ t$ s$ 1

n

,&
(=$ H0)$ t(t$ 1)H + Hs$ s

2H
'
+

+
n$ t$ s$ 1

n

,
[nH $ (2s$ 1)H]

-
> 0

Since (=$ H0)$ t(t$ 1)H + Hs$ s2H > 0, 3i(g0) > 3i(g) when nH $ (2s$ 1)H > 0, which is
satisÖed when 2s < n+ 1.

(iii) Suppose that K(g) = S [ T and K(g0) = T [ S [ fjg. Then, 3i(g0) > 3i(g) if

1

t+ s+ 2

&
(=$ H0) + (t+ s+ 1)Hs$ t(t$ 1)H $ s

2H
'

>
1

t+ s+ 1

(
(=$ H0) + (t+ s)H(s$ 1)$ t(t$ 1)H $ (s$ 1)

2H
)

which can be rewritten as

1

t+ s+ 2

*
$
+

1

t+ s+ 1

,
((=$ H0) + (t+ s)H(s$ 1)$ t(t$ 1)H $ (s$ 1)

2H) +
(t+ s+ 1)

t+ s+ 1
(t+ 1)H

-
> 0

We have that (=$ H0)$ Hs(s$ 1)$ t(t$ 1)H < 0. Hence the inequality holds if

(t+ s+ 1)(s$ 1) < (t+ s+ 1)(t+ 1)

Which is always the case whenever s < n
2 < t.

(P3)We show that
P
i2N 3i(g

0) >
P
i2N 3i(g) if g

0 2 S(g; i; j), ni(g) + nj(g) and j 2 K(g0).
(i) K(g0) = K(g). We have shown the result holds when i; j 2 K+(g). Suppose j 2 Km(g).

Then K(g) ) K(g0) since j 2 K(g0) and nk(g0) > nj(g0) for k 2 K(g)nfjg. Also, K(g0) ) K(g)
since nl(g) = nl(g0) for all l =2 K(g) and

P
k2K(g) nk(g) =

P
k2K(g) nk(g

0).

(ii) 3l(g) = 3l(g + ij $ jk) for all l 2 K(g)nfi; kg since K(g) = K(g0), nl(g) = nl(g
0) and

P
k2K(g)nflg nk(g) =

P
k2K(g)nflg nk(g

0).

(iii) 3i(g0)$ 3i(g) = (qi(g0)$ qi(g))(qi(g0) + qi(g)) = H(qi(g0) + qi(g))
(iv) 3j(g0)$ 3j(g) = (qj(g0)$ qj(g))(qj(g0) + qj(g)) = $H(qj(g0) + qj(g))
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(v)
P
i2N 3i(g

0) >
P
i2N 3i(g) since qi(g

0) > qi(g) + qj(g) > qj(g0).

(P4) We show that 3l(g0) = 3l(g) for g0 2 S(g; i; j) if i; j 2 K+(g), ni(g) + nj(g) and

l 6= i; j.
(i) We have K(g) = K(g0).

The participation constraint of an agent l 6= i; j is unchanged in the two networks g and

g0: ql(g) > 0 , ql(g
0) > 0 , nl(g) >

P
k2N :nk(g))nl(g)

nk(g)$(1$20)=2
#fk2N :nk(g)+nl(g)g

. Since nj(g0) + nl(g
0) for

l 2 Km(g) and l 2 K(g0), then j 2 K(g0).
(ii) 3l(g) = 3l(g + ij $ jk) for all l 2 K(g)nfi; kg since K(g) = K(g0), nl(g) = nl(g

0) and
P
k2K(g)nflg nk(g) =

P
k2K(g)nflg nk(g

0).

!
Proof of Lemma 2.

(P1) Let g 2 G. Let S ) Kl(g) ) K(g). For all i 2 S, let ni(g0) = ni(g) + 1 and for all

i =2 S, let ni(g0) = ni(g). We show that 3i(g0) > 3i(g) for i 2 S.
By negative externalities, we have K(g0) ) K(g).
(i) If K(g) = K(g0), then pi(g0) = 1 $ (k(g) $ 1)=(s +

P
j2K(g)(vi(g) + B)=vj(g)) > pi(g) =

1$ (k(g)$ 1)=(s+
P
j2K(g) vi(g)=vj(g)).

(ii) If K(g0)  K(g), then let 3i be the unique Nash equilibrium payo§ of agent i in a game

among the agents in K(g0) who have the same valuation as in the network g. By negative

externalities, 3i > 3i(g) for all i 2 K(g0). From step (i), we know that 3i(g0) > 3i.

(P2) Let g = gT [ gS , where T \ S = ;, T [ S  N , and s / (n$ 1)=2 < t. We show that
if S ) K(g), then 3i(gT [ gS[fjg) > 3i(gT [ gS[fjg) for i 2 S, j 2 NnfS [ Tg.

(i) Suppose that K(g) = N . Then, for i 2 S, we have

3i(g) = (v + (s$ 1)B)

"
1$

n$ 1
s+ (v + (s$ 1)B)(y + 1

v )

#2
,

where y = t
v+(t$1): +

n$t$s$1
v :

(i.a) If K(g0) = N . Then

3i(g
0) = (v + sB)

*
1$

n$ 1
s+ 1 + (v + sB)y

-2

We then have that 3i(g0) > 3i(g) when yv + 1 > s.

Since K(g) = N , we have

v +
n$ 2
s

v+(n$1): + y
>
n$ 2
s
v + y

yv > n$ 2$ s
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This implies that yv + 1 > s whenever n$ s$ 1 > s, which is satisÖed when s / n$1
2 .

(i.b) If K(g0) = T [S [fjg  N , then let 3i be the unique Nash equilibrium payo§ of agent

i in a game among the agents in K(g0) who have the same valuation as in the network g. By

negative externalities, 3i > 3i(g) for all i 2 K(g0). From step (i.a), we know that 3i(g0) > 3i.

(ii) Suppose that K(g) = T + S. Then, for i 2 S we have:

3i(g) = (v + (s$ 1)B)

2

41$ t+ s

(v + (s$ 1)B)
0

s
v+(s$1): +

1
v +

t
v+(t$1):

1

3

5
2

where v = t+s$1
t

v+(t+1)/+
s

v+(s+1)/
> v. We also have that

3i(g
0) = (v + sB)

2

41$ t+ s

(v + sB)
0
s+1
v+s: +

t
v+(t$1):

1

3

5
2

Hence, 3i(g0) > 3i(g) if v < (t$ 1)2B + stB.
Since j =2 K(g), we have v < (t$ 1)2B < (t$ 1)2B + stB.

(P3) We show that 3l(g0) + 3l(g) for g0 2 S(g; i; j) if i; j 2 K+(g), ni(g) + nj(g) and l 6= j.
(i) K(g) ) K(g0) since v;(k(g);g) >

(k(g)$1)
k(g) hk(g)(g) >

(k(g)$1)
k(g) hk(g)(g

0), where the Örst in-

equality holds since agent J(k(g); g) participates in the contest under network g and the second

holds since the harmonic mean of a set of numbers is reduced through a mean preserving spread

on these numbers.

