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Abstract

We develop a model of strategic networks in order to analyze how trade unions
will affect the stability and efficiency of R&D collaboration networks in an oligopolis-
tic industry with three firms. Whenever firms settle wages, the complete network
is always pairwise stable and the partially connected network is stable if and only if
spillovers are large enough. If spillovers are small, the complete network is the efficient
network; otherwise, the efficient network is the partially connected network. Thus, a
conflict between stability and efficiency may occur: efficient networks are pairwise
stable, but the reverse is not true. Strong stability even reinforces this conflict. How-
ever, once unions settle wages such conflict disappears: the complete network is the
unique pairwise and strongly stable network and is the efficient network whatever the

spillovers.
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1 Introduction

Traditionally, the theoretical literature has emphasized the role of trade unions in dis-
torting relative prices and the empirical studies have concentrated on the determinants of
union membership and on the effects of unions on wages and profitability. More recently,
economists have shifted their attention to the long-term effects of trade unions, that is, on
investment, technology and productivity growth. Menezes-Filho and Van Reenen (2003)
have provided a survey of the economic literature on the impact of trade unions on innova-
tion and R&D. The effects of unions on innovation are generally ambiguous both in theory
and in empirical practice. There does, however, seem to be some emerging consensus that
there is a negative association between unions and R&D in North America (see Acs and
Audretsch (1988), Betts, Odgers and Wilson (2001)). This is not the case for Europe
where no such relationship is found (see Schnabel and Wagner (1992), Menezes-Filho,
Ulph and Van Reenen (1998)). Despite this evidence, there has not been to date a study
of the impact of trade unions on research collaborations between firms in the theoretical
literature on R&D in industries with market power.

Many markets are characterized by inter-firm collaboration in R&D activity.! Goyal
and Moraga-Gonzélez (2001) have analyzed the incentives for R&D collaboration between
horizontally related firms that are not unionized. In a three-firm market for a homoge-
neous good, they have basically shown that a conflict between the incentives of firms to
collaborate and social welfare is likely to occur.? The purpose of this paper is to go beyond
their analysis by making endogenous the wage formation.

In this paper we address the following questions:

(i) When the industry is unionized, what are the incentives of firms to collaborate and

what is the architecture of "stable" networks of collaboration?

(ii) Do unions reconcile individual incentives to collaborate and social welfare?

To answer these questions we develop a four-stage game. In the first stage, firms form
pairwise collaboration links. The purpose of these collaboration links is to share R&D
knowledge about a cost-reducing technology. The collection of pairwise links between the
firms defines a network of collaboration. In the second stage, each firm chooses indepen-
dently and simultaneously a level of effort in R&D. In the third stage, wages are settled at
the firm-level. By tractability, we consider two extreme cases of wage formation: (i) each

firm chooses its own wage (or there is no union), which is our benchmark; (ii) each union

!See Hagedoorn (2002) who has provided a survey of emprical work on R&D collaboration among firms.
2Beside the asymmetric situation among three firms, Goyal and Moraga-Gonzalez (2001) have analyzed

symmetric networks, i.e. networks in which all n firms maintain the same number of collaborative ties.



chooses the wage, which is the monopoly-union model. The wages and the R&D efforts,
along with the network of collaboration, define the costs of the firms. In the fourth stage,
firms compete in the oligopolistic market, taking as given the costs of production.

R&D effort of a firm decreases its marginal cost of production. It has also positive
spillovers on the costs of firms that are linked to the firm that undertakes R&D effort. We
distinguish between direct and indirect R&D collaborations. For instance, suppose firms
1 and 2 collaborate in R&D, firms 2 and 3 collaborate in R&D, while firms 1 and 3 do not
collaborate. Then, we say that firms 1 and 2 (2 and 3) have a direct R&D collaboration,
while firms 1 and 3 have an indirect R&D collaboration. Knowledge spillovers from direct
R&D collaborations are partially absorbed. Spillovers from indirect collaborations are not
excluded but are smaller than those obtained from direct R&D collaborations. Moreover,
the spillover from indirect collaborations deteriorates in the distance of the relationship.
Goyal and Moraga-Gonzdlez (2001) do not assume that spillovers across collaborating
firms are related to the distance between firms in the collaborating network. They assume
that the research knowledge of a direct collaboration is fully absorbed, while the research
knowledge of a no direct collaboration (indirect collaboration or no collaboration at all)
is partially absorbed (public spillovers).