(ii) pl(g) < pl(g
0) since (1 $ (k(g)$1)hk(g)(g)

k(g)vl(g)
) < (1 $ (k(g)$1)hk(g)(g0)

k(g)vl(g)
) < (1 $

(k(g0)$1)hk(g0)(g
0)

k(g0)vl(g)
)

where the Örst inequality holds since the harmonic mean of a set of numbers is reduced through

a mean preserving spread on these numbers, and the second holds by application of Lemma 1

in Grandjean et al. (2014).

(P4)We show that
P
i2N 3i(g

0) >
P
i2N 3i(g) if g

0 2 S(g; i; j), ni(g) + nj(g) and j 2 K(g0).
In Grandjean et al. (2014), it is shown that the sum of payo§ in a given network g is given

by W (g) =
P
p&i (g)vi(g) $

P
e&i (g), where

P
p&i (g)vi(g) =

P
vi(g) $ (k(g) $ 1)hk(g)(g), whileP

e&i (g) =
(k(g)$1)
k(g) hk(g)(g).

(i) K(g) ) K(g0) since j 2 K(g0), and (k(g)$1)
k(g) hk(g)(g) >

(k(g)$1)
k(g) hk(g)(g

0).

(ii)
P
i2N e

&
i (g) >

P
i2N e

&
i (g

0)

(ii.a) If K(g) = K(g0), the result holds since the harmonic mean of the valuation of partici-

pating agents is lower in g0 than in g.

(ii.b) If K(g)  K(g0), the result holds since for j 2 K(g0)nK(g), we have
P
i2N e

&
i (g) +

vj >
P
i2N e

&
i (g

0).

(iii) W (g0) > W (g)

(iii.a) If K(g) = K(g0), then this holds by (ii).

(iii.b) If K(g) ) K(g0), then
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W (g0)$W (g) =
P
j2K(g0)nK(g) vj(g)$ (k(g

0) + 1)
P
i2N e

&
i (g

0) + (k(g) + 1)
P
i2N e

&
i (g).

=
P
j2K(g0)nK(g) vj(g)$ (k(g

0)$ k(g))
P
i2N e

&
i (g

0)+ (k(g)+ 1)(
P
i2N e

&
i (g)$P

i2N e
&
i (g

0))

For all j 2 K(g0)nK(g), we have vj(g0) >
P
i2N e

&
i (g

0) by the participation constraint of

j. Thus,
P
j2K(g0)nK(g) vj(g) $ (k(g

0) $ k(g))
P
i2N e

&
i (g

0) > 0 and the result then holds since

(
P
i2N e

&
i (g)$

P
i2N e

&
i (g

0)) > 0.

!

In the proof of Propositions 2 and 3, we note by S1(g) = fi 2 N j 3i(g) + maxfb3; 31gg the
set of agents whose payo§ in the network g is greater than the maximal per capita payo§ in a

2-clique network, and by S2(g) = fi 2 N j 3i(g) < maxfb3; 31gg the remaining agents. We Örst

introduce some lemmas.

Lemma 3. Let 1 2 G be such that P1 is satisÖed. We have K(egS) = S if s + es.

Proof. Suppose on the contrary that K(egS) = N . Let K ) S be such that k = s$ es. We have
K(egSnK) = N by negative externalities and P1, a contradiction since s$ k = es.

Lemma 4. Let 1 2 G be such that P1 is satisÖed. Let g 2 G. We have 3i(g) / 3i(gN(g)) for
i 2 N$(g).

Proof. Let g 2 G. Let i 2 N$(g). Let g0 be such that for all k 2 N(g), we have dk(g0) = di(g).
We have 3i(g) / 3i(g

0) / 3i(g
N(g)), where the Örst inequality holds by negative externalities

and the second by P1.

Lemma 5. Let 1 2 G be such that P1 is satisÖed. Let b3 > 31. Let g 2 G be such that s1(g) + bs.
Then

(i) ni(g) + s1(g)$ 1 for all i 2 S1(g)
(ii) ni(g) + s1(g) for all i 2 S1(g) if s1(g) > bs or k(g) > s1(g).

Proof. Let b3 > 31. Let g be such that s1(g) + bs.
(i) By contradiction, suppose that ni(g) < s1(g) $ 1 for some i 2 S1(g). Without loss of

generality, suppose i 2 argminj2S1(g) nj(g). Let g
0 be such that dk(g0) = di(g) for all k 2 S1(g)

and dk(g0) = 0 for all k 2 S2(g). We have 3i(g) / 3i(g
0) < 3i(g

S1(g)) / b3, where the Örst
inequality holds by negative externalities and the second by P1. This contradicts i 2 S1(g).
Thus, nj(g) + s1(g)$ 1 for all i 2 S1(g).

(ii) Suppose that s1(g) > bs or k(g) > s1(g). By contradiction, suppose that ni(g) < s1(g)

for some i 2 S1(g), which by (i) implies ni(g) = s1(g) $ 1, and i 2 argminj2S1(g) ni(g). We
have 3i(g) / 3i(g

S1(g)) / b3. The Örst inequality holds by negative externalities, strictly if
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k(g) > s1(g), while the second inequality holds by deÖnition of b3, strictly if s1(g) > bs. This
contradicts i 2 S1(g). Thus, ni(g) + s1(g) for all j 2 S1(g).

Proof of Proposition 2.

Let G = fgS j s = bsg.

((=) Suppose b3 > 31. We show that G satisÖes internal and external stability.

Internal Stability

Let g; g0 2 G. By contradiction, suppose g 5 g0. Let g0; g1; :::; gK be a sequence of networks

going from g0 = g to gK = g0 such that for each t = 1; 2; :::;K, coalition St$1 can enforce the

network gt over gt$1. Since g0 6= g [ h for some h ) gNnN(g), agents from N(g) modify the

current network at some point in the sequence. Let gk be the Örst network in the sequence

where N(g) \ Sk 6= ;. We have 3i(gK) / 3i(gk) = b3 for all i 2 N(g) \ Sk since K(gk) = K(g),
contradicting g 5 g0.

External Stability

Let g0 =2 G. Let g0 = g0. In g0 and in the successive networks, let the agents who are not

participating in the current network delete their links. Let g be the network reached this way.

Formally, for all k + 0, let gk+1 = gk+N(g)nK(g) . Let bg = gK where gK satisÖes gK = gK+1. By

construction, N(bg) = K(bg). If bg 2 G, go to the Önal step. Otherwise, let g00 = bg.

Initial step: If n0(g00) < n$ bs, go to step (i); if n$ bs / n0(g00) / n$ es, go to step (ii) ; if
n$ es+ 1 / n0(g00) / bs, go to step (iii) and if n0(g00) + bs go to step (iv).