A number of theoretical arguments as well as some empirical findings suggest that
knowledge spillovers are concentrated in spatial proximity from their respective source.
Empirical evidence that knowledge spillovers are concentrated in spatial proximity to
the respective source is provided in Acs, Audretsch and Feldman (1992), Audretsch and
Feldman (1996), Anselin, Varga and Acs (1997) and Jaffe, Trajtenberg and Henderson
(1993). The theoretical explanation is based on the notion that in most cases face-to-face-
contacts are necessary for transferring facit knowledge. Fritsch and Franke (2004) have
analyzed the impact of spillovers on innovation activities in a German region and examine
the significance of R&D cooperation for these knowledge spillovers. They demonstrate
that significant differences between regions exist with regard to the productivity of R&D
activities. These interregional differences can be explained by R&D spillovers from other
R&D activities by actors located in the same region. They also find that R&D cooperation
plays only a minor role as a medium for knowledge spillovers. Apparently, cooperative
relationships, as such, do not lead to those kinds of knowledge spillovers that are important
for the efficiency of innovation activities. In this sense, it seems that spillovers from direct
R&D collaborations could not be perfect and that spillovers from indirect collaborations
are smaller than those obtained from direct R&D collaborations. Moreover, spillovers from

indirect collaborations deteriorates in the distance of the relationship.?

3As in the connections model studied by Bala and Goyal (2000) and Jackson and Wolinsky (1996).



A simple way to analyze the networks that one might expect to emerge in the long
run is to examine a sort of equilibrium requirement that agents not benefit from altering
the structure of the network. A weak version of such condition is the pairwise stability
notion defined by Jackson and Wolinsky (1996). A network is pairwise stable if no agent
benefits from severing one of their links and no other two agents benefit from adding a link
between them, with one benefiting strictly and the other at least weakly. But, pairwise
stability considers only deviations by at most a pair of agents at a time. It might be that
some group of agents could all be made better off by some complicated reorganization of
their links, which is not accounted for under pairwise stability. The definition of strong
stable networks allows for larger coalitions than just pairs of agents to deviate, and is due
to Jackson and van den Nouweland (2004). A strongly stable network is a network which
is stable against changes in links by any coalition of agents.*

In a three-firm market for a homogeneous good, there are four possible network archi-
tectures: the complete network, the star network, the partially connected network, and the
empty network. In the complete network every pair of firms is linked. The star network is
a network in which there is a "hub" firm directly linked to every other firm, while none of
the other firms have a direct link with each other. The partially connected network refers
to a configuration in which two firms are linked while the third firm is isolated. In the
empty network there are no collaboration links. We find that, whenever firms settle wages,
the complete network is always pairwise stable while the partially connected network is
stable if and only if spillovers are large enough. Indeed, smaller spillovers destabilize the
partially connected network rapidly. The intuition behind this is that the stability of
the partially connected network relies on the great cost asymmetry existing between the
linked firms and the isolated firm. It is this asymmetry that discourages a linked firm
from forming a link with the isolated firm, for large spillovers. As spillovers decrease,
this asymmetry reduces, and that destabilizes the partially connected network. However,
the complete network is the efficient network if spillovers are small, while the partially
connected network is the efficient network if spillovers are large. Thus, a conflict between
stability and efficiency may occur: efficient networks are pairwise stable, but the reverse
is not true. Moreover, the concept of strong stability even reinforces this conflict: efficient
networks are not always strongly stable.

But, once unions settle wages such conflict disappears: the complete network is the
unique pairwise and strongly stable network and is the efficient network whatever the
spillovers. When firms settle wages, the isolated firm in the partially connected network

will tend to be pushed out of the market as spillovers become very large. However,

4 Jackson (2003, 2004) provides surveys of models of network formation.



when unions settle wages, a large share of the benefits of the linked firms thanks to
cost reductions due to R&D collaborations goes to the unions which diminishes their
competitive advantage with respect to the isolated firm. As a consequence, collaborating
firms have less incentives to make R&D, meanwhile the isolated firm may even make more
R&D effort in presence of unions. In fact unionization reduces considerably the asymmetry
between the linked firms and the isolated firm. Thus, unionization destabilizes the partially
connected network making the complete network the unique pairwise and strongly stable
network. Moreover, social welfare is increasing with the number of collaborative links, and
hence, the complete network is the efficient network.