Step (i): n0(g00) / n$ bs

(i.a) If s1(g00) < bs, then let the agents in T ) S2(g
00) \ N(g00) with t = n $ bs + 1 $ n0(g00)

delete their links, leading to g000 = g00$T . We have n
0(g000) + n$ bs+ 1.17 Let g00 = g000, and go to

the initial step.

(i.b) If s1(g00) + bs, then fig $g00 NnS1(g00) for each i 2 S1(g00) since g00 =2 G by Lemma 5.

An agent from S1(g
00) has at least one link with an agent in S2(g00). Let g = g00$S2(g00).

(i.b.1) If s1(g) = bs and gS1(g) * g, then in g00 let the agents from S2(g
00) delete their links

leading to the network g. In g, let the agents in S2(g) delete their links to reach the network

g000 = g$S2(g). Notice that ni(g
000) < bs$ 1 for i 2 argminj2S1(g) nj(g000) since N(g000) ) S1(g) and

gS1(g) * g. It follows that i 2 S2(g000). Let agent i delete his links to reach g0000 = g000$i. Each

agent who deviates in a network in the sequence from g00 to g0000 cuts all his links. There is at

17We have n0(g000) = n" bs+ 1 if Ni(g
00) * T for all i 2 N(g00)nT . Otherwise, n0(g000) > n" bs+ 1.
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most n$ bs+ 1 such agents, and there are at least n$ bs+ 1 unconnected agents in the network
reached. Let g00 = g0000 and go to the intitial step.

(i.b.2) If s1(g) = bs and gS1(g) ) g, then in g00 let the agents from S2(g
00) delete their links

but the link i1i2 where i1 2 S1(g) and i2 2 S2(g00)\N(g00) leading to the network g000 = g+ i1i2.
Then, let the agents from S2(g)nfi2g delete their links in order to reach the network g0000 =
gS1(g) + i1i2. Notice that S1(g0000) = fi1g. Then, let i2 and j 2 S1(g)nfi1g delete their links.
The network reached this way is g00000 = gS1(g)nfjg. Notice that S1(g000) ) S1(g) [ fi2g so that
S2(g)nfi2g ) S2(g000)nfi2g. Thus, the agents deleting a link in g000 have a payo§ smaller than b3.
Each agent who deviates in a network in the sequence from g00 to g00000 cuts all his links. There is

at most n$bs+1 such agents, and there is n$bs+1 unconnected agents in the network reached.
Let g00 = g00000 and go to the initial step.

(i.b.3) If s1(g) 6= bs, then in g00 let the agents from S2(g
00) delete their links leading to the

network g. Let g00 = g and go to the intitial step.

Step (ii): n$ bs / n0(g00) / n$ es

Let i 2 N$(g00). We have i 2 S2(g00) since 3i(g00) / 3i(gN(g)) < b3 where the Örst inequality
holds by Lemma 4, and the second by deÖnition of b3. Let agent i delete all his links leading to
g000 = g00$i. Let g

00 = g000 and go to the initial step.

Step (iii): n$ es+ 1 / n0(g00) < bs

Let the agents from N0(g00) form a component where agent k 2 N0(g00) has either n $ 1
or n links while each agent in N0(g00)nfkg has d links, where d =minfnl(g00); n0(g00) $ 1g for
l 2 N$(g00). Let g000 be the network reached this way.

(ii.a) If minfnl(g00); n0(g00)$ 1g = nl(g00), then 3l(g000) < 3l(gNnfkg) / b3. The Örst inequality
holds by Lemma 4, and the second by deÖnition of b3. In g000, let flg [N0(g00) delete their links

leading to g0000 = g00$l. Thus, n
0(g0000) + n0(g00)+ 1. Then, let g00 = g0000 and go to the intitial step.

(ii.b) If minfnl(g00); n0(g00) $ 1g = n0(g00) $ 1, let the agents from N0(g00) form a complete

component. Let i 2 N$(g00). We have 3i(g000) / 3i(egN(g
00)) / 31 < b3. The Örst inequality holds

by negative externalities and strong degree monotonicity, and the second by deÖnition of 31. In

g000, let fig [ N0(g00) delete their links leading to g0000 = g00$i. Thus, n
0(g0000) + n0(g00) + 1. Let

g00 = g0000 and go to the initial step.

Step (iv): n0(g00) + bs

Let g& = g00. Let D be the set of agents who deviate in a network in the sequence from bg to
g&. By construction, d / bs. In g&, let the agents from D and bs$ d agents from N0(g00)nD form

a completely connected component in order to reach g000. In g000, the agents with less than bs$ 1
links do not participate. They delete their links, leading to the network g0000 2 G. Then go to
the Önal step.
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Final Step
The Önal step is either is reached directly by letting nonparticipating agents cut their links,

or it is reached from step (iv). The set of unconnected agents is strictly larger after implementing

the modiÖcations of steps (i), (ii), or (iii). As a consequence, the algorithm reaches step (iv)

with probability 1 if passes through the initial step. If an agent modiÖes the network at some

point in the sequence, he is either deleting links in a network in which he is not participating,

or he has a payo§ stricly smaller than b3 in the current network and is looking forward to get b3
in the end network.

()) Suppose b3 / 31. We show that G does not satisfy external stability. Take g0 = egS such
that #S = s. By contradiction, suppose g0 5 g for some g 2 G. Let g0; g1; :::; gK be a sequence

of networks going from g0 = g
0 to gK = g such that for each t = 1; 2; :::;K, coalition St$1 can

enforce the network gt over gt$1. Since g0 * g, agents from S modify the current network at

some point in the sequence. Let gk be the Örst network in the sequence where S \ Sk 6= ;. We
have 3i(gK) = b3 / 31 / 3i(gk) for all i 2 N(g)\ Sk where the last inequality holds by negative
externalities, contradicting g0 5 g.

!

Lemma 6. Let 1 2 G be such that P1 is satisÖed. Let g 2 G. Let i 2 N$(g). If ni(g) +
n0(g) $ 1, let g0 = g [ gN0(g). If ni(g) < n0(g) $ 1, let g0 = g [ h where h ) gN

0(g) such that

nj(g
0) 2 fni(g)$1; ni(g)g for some j 2 N0(g) while nk(g0) = ni(g) for all k 2 N0(g)nfjg. Then

3i(g
0) / 31, with strict inequality if g0 6= egS for s = s.

Proof. (i) Let g 2 G be such that ni(g) + n0(g)$ 1 for i 2 N$(g). Let g0 = g [ gN0(g). Then

3i(g
0) / 3i(g

00) / 3i(egN(g)) / 31, where g00 = h00 [ gN0(g), and h00 ) gN(g) such that

nj(g
00) 2 fni(g) + 1; ni(g)g for some j 2 N(g) while nk(g00) = ni(g) for all k 2 N(g)nfjg. The

Örst inequality holds by negative externalities, the second by P1, and the third by deÖnition

of 31. If n(g) 6= s, the last inequality holds strictly, while if n(g) = s and g 6= gN(g), then

ni(g
0) < n(g)$ 1 and the second inequality holds strictly.
(ii) Let g 2 G be such that ni(g) < n0(g) $ 1 for i 2 N$(g). Let g0 = g [ h where

h ) gN
0(g) such that nj(g0) 2 fni(g) $ 1; ni(g)g for some j 2 N0(g) while nk(g0) = ni(g) for

all k 2 N0(g)nfjg. Then 3i(g0) / 3i(g
00) < 3i(g

Nnfkg) / 31 for k 6= i, where g00 is such that

where g00 = h00 [ h, and h00 ) gN(g) such that nj(g00) 2 fni(g) + 1; ni(g)g for some j 2 N(g)
while nk(g00) = ni(g) for all k 2 N(g)nfjg. The Örst inequality holds by negative externalities,
the second by negative externalities and P1, and the third by deÖnition of 31.

Lemma 7. Let 1 2 G be such that P1 and P2 are satisÖed. Let g = gS [ h where s = s and

h  gNnS. Then 3i(g) < 32 for i 2 N$(g).
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Proof. Let g = gS [ h where s = s and h  gNnS . Let i 2 N$(g). Let h0 ) gN(g)nS be such that
nk(h

0) 2 fni(g); ni(g) + 1g for some k 2 N(g)nS and nj(h0) = ni(g) for all j 2 N(g)n(S [ k).
Then 3i(g) / 3i(gS [ h0) / 3i(gS [ gN(g)nS) / 3i(gS [ gNnS), where the Örst inequality holds
by negative externalities, the second by P1 and the third by P2. Since h  gNnS , at least one
inequality holds strictly.

Proof of Proposition 3

Let G = fg ) gN j g = egS such that #S = sg.

((=) Suppose 31 > b3. We show that G satisÖes internal and external stability.

Internal Stability

Let g; g0 2 G. Let g = egS with s = s. By contradiction, suppose g 5 g0. Let g0; g1; :::; gK be

a sequence of networks going from g0 = g to gK = g0 such that for each t = 1; 2; :::;K, coalition

St$1 can enforce the network gt over gt$1. Since Ni(g0) * Ni(g) for some i 2 S, agents from S

modify the network at some point in the sequence. Let gk be the Örst network in the sequence

where S\Sk 6= ;. We have gk = gS[h where h ) gNnS . Thus, 3i(gK) / 3i(gk) for all i 2 S\Sk
by Property 2, contradicting g 5 g0.

External Stability

Let g0 =2 G. We construct a sequence of networks going from g0 = g0 to gK = g 2 G such that
for each t = 1; 2; :::;K, coalition St$1 can enforce the network gt over gt$1 and 3i(gT ) > 3i(gt$1)

for all i 2 St$1. Let H(g0) 2 G be the unique network reached by successively deleting all the

links of the agents with a payo§ strictly smaller than 31. Formally, let g0 = g0. For all k + 0,
let gk+1 = gk+S2(gk) . Let H(g

0) = gK where gK satisÖes gK = gK+1.

(i) If s1(H(g0)) / n$ s. Let g0 = g0. For all k + 0, let gk+1 = gk+S2(gk) . Let L be the smallest
integer such that s1(gL+1) / n$ s. For k = 0; 1; :::; L$ 1, let the agents in S2(gk) successively
delete their links, leading to the network gL. Let the agents from T ) S2(gL+1)nS2(gL), where
t = s$ s2(gL) delete their links in gL. Then let the agents from T and S2(gL) form a strongly

connected component, leading to the network g00 = gS [ g0$S where S = T [S2(gL). Let g
0 = g00

and go to step (iii).

(ii) If n $ s < s1(H(g0)) < s. For k = 0; 1; 2; :::, let the agents in S2(gk) successively delete
their links, leading to the network g00 = H(g0). Then add links between agents in N0(g00) in order

to build the network g000 where nj(g000) 2 fd $ 1; dg for j 2 N0(g00) while nk(g000) = d for all

k 2 N0(g00)nfjg, where d = minfn0(g00) $ 1; nl(g00)g for l 2 N$(g00). We have 3i(g000) < 31 by

Lemma 6. Since nk(g000) / ni(g000) for all k 2 N0(g00), we have fig[N0(g00) ) S2(g000). Let agent
i and those in N0(g00) delete their links to reach g0000 = g00$i. Let g

0 = g0000. If s1(H(g0)) / n $ s,
go to step (i) while if n$ s < s1(H(g0)) < s, repeat step (ii).
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(iii) If s1(H(g0)) = s, g0 = gS [ h where s = s and h ) gNnS . Let g0 = g0. In a network gk,
let i 2 N$(gk)nS delete his links leading to gk+1 = gk+i . We have 3i(gk) < 32 by Lemma 7. Let
gL be such that gL = gL+1. By construction, gL = gS . Then, the agents in NnS add each link
between them leading to g& = gS [ gNnS , and go to the end step (vii).

(iv) If s1(H(g0)) = s, g0 = gS [ h where s = s and h * gNnS . Then i1i2 2 g0 for i1 2 S, i2 2
NnS. In g0 and in the successive networks, the agents with a payo§ smaller than 31 delete their
links but the link i1i2 in order to reach g00 = gS + i1i2. Let g0 = g0. Let gk+1 = gk+S2(gk) + i1i2.

Let L be such that gL+1 = gL. By construction, gL = gS + i1i2, and each agent cutting a

link in the path from g0 to gL has a payo§ smaller than 31.18 In g00 = gS + i1i2, agents from

NnS add each link between them leading to g000 = egS + i1i2. By negative externalities, we
have Nnfi1g ) S2(g

000). Let the agents from NnS and those from T ) S2(g
000)n(NnS) where

t = 2s $ n delete their links, and then add each link between them, leading to the network
g0000 = g(NnS)[T [ g0$(NnS)[T . Let g

0 = g0000 and go to step (iii).

(v) If s1(H(g0)) = s and H(g0) 6= gS . Let g0 = g0. In g0 and in the successive networks gk,

let the agents from S2(gk) delete their links leading to gk+1 = gk+S2(gk) . This eventually leads

to the formation of the network g00 = H(g0). Notice that nl(g00) < s $ 1 for l 2 N$(g00) since

g00 6= gS and n(g00) = s. Then, let the agents from S2(g
00) add links between them in order

to build the network g000 where nj(g000) 2 fd $ 1; dg for j 2 S2(g00) while nk(g000) = d for all

k 2 S2(g00)nfjg, where d = minfs2(g00) $ 1; nl(g00)g. We have 3i(g000) < 31 by Lemma 6. Let

g0 = g000. If s1(H(g0)) / n$ s, go to step (i) while if n$ s < s1(H(g0)) < s, go to step (ii).