For each network architecture (except the partially connected network), we find that
unions reduce research outputs, profits and quantities. In case of the partially connected
network, unions reduces research outputs, profits and quantities of collaborating firms.
However, unions reduce research outputs, profits and quantities of the isolated firm only
if spillovers are very weak. Thus, there is no linear relationship between unions and R&D
effort. This relationship depends on the network architecture and on the spillovers.

Before presenting the model, it is worth to mention some related literature. Goyal
and Joshi (2003) have studied networks of collaboration between oligopolistic firms that
are not unionized.® They assume that a collaboration link between two firms involves a
fixed cost and leads to an exogenously specified reduction in marginal cost of production.
By contrast, in Goyal and Moraga-Gonzélez (2001) and in our paper the costs of forming
links are taken to be negligible, and firms decide independently on a level of R&D, which
in turns determines the level of cost reduction endogenously. For general background on
R&D cooperation in oligopoly the reader is directed to Amir (2000), d’Aspremont and
Jacquemin (1988), Kamien, Muller and Zang (1992), Katz (1986) and Suzumura (1992).
Finally, Yi and Shin (2000) have analyzed the endogenous formation of research coalitions
where coalition formation is modelled in terms of a coalition structure, which is a partition
of the set of firms. But the restriction to partitions is a strong one indeed if our interest
is in research collaborations, since it rules out situations in which, for example, firms 1
and 2 have a bilateral research agreement and firms 2 and 3 have a similar agreement but
there is no agreement between 1 and 3. When this occurs, it is not appropriate to view
firms 1, 2 and 3 as one coalition, and we cannot think of 1 and 2 and 2 and 3 being two
distinct coalitions, since this violates the mutual exclusiveness property of coalitions. The
theory of networks provides a natural way to think of such issues, since it allows for such

intransitive relationships.

®Recently, Goyal, Konovalov and Moraga-Gonzélez (2003) have developed a model of R&D competition
and collaboration in which individual firms carry out independent in-house research and also undertake

joint research projects with other firms.



The paper is organized as follows. The model is presented in Section 2. In Section 3
we analyze the stability and efficiency of R&D networks, and we comment the aggregate

performance of networks. In Section 4 we conclude.

2 The model

We develop a four-stage game. In the first stage, firms form pairwise collaboration links.
In the second stage, each firm chooses a level of effort in R&D. In the third stage, wages
are settled at the firm-level. The wages and the R&D efforts, along with the network of
collaboration, define the costs of the firms. In the fourth stage, firms compete in quantities
in the oligopolistic market, taking as given the costs of production.

We consider a market for a homogeneous commodity produced by 3 identical profit-
maximizing firms. We denote by N = {1,2,3} the set of firms which are connected in a
network of R&D collaboration. Let ¢; denote the quantities of the commodity produced by
firmi € N. Let P(Q) = a—(Q be the market-clearing price when aggregate quantity on the
market is Q@ = ), v ¢i. More precisely, P(Q) = a—Q for @ < a, and P(Q) = 0 otherwise,
with @ > 0. The firms can undertake R&D to look for cost reducing innovations. The
innovation technology is produced under decreasing returns to scale with the sole input y:
x; = /Yy, where z; is the research output or effort for firm z € N. It follows that the cost

function for technology is given by
Ciy, ) =~ - ()%, (1)

where ~ is the price of input y. We set v equal to 1. This assumption suffices to en-
sure nonnegativity of all variables. The production technology is modeled as a Leontief

function:

q; = min {L“ 01 . KIL} s (2)

where L; is labour, K is capital, and 8, is the fixed proportion at which the two factors
are combined, ¢ € N. This technology gives rise to the cost function for producing the
quantity g,

Ci(wi, T, qi) = <w¢ + 0%) " i (3)
where w; is the wage paid by firm ¢ to its workers and r is the price of capital which is
normalized to one, r = 1. Associated with each firm there is a risk-neutral union. The

workforce for each firm is drawn from separate pools of labour, and the union objective is

to maximize the economic rent,

Uys(wi, @, L) = Li - (w; — @), (4)



where w is the reservation wage. Without loss of generality, the reservation wage is set
equal to zero, w = 0.°

In a network, firms are the nodes and each link indicates a pairwise R&D collaboration.
Thus, a network ¢ is simply a list of which pair of firms are linked to each other. If we are
considering a pair of firms ¢ and j, then {i, j} € g indicates that ¢ and j are linked under
the network g and that a R&D collaboration is established between firms ¢ and j. For
simplicity, write ¢j to represent the link {¢, 5}, so ¢j € g indicates that ¢ and j are linked
under the network g. The network obtained by adding link ¢7 to an existing network g
is denoted g + 27 and the network obtained by deleting link ¢7 from an existing network
g is denoted g —ij. For any network g, let N(g) = {i € N | 3 j such that ij € g} be
the set of firms which have at least one link in the network g. Two firms ¢z and j are
connected if and only if there exists a sequence of firms ¢y, ...,7x such that ixig, 1 € g for
each k € {1,..., K — 1} with iy = ¢ and i = j. Let N;(g) be the set of firms which are
connected with ¢, and let M;(g) be the set of firms which have a direct link with i. Let
(i be the set of all possible networks. In this three-firm market, there are four possible
network architectures: (i) the complete network, ¢¢, in which every pair of firms is linked,
(ii) the star network, ¢°, in which there is one firm that is linked to the other two firms,
(ili) the partially connected network, ¢, in which two firms have a link and the third firm
is isolated, and (iv) the empty network, ¢¢, in which there are no collaboration links. In
the star network, the firm which is linked to the other two firms is called the "hub" firm,

while the other two firms are called the "spoke" firms.

[ ] [ ] o———o
[ ] [ ]
The empty network The partial network
The star network The complete network

Figure 1: Four possible network architectures.

1t can be shown that all results are qualitatively robust to this assumption.



There is a function which relates the research output to the marginal cost of produc-
tion.” This function is a mapping from ({x;}icnv, g) to 0;,
1

01 = = o 3
€& = Ysientie) D Th T 1) 2teNi(gN\Mi(g) @ T

(5)

where spillovers are assumed and measured by two parameters ¢ and «. The parameter
¢ € (0,1] measures the spillovers obtained from R&D collaborations. Spillovers from
indirect collaborations are not excluded but are smaller than those obtained from direct
R&D collaborations, o € [0,1]. Moreover, the spillovers from indirect collaborations
deteriorate in the distance of the relationship. Let £(ij) be the number of links in the
shortest path between ¢ and j (setting #(ij) = oo if there is no path between ¢ and j).
Given a network g and the collection of research outputs {x;};cn, the marginal cost of

production for each firm ¢ € N becomes

_ (8%
clg)=wi+e—m— > ¢'Ik_@ >, 4 (6)
ke M;(g) leNi(g)\M:i(g)
Let
Xi=xz; + Z ¢~xk+#;l) Z ¢ -z (7)
keM;(g) LEN(9)\Mi(g)

be the total cost reduction for firm ¢ obtained from its own research, x;, and from the
research knowledge of firms connected with z, which is partially absorbed depending on ¢
and «. We refer to this total cost reduction, X;, as effective R&D output of firm ¢. Then,
¢i(g) = w; + ¢ — X;. Notice that in Goyal and Moraga-Gonzélez (2001) the effective R&D
is defined as X; = z; + Z%Mi(g) xp + MZZ¢Mi(g) z;. Only when ¢ = 1 and o = 0 in our
model and p = 0 in their model, both models coincide.

Thus, the profits of firm ¢ € NV in a collaboration network ¢ are given by

Li(g) = |a—ai(9) = D> _aj(9) — ci(9) | - ail9) — [x:(9)]* (8)

it

"Two distinct ways of modelling knowledge spillovers have emerged. (i) d’Aspremont and Jacquemin
(1988) regard leakages in technological know-how as taking place in outputs: each firm’s final cost reduction
is the sum of its autonomously acquired part and a fraction of other firms’ parts. (ii) Kamien, Muller and
Zang (1992) postulates the presence of a spillover effect on R&D expenses: each firm’s effective R&D
investment is the sum of its own expenditure and fixed fraction of the sum of other firms’ expenditures.
Amir (2000) has shown that the two models are not equivalent from a quantitative and qualitative point of
view. Invoking some economic principles, Amir has concluded that the Kamien-Muller-Zang model is fully
valid while the d’Aspremont-Jacquemin model appears to be of questionable validity for large values of the
spillover parameter. However, the d’Aspremont-Jacquemin model may be adequate for certain industries
or R&D processes: for instance, technology parks where the benefits firms draw from larger R&D spillovers

outweigh the negative effects of increased competition on their profits.