(vi) If s1(H(g0)) > s. Let g0 = g0. In g0 and in the successive networks gk, let the agents

from S2(gk) delete their links leading to gk+1 = gk+S2(gk) . This eventually leads to the formation

of the network g00 = H(g0). Let i 2 N$(g00). Then, let the agents from S2(g
00) add links between

them in order to build the network g000 where nj(g000) 2 fd$1; dg for j 2 S2(g00) while nk(g000) = d
for all k 2 S2(g00)nfjg, where d = minfs2(g00)$ 1; nl(g00)g for l 2 N$(g00). We have 3i(g000) < 31
by Lemma 6.

(vi.a) If s1(H(g000)) > s, let g0 = g000. In g0 and in the successive networks gk, let the agents

from S2(gk) delete their links leading to gk+1 = gk+S2(gk) . This eventually leads to the formation

of the network g0000 = H(g000). Let g0 = g0000 and repeat step (vi)

(vi.b) If s1(H(g000)) = s and H(g000) = gS for s = s, then ij 2 g000 for j 2 S.19 Let g0 = g000.

In g0 and in the successive networks gk, let the agents from S2(gk) delete their links but the

link ij leading to gk+1 = gk+S2(gk) + ij. This eventually leads to the formation of the network

g0000 = gS + ij. Then let g0 = g0000 and go to step (iv).

18 Indeed, let gk be the network in the path from g0 to gL such that i2 2 S2(gk). In every network gk0 where
k0 ' k, we have gk0 = gk0 so that S2(gk0) = S2(gk0). In every network gk0 where k

0 > k, we have gk0 = gk0 + i1i2.

By Assumption 2, it follows that S2(gk0) ! S2(gk0).
19Such a link exists since we would otherwise have di(g00) ' n " s " 1 " n0(g00), dk(g00) ( s " 1 for all k 2 S

and dj(g00) ( di(g00) for all j 2 S1(g00). But then 2i(g00) ' 2i(gS [ gNn(S[N
0(g00))) ' 2i(egS) ' v2, where the Örst

inequality holds by negative externality and the second holds by minority returns to scale. This then contradicts

i 2 S1(g00).
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(vi.c) If s1(H(g000)) = s and H(g000) 6= gS for s = s. Let g0 = g000. In g0 and in the successive
networks gk, let the agents from S2(gk) delete their links leading to gk+1 = gk+S2(gk)

. This

eventually leads to the formation of the network g0000 = H(g000). Then let g0 = g0000 and go to step

(v).

(vi.d) If s1(H(g000)) < s, let g0 = g000 and go to step (i) if s1(H(g0)) / n $ s, or to step (ii) if
n$ s < s1(H(g0)) < s.

(vii) End Step: The algorithm describes a sequence by which the network g0 is indirectly

dominated by the network g& 2 G. With probability one, the algorithm reaches the end step

(vii). In step (ii), each deviating agent has a payo§ smaller than 32 at the network where he

deviates, and get 32 in g&. In the others steps, the deviating agents have striclty less than 31
when they modify the network, and get 31 in g&. We thus have g0 5 g&.

()) Suppose 31 / b3. We show that G does not satisfy external stability. Take g0 = gS such
that #S = es. By contradiction, suppose g0 5 g for some g 2 G. Let g0; g1; :::; gK be a sequence

of networks going from g0 = g
0 to gK = g such that for each t = 1; 2; :::;K, coalition St$1 can

enforce the network gt over gt$1. Since g0 * g, agents from T modify the current network at

some point in the sequence. Let gk be the Örst network in the sequence where S \ Sk 6= ;.
We have 3i(gK) = 31 / b3 = 3i(gk) for all i 2 N(g) \ Sk where the last equality holds since
K(gk) = S, contradicting g0 5 g.

!
Let us introduce some lemmas that are used in the proof of Proposition 5, 6, and 7. Lemma 8

shows that welfare is higher in g0 than in g if g0 is obtained from g through a switch among strong

agents, and others among nonparticipating agents. For for i; j 2 N such that ni(g) + nj(g), let
S&(g; i; j) = fg0 2 G j ni(g0) = ni(g)+1, nj(g0) = nj(g)$1, nk(g0) = nk(g) for all k 2 K(g)nfi; jg,P
ni(g

0) =
P
ni(g) and nk(g0) / maxl2E(g) nl(g) for all k 2 E(g)g.

Lemma 8. Let g0 2 S&(g; i; j) for i; j 2 K+(g). Then W (g0) > W (g).

Proof. Let g0 2 S&(g; i; j) where i; j 2 K+(g). Let g00 be such that ni(g00) = ni(g) for all

i 2 K(g) and nj(g00) = nj(g
0) for all j 2 NnK(g). We have W (g0) > W (g00) by Property 3

and W (g) = W (g00) since the set of participating agents and their degree is equal in the two

networks.

Lemma 9 shows that the neighborhood of strong agents is nested.

Lemma 9. Let g 2 G. Let i; j 2 K+(g) with ni(g) + nj(g). Then, Nj(g) ) Ni(g).

Proof. Let g 2 G. Let g& = g$NnK+(g). Let i; j 2 K+(g) with ni(g) + nj(g). By contradiction,
suppose Nj(g) * Ni(g). Then, there exists an agent k 2 N such that jk 2 g but ik =2 g. It
follows that g + ik $ jk 2 S(g; i; j), a contradiction.
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As a consequence, if the network g is e¢cient, then agents in K+(g) are connected to each

other through a nested-split graph. Lemma 10 shows that minor agents are connected to each

agent with higher degree than their strong partners with less degree.

Lemma 10. Let g 2 G. If ix $g Kt(g) for some ix 2 Km(g) [ E(g) where Kt(g) ) K+(g),

then ix>gKs(g) for all s / t.

Proof. Let g 2 G. Let ixit 2 g for some ix 2 Km(g) [ E(g), and some it 2 Kt(g) ) K+(g).

By contradiction, suppose ixis =2 g where is 2 Ks(g), s / t. Then g $ ixit + ixis 2 S(g; is; it),
contradicting g 2 g.

Lemma 11 shows that if two participating agents are connected to nonparticipating agents,

then each agent from their respective group should be connected among each other.

Lemma 11. Let g 2 G. Let iE ; jE 2 E(g), is 2 Ks(g) and jt 2 Kt(g) with is 6= jt. Then

iEis; jEjt 2 g =) Ks(g)>gKt(g).

Proof. Let g 2 G. Let iE ; jE 2 E(g), is 2 Ks(g) and jt 2 Kt(g) with is 6= jt. Suppose

iEis; jEjt 2 g but jskt =2 g for some js 2 Ks(g) and kt 2 Kt(g). Let g0 = g + jskt $ iEis $ jEjt.
If is = js, let g00 = g0. Otherwise, if is 6= js then let g00 = g0 + isl $ jsl where l is such that
jsl 2 g0 but isl =2 g0(such l exists since njs(g0) = nis(g0) + 2). Similarly, if kt = jt let g000 = g00.
Otherwise, if kt 6= jt then let g000 = g00 + jtl $ ktl where l is such that ktl 2 g00 but jtl =2 g00. We
have ni(g000) = ni(g) for all i 2 K(g) = K(g000) but

P
i2N ni(g) =

P
i2N ni(g

000)+1, contradicting

g 2 g.