Wages are settled at the firm-level. Two extreme cases are considered: (i) each firm
simultaneously chooses the wage that maximizes profits taken as given the wage chosen
by the other firms, (ii) each union simultaneously chooses the wage that maximizes the
economic rent taken as given the wage chosen by the other unions.

For any network g, social welfare is defined as the sum of consumer surplus, producers’
profits and unions’ rents. Let W (g) denote aggregate welfare in network g. Then, social
welfare is given by

(o) - 0L LS )+ Y ). o)
2 = ieN

Before looking for the stability and efliciency of networks, we derive for each possi-
ble network architecture, the equilibrium R&D outputs, quantities produced, profits and
wages. See the Appendix.

In presence of unions, any competitive advantage of your rival have to be shared with
the union. Thus, the competitive advantage due to increasing research effort will be
smaller with unions rather than without unions. For instance, a marginal increase of x;
will reduce j’s marginal cost, but in presence of unions part of the marginal cost (wage)
will increase with x; which partially compensate the reduction in the marginal cost of
capital. We could say that unions make research efforts less "substitutes". In the empty
network g¢ R&D efforts are always strategic substitutes. In the complete network ¢g¢ R&D
efforts are strategic substitutes if spillovers are small and become strategic complements
when spillovers are large. However, strategic interactions among R&D efforts of different
firms become complex in the star network ¢°: (i) R&D efforts of the two "spoke" firms are
strategic substitutes when firms settle wages whatever spillovers are; (ii) but when unions
settle wages, R&D efforts of the two "spoke" firms are strategic substitutes if spillovers
are small and become strategic complements when spillovers are large.; (iii) finally, R&D
efforts of the "hub" firm and a "spoke" firm are strategic substitutes if spillovers are small
and become strategic complements when spillovers are large. In general, unionization

makes it more "likely" that R&D efforts are strategic complements.

Proposition 1 In the empty network g€, the star network g° and the complete network
g°, at equilibrium, (i) unions reduce research oulputs, profits and quantities; (i) unions

increase wages and prices.

In the partial network ¢g?, R&D efforts for the collaborating firms can also be either
strategic substitutes or complements depending on the spillovers parameter ¢. However,
the strategic interaction between R&D efforts of a collaborating firm and the isolated one
(or the opposite) is of substitution regardless spillovers size and unionization. When firms

settle wages, the isolated firm will tend to be pushed out of the market as spillovers become



larger. But once unions settle wages, part of the benefits due to R&D collaboration goes
to the unions which diminishes their competitive advantage with respect to the isolated
firm. So as ¢ goes to one, the isolated firms will advocate for a unionized industry in order

to avoid being pushed out of the industry.

Proposition 2 In the partial network, g?, at equilibrium, (i) unions reduce research out-
puts, profits and quantities of collaborating firms; (ii) unions reduce research outputs of
the non-collaborating firm if and only if spillovers are weak (¢ < 0.547); (iit) unions re-
duce profits of the non-collaborating firm if and only if spillovers are weak (¢ < 0.633);
(iv) unions reduce quantities of the non-collaborating firm if and only if spillovers are very

weak (¢ < 0.275); and (v) unions increase wages and prices.

In Figure 2 and Figure 3 we plot the individual R&D outputs when firms settle wages
and unions settle wages, respectively. We observe that, if unions choose wages, then R&D
output of a firm is decreasing with the number of links the firm has and with the spillover
parameter ¢. If firms settle wages, then individual R&D output still decreases with the
spillover parameter ¢, except for the firms that collaborate in the partial network and for
the "hub" firm in the star network. Indeed, the research effort made by the "hub" firm
may increase or decrease with ¢ depending on how large spillovers are. As ¢ goes from
zero to one, research effort first increases with ¢, then it starts to decrease with ¢. But,
the relationship between individual R&D output and the number of links becomes much
more complex. However, aggregate R&D output is decreasing with the spillover parameter
¢ and with the number of collaborations, whatever the mode of wage settlement and the
network architecture.