Lemma 12 shows that if an agent j in NnK+(g) is connected to some agent i in K+(g) in a

network g 2 G, then each agent in jís group is connected to the agents with more links than i.

Lemma 12. Let g 2 G. Suppose X $g Kt(g) for X 2 fKm(g); E(g)g and t < m, then

X>gKt0(g) for all t0 < t. If in addition, #Kt(g) > 1, then X>gKt(g).

Proof. Let g 2 G. Let X 2 fKm(g); E(g)g. By contradiction, suppose ixjt 2 g but jxis =2 g,
where ix; jx 2 X, is 2 Ks(g) and jt 2 Kt(g) with either s < t < m, or s = t < m and

#Kt(g) > 1. By Lemma 10, ixjt 2 g implies fixg>gKu(g) for all u / t, and jxis =2 g implies
fjxg?gKu(g) for all u 2 fs; s+1; :::;m$1g. Notice that if s = t, fixg>gKt(g) while fjxg?gKt(g)
so that we may assume is 6= jt without loss of generality. Agent ix has more connections towards
agents in K+(g) than agent jx.

(i) Suppose nix(g) / njx(g). It follows that agent jx is connected to some agent k in Km(g)
or in E(g) to which ix is not connected, say jxk 2 g but ixk =2 g for some k 2 NnK+(g). Then,

g0 2 S(g; is; jt) for g0 = g+ jxis$ ixjt$ jxk+ ixk since ix and jx have the same number of links
in both networks while is has an extra link at the expense of jt.
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(ii) Suppose nix(g) > njx(g), it follows that X = E(g). Then g0 2 S&(g; is; jt) where

g0 = g $ ixjt + jxis, a contradiction.

Lemma 13 shows that the central class in a nested split graph contains more than one

element.

Lemma 13. Let g be a nested-split graph with an even number m0 of classes, N(g) = K1(g) [
::: [Km0(g). Then, #K(m0+2)=2(g

&) > 1.

Proof. Let g be a nested-split graph with an even number m0 of classes, N(g) = K1(g) [ ::: [
Km0(g). By contradiction, suppose #K(m0+2)=2(g) = 1. Then ni(g) = nj(g) for i 2 Km0=2(g)

and j 2 K(m0+2)=2(g), a contradiction.

Lemma 14 shows that nonparticipating agents are not connected to strong agents having

fewer degrees in a network g 2 G3.

Lemma 14. Let g 2 G3. Let g& = g$NnK+(g). Let K
+(g) = K1(g

&) [ ::: [Km0(g&). We have

E(g)?gKs(g&) for all s + (m0 + 2)=2.

Proof. Let g 2 G3. Let g& = g$NnK+(g). Let K
+(g) = K1(g

&)[ :::[Km0(g&). By contradiction,

suppose iEis 2 g for some iE 2 E(g), and is 2 Ks(g&) where s + (m0 + 2)=2.

(i) Suppose n is even, then #K(m0+2)=2(g
&) + 2 by Lemma 13. By Lemma 10, we then

have fiEg>K(m0+2)=2(g
&). But K(m0+2)=2(g

&)?g!K(m0+2)=2(g
&) since g& is a nested split graph,

a violation of Lemma 11.

(ii) Suppose n is odd, then iEis$1 2 g for some is$1 2 Ks$1(g&) by Lemma 10. Since g& is a
nested split graph and s + (m0 + 3)=2, we have is$1is =2 g&, a contradiction of Lemma 11.

Lemma 15. Let g 2 G3. Let g& = g$NnK+(g). We have ni(g
&) > 0 for all i 2 K+(g)

Proof. Let g 2 G3. Let g& = g$NnK+(g). Suppose on the contrary that nl(g
&) = 0 for some

l 2 K+(g). Notice that #K+(g) + 2 since g 2 g3. Let i 2 K+(g) be such that ni(g) / nk(g) for
all k 2 K+(g). Then, ni(g&) = 0 as we would otherwise have g0 2 S(g; l; i) for g0 = g $ ij + lj
where ij 2 g&. Let j 2 K+(g), j 6= i. We have Ni(g) ) Nj(g) by Lemma 9. Then i?gE(g)
as we would otherwise have iE 2 Ni(g) \Nj(g) for some iE 2 E(g) by Lemma 12, leading to a
contradiction of Lemma 11. It follows that im; jm 2 Ni(g) for some im; jm 2 Km(g) as we would
otherwise have ni(g) / nim(g). Also, we have imkm =2 g for some jm 2 Km(g) as we would
otherwise have ni(g) < nim(g). Then, let g

0 = g+ ij$ iim$ ijm+ imkm. Let g00 2 S(g0; im; jm).
We have nj(g00) = nj(g) + 1, ni(g00) = ni(g) $ 1, and nk(g00) = nk(g) for all k 2 Nnfi; jg,
contradicting g 2 g.
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Lemma 16. Let g 2 G3. Let g& = g$NnK+(g). Then, #(K
+(g&)%K1(g&)) + 2

Proof. Let g 2 G3. Let g& = g$NnK+(g). By Lemma 9, g
& is a nested split graph. By Lemma 15,

ni(g
&) > 0 for all i 2 K+(g), so that K+(g&)>gK1(g&). We cannot have K+(g&)%K1(g&) = f;g

since g 2 g3, nor K+(g&)%K1(g&) = fig as we would have fig>gK+(g&), implying i 2 K1(g&).

Lemma 17. If ni(g) > nj(g) in some network g 2 G, then S(g; j; i) 6= f;g.

Proof. Let g 2 G be such that ni(g) > nj(g). Then there is k 2 N such that ik 2 g but jk =2 g.
It follows that g + jk $ ik 2 S(g; j; i).

Proof of Proposition 5
Let g 2 G1. Let K(g) = fi1; i2; :::; ik(g)g be such that ni1(g$E(g)) + ni2(g$E(g)) + ::: +

nik(g)(g$E(g)).

(i) Let ni1(g$E(g)) = k(g) $ 1. Suppose on the contrary that ij =2 g for i; j 2 K(g). Since
ni(g) = nj(g) = ni1(g) + k(g)$ 1, iiE ; jjE 2 g for iE ; jE 2 E(g), a contradiction of Lemma 11.

(ii) Let ni1(g$E(g)) < k(g)$ 1. Suppose on the contrary that ni1(g$E(g)) > nik(g)+1(g$E(g)).
Then ik(g)$1iE and ik(g)jE 2 g for iE ; jE 2 E(g), a contradiction of Lemma 11 siince we do not
have K1(g)>K1(g).

(iii) Let ni1(g$E(g)) < k(g)$1. Suppose on the contrary that ni1(g$E(g))$nik(g)(g$E(g)) > 1,
then ik(g)iE ,ik(g)jE 2 g for iE ; jE 2 E(g). Let g0 = g $ ik(g)iE $ ik(g)jE + ik(g)i where i 2 K(g)
such that ik(g)i =2 g. Let g00 2 S(g0; ik(g); i). We have nj(g00) = nj(g) for all j 2 K(g), butP
i2N nj(g) >

P
i2N nj(g

00), contradicting g 2 G:
!

Proof of Proposition 6.

Let g 2 G2. Let g& = g$NnK+(g).

(i) If X $g Km(g), where X 2 fKm(g); E(g)g, then (Km(g) [ X)>gK+(g)nfig for some
i 2 K+(g).

Let jmjx 2 g for jm 2 Km(g), jx 2 fKm(g); E(g)g. Let i1 2 K+(g) be such that ni1(g) /
ni(g) for all i 2 K+(g), and let im 2 Km(g) be such that#(Nim(g)\K+(g)) / #(Ni(g)\K+(g))

for all i 2 Km(g).

(i.1) Km(g)nfimg>gK+(g)nfi1g
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Suppose on the contrary that kmk1 =2 g for some km 2 Km(g)nfimg, for some k1 2
K+(g)nfi1g. Then, kmi1 =2 g by Lemma 9. Lemma 9 also implies that Nim(g) \ K+(g) )
Nkm(g) \K+(g). Thus, imk1; imi1 =2 g. Let g0 = g + imk1 + kmk1 $ k1i1 $ jmjx. If jm = im, let
g00 2 S(g0; jx; km). If jm = km, let g00 2 S(g0; jx; im). If jm =2 fim; kmg, let g00 2 S(g000; jx; km),
where g000 2 S(g0; jm; im). It follows that g00 2 S(g; k1; i1), a contradiction.

(i.2) If Km(g) = fimg, then fimg>gK+(g) and E(g)>gK+(g)nfi1g

(i.2.a) fimg>gK+(g)nfi1g.

Suppose on the contrary that imj1 =2 g for some j1 2 K+(g). Then imi1 =2 g by Lemma 9.
It follows that fi1; j1g?gE(g) as we would otherwise have C$(g) 6= f;g since jx 2 E(g). Let
g0 = g + imj1 + j1jx $ i1j1 $ imjx. Then g0 2 S(g; j1; i1), a contradiction.

(i.2.b) imi1 2 g

Suppose on the contrary that imi1 =2 g. It follows that fi1g $g E(g), as we would otherwise

have ni1(g) / P1(g&) / nim(g). Then C$(g) 6= f;g, a contradiction.

(i.2.c) E(g)>gK+(g)nfi1g

We have nim(g) + P1(g&)+1 since fimg>gK+(g) and imjx 2 g. It follows that fi1g $g E(g),

say i1jE 2 g. Then, fjEg>gK+(g) by Lemma 9. It follows that E(g)>gK(g)nfi1g. Suppose on
the contrary that kEj1 =2 g for some kE 2 E(g), j1 2 K+(g)nfi1g. Then, kEi1 =2 g by Lemma 9.
Then, nkE (g

0) / P1(g&) / njE (g) and g + kEj1 $ i1jE 2 S
&(g; j1; i1), a contradiction.

(i.3) Suppose Pm(g) > 1, then i1i 2 g for some i 2 NnK+(g&).

If not, then ni1(g) = P1(g
&) $ 1, and njm(g) + P1(g

&) $ 1 for jm 2 Km(g) by (ii.1), a

contradiction.

(i.4) Suppose Pm(g) > 1 then fimg>gK+(g&)nfi1g.

On the contrary, suppose imj1 =2 g for j1 2 K+(g&)nfi1g. Let g0 = g + imj1 $ i1i. Then,
if i = im, let g00 = g. Otherwise, if i 6= im, S(g0; i; im) 6= f;g since ni(g0) < nim(g

0). Let

g00 2 S(g0; i; im). Then, g00 2 S(g; j1; i1), a contradiction.

(i.5) Suppose Pm(g) > 1 and jx 2 E(g), then E(g)>gK+(g)nfi1g

(i.5.a) Suppose K+(g)>Km(g)

Suppose on the contrary that jEj1 =2 g for some j1 2 K+(g)nfi1g and jE 2 E(g).

(i.5.a.1,) Suppose Km(g)>gKm(g).

Then ni1(g) > nim(g) + P1(g
&) + Pm(g) implies i1kE 2 g for some kE 2 E(g). Let g0 =

g + jEj1 $ i1kE . If njE (g
0) / nkE (g

0), let g00 = g0. Otherwise, if njE (g
0) > nkE (g

0), let g00 2
S(g0; kE ; jE). We have g00 2 S&(g; j1; i1), a contradiction.

(i.5.a.2,) Suppose kmlm =2 g for some km; lm 2 Km(g)
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Let g0 = g $ i1km + j1jE $ jmjx + kmlm. If njE (g
0) / njx(g

0), let g00 = g0. Otherwise, if

njE (g
0) > njx(g

0), let g00 = S(g0; jx; jE). If lm = jm, let g000 = g00. Otherwise, if lm 6= jm, let

g000 2 S(g00; jm; lm). We have g000 2 S&(g; j1; i1), a contradiction.

(i.5.b) Suppose i1km =2 g for km 2 Km(g)

(i.5.b.1,) fi1g?gE(g)

Suppose on the contrary that i1jE 2 g for some jE 2 E(g). Then, let g0 = g$ i1jE $ jmjx+
i1km. If jm = km, let g00 = g0. Otherwise, let g00 2 S(g0; jm; km). We have g00 2 C$(g), a

contradiction.

(i.5.b.2,) i1lm 2 g for some lm 2 Km(g)

Suppose not, then njm(g) + P1(g) while ni1(g) / P1(g), a contradiction.

(i.5.b.3,) pmrm =2 g for some pm; rm 2 Km(g)

Suppose of the contrary that Km(g)>Km(g). Then njm(g) + P1(g) + Pm(g) $ 2, while
ni1(g) / P1(g) + Pm(g)$ 2, a contradiction.

(i.5.b.4,) E(g)>gK+(g)nfi1g

By assumption, we have jmjx 2 g. Given (ii.5.b.1,/2,/3,), we have i1lm 2 g, pmrm =2 g. If
in addition we have jEj1 =2 g for some jE 2 E(g), j1 2 K+(g)nfi1g, then we could repeat the
step (ii.5.a.2,).

Let g0 = g $ i1lm + j1jE $ jmjx + pmrm. If njE (g
0) / njx(g

0), let g00 = g0. Otherwise, if

njE (g
0) > njx(g

0), let g00 = S(g0; jx; jE). If npm(g
00) = nrm(g

00) = nlm(g
00) = njm(g

00), let g000 2 g00.
If npm(g

00) = nrm(g
00) > nlm(g

00) = njm(g
00), let g000 2 S(g; lm; rm), where g 2 S(g00; jm; pm).

If ni(g00) > nj(g
00) = nk(g

00) > nl(g
00) for fi; jg = fpm; rmg and fk; lg = flm; jmg, let g000 2

S(g00; l; i). We have g000 2 S&(g; j1; i1), a contradiction.

(ii) Let Km(g)?gKm(g) [ E(g)

(ii.a) Km(g)>gS1 and Km(g)?gS1 for some S1 ) K+(g)

This holds by Lemma 9 since #(Nim(g)\K+(g)) = #(Njm(g)\K+(g)) for all jm 2 Km(g).

(ii.b) E(g)?gNnT1 for some T1  S1, E(g)>gT1nfig for some i 2 T1.

(ii.b.1) NiE (g)  S1 for iE 2 E(g)

Let iE 2 E(g). By (i), we have E(g)?gKm(g) while E(g)?gE(g) since C$(g) = f;g. Notice
that ni(g) > nj(g) for all i 2 S1 and j 2 K+(g)nS1 since S(g; j; i) 6= f;g. It follows that
Nj(g) ) Ni(g) by Lemma 9. Then iE =2 Nj(g), as we would otherwise have fiEg>gS1, leading
to a contradiction since #NiE (g) < #S1 = #Nim(g) for some im 2 Km(g).

(ii.b.2) if NiE (g) 6= NjE (g), then NiE (g) = NjE (g)nfig for some i 2 NjE (g).

Without loss of generality, let E(g) = fiE1 ; iE2 ; :::; iEkg such that niE1 (g) / niE2 (g) / ::: /
niEk (g).
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(ii.b.2.1,) NiE1 (g) ) NiE2 (g) ) ::: ) NiEk (g).

Suppose on the contrary that NiEs (g) * NiEs+1 (g) for some s 2 f1; 2; :::; k $ 1g. Then,
iEsi 2 g while iEs+1i =2 g for some i 2 S1. Since niEs+1 (g) + niEs (g), we then have iEsj =2 g but
iEs+1j 2 g for some j 2 S1. It follows that S(g; i; j) 6= f;g and S(g; j; i) 6= f;g, a contradiction.

(ii.b.2.2,) niEk (g)$ niE1 (g) / 1

Suppose on the contrary that niEk (g) $ niE1 (g) > 1. Then iE1i; iE1j =2 g for some i; j 2
NiEk (g) ) S1. It follows that S

&(g; i; j) 6= f;g and S&(g; j; i) 6= f;g, a contradiction.

!

Proof of Proposition 7.

Let g 2 G3. Let g& = g$NnK+(g). Let K
+(g) = K1(g

&) [ ::: [Km0(g&).

(i) Km(g)>gS1 and Km(g)?gNnS1 for some S1  K1(g&). We decompose the proof of this
claim into 8 intermediate steps.

(i.a) If Km(g)$g Ks(g
&) for s > 1, then Km(g)>gK1(g&) by Lemma 12.

(i.b) IfKm(g)>gK1(g&), then im0im; im0jm 2 g where im0 2 Km0(g&) and im; jm 2 Km(g), and
we do not have fkmg>gKm(g) for all km 2 Km(g). Otherwise, we would have nim(g) + nim0 (g)
for im 2 Km(g) since Km0(g&)?gE(g) by Lemma 14.

(i.c) Km(g)?gKm0(g&).

On the contrary, suppose Km(g) $g Km0(g&). Then Km(g)>gK1(g&) by Lemma 12. Let
im0 2 Km0(g&). We have im0i =2 g for some i such that ni(g&) + nim0 (g

&) since g 2 G3. By (i.a)
we have imim0 ; jmim0 2 g for some im; jm 2 Km(g), and imkm =2 g for some km 2 Km(g). Let
g0 = g + iim0 $ imim0 $ jmim0 + imkm. If km = jm, let g00 = g0. Otherwise, if km 6= jm, let

g00 2 S(g0; jm; km). We have g00 2 S(g; i; i0m), a contradiction.

(i.d) If Km(g)$g Km(g), then Km(g)>gK1(g&).

Suppose on the contrary that imjm 2 g but kmi1 =2 g, where im; jm; km 2 Km(g) and i1 2
K1(g

&). By Lemma 16, #(K+(g)nK1(g&)) + 2. Thus, i1j; i1k 2 g for some j; k 2 K+(g)nK1(g&).
Without loss of generality, suppose nj(g) + nk(g) so that ni1(g) > nj(g) + nk(g). Since

kmi1 =2 g, we have Km(g)?gfj; kg by Lemma 12. Let g0 = g $ imjm $ i1k + kmi1 + imj. If
km = jm, let g00 = g0. Otherwise, if km 6= jm, let g00 2 S(g0; jm; km) 6= f;g by Lemma 17. We
have g00 2 S(g; j; k), a contradiction of g 2 G.

(i.e) Km(g)?gE(g).

On the contrary suppose that fimg $g E(g) where im 2 Km(g). Let S ) K1(g
&) and T

) E(g) be such that Nim(g) = S [ T . Notice that s + t < P1(g&). If not, then we would have
nim(g) + nim0 (g) for im0 2 Km0(g&). We have s < P1(g

&) $ 1 since t > 0. Thus there exists

i1; j1 2 K1(g&) such that imi1; imj1 =2 g. We have S>gT . If on the contrary, ij =2 g for some
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i 2 S; j 2 T , then g $ imj + ij $ i1j1 + imi1 2 S(g; i; j1), where ni(g) > nj1(g) since im 2 Ni(g)
but j1 =2 Nj(g) by Lemma 9, a contradiction of g 2 G. Having S>gT implies t > 1 as we

would otherwise have nim(g) = niE (g) for iE 2 T , a contradiction. But then, g
0 2 C$(g) for

g0 = g $ imiE $ imjE $ i1j1 + i1im + j1im, a contradiction.

(i.f) Km0(g&)>gK1(g&) and Km0(g&)?gNnK1(g&).

Km0(g&)>gK1(g&) andKm0(g&)?gN(g&)nK1(g&) by deÖnition of g&. We also haveKm0(g&)?gE(g)
by Lemma 14 and Km0(g&)?gKm(g) by (i.d).

(i.g) Nim(g)  K1(g&) for im 2 Km(g).

Let im 2 Km(g). From (i.a) to (i.e), we have Nim(g) ) K1(g
&). The result then holds by

(i.f) since nim(g) < nim0 (g) for im0 2 Km0(g&).

(i.h) Km(g)>gS1, where S1  K1(g&)

By contradiction, suppose imi1 2 g but jmi1 =2 g for im; jm 2 Km(g) and i1 2 K1(g&). Since
nim(g) = njm(g), we then have jmj1 2 g but imj1 for some j1 2 K1(g&). Thus, S(g; j1; i1) 6= f;g
and S(g; j1; i1) 6= f;g. This contradicts g 2 G.

(ii) E(g)?gNnT1 for some T1  S1, E(g)>gT1nfig for some i 2 T1.

See the proof of part (ii.b) of Proposition 6.

!
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