It is also interesting to analyze the evolution of effective R&D since it is a measure of the
reduction in marginal cost. In Figure 4 and Figure 5 we plot effective R&D outputs when
firms settle wages and unions settle wages, respectively. We observe that, if unions settle
wages, effective R&D output of any firm (except the isolated firm in ¢”) increases with
the spillover parameter ¢, except for very large spillovers. If firms settle wages, effective
R&D output of any firm (except firms in ¢g?) first increases with ¢, then it decreases with
¢, and reaches a maximum for values of ¢ close to % A change in ¢ has a twofold effect:
it increases the effect of one unit of R&D output on the whole network and reduces the
individual R&D output. Which one of the two effects dominates the other determines the
relationship between effective R&D and ¢.
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3 Stability and efficiency of R&D networks

3.1 Pairwise stable networks

A simple way to analyze the networks that one might expect to emerge in the long run
is to examine a sort of equilibrium requirement that agents not benefit from altering the
structure of the network. A weak version of such condition is the pairwise stability notion
defined by Jackson and Wolinsky (1996). A network is pairwise stable if no agent benefits
from severing one of their links and no other two agents benefit from adding a link between

them, with one benefiting strictly and the other at least weakly.
Definition 1 A network g is pairwise stable if
o forallij € g, Wi(g) > (g —ij) and ;(g) > (g —ij), and
o forallij ¢ g, if i(g) < Ii(g+ij) then I1;(g) > I;(g + if).

Let us say that ¢’ is adjacent to g if ¢ = g+ 17 or ¢ = g — 17 for some ij. A network
g defeats g if either ¢ = g —ij and I;(¢') > I;(g), or if ¢ = g+ i with I1;(¢") > IL;(g)
and I;(¢') > II;(g) with at least one inequality holding strictly. Pairwise stability is
equivalent to saying that a network is pairwise stable if it is not defeated by another
(necessarily adjacent) network. This definition of stability is quite weak and should be
seen as a necessary condition for strategic stability.

We are interested in the networks of R&D collaboration that emerge in two different
settings: (i) firms choose wages, (ii) unions choose wages. Throughout the paper we use
the symbol f (u) to indicate that the firm (union) chooses the wage. We first study

pairwise stable networks when firms settle wages.

Proposition 3 Suppose firms settle wages. (i) The complete network g¢ is always pairwise
stable, (ii) the partially connected network ¢P is pairwise stable if and only if spillovers
are large enough, ¢ > g(a), (iit) the star and empty networks (respectively, g° and g°) are

never pairwise stable.

Proof. First we show that the complete network ¢¢ is always pairwise stable. No pair of
firms ¢ and j have incentives to delete their link ¢j € g°. That is, II* (¢, f) > I} (g%, f)
and 113(g°, f) > I3(g°, f) with ij ¢ g°. Let

Ay = 524 ¢(284 — 20a — (160 + (14 — 5a) )¢ + 2(36 + a(8 + a))¢? — 8(2 + a)¢?).

14



Since

(T+4B-0)¢)(a—2)" _
(13— 46 (1 — ¢))”
414 — 2+ a)9)(2+ 2+ ) ) (1 + (5 — 2¢)¢)*(a —7)*
(A1)?

I (g% f) = (g5 f) =

I (g% f) = Wj(g, f) =

with ij ¢ ¢°, it follows that ¢¢ is pairwise stable. Obviously, the star network ¢° cannot
be pairwise stable since firms ¢ and j have incentives to form the link ij ¢ g°.

Second, the empty network ¢¢ is never pairwise stable. That is, ITf(¢?, f) > I (¢°, f)
and II3(g, f) > [I}(g%, f) with ij € g¥. Since

(-9)(1+¢)(a-2)° _ T(a-7)’
(13— 56 (2 — ¢))” (13)°

it follows that g€ is not pairwise stable.

I (g%, f) = =107 (¢°, f), with i € N(g?),

Third, the partially connected network gP is pairwise stable if the spillovers are suffi-
ciently large. Since the empty network is never pairwise stable, the network ¢? is pairwise
stable if and only if II} (g7, f) > [1f(g°, f) or II}(g?, ) > I}(g® f) with ij & g7, ij € ¢°,
and 7 ¢ N(g”). Since

(1=9) (a=9° _

(13 = 56 (2 — ¢))*

1414 -2+ a)p)2+ 2+ a)p)(1+ (5 — 2¢)¢)2(a — E)Q‘
(A1)? ’

I(g", f) =

I (g%, f)
g? is pairwise stable if and only if

(T-0)(1+¢)(@=2)"
(13- 5¢(2 - ¢))”
(7 —2a)(1 +20)(4 4+ 47— a)p — (4 — a)(2 + )d*)?(a —¢)?
(A1)? '

(s f) =

H;(gs,f) =

Let g(a) be a cutoff function which gives the value of ¢ such that II}(¢, f) = II}(g°, f),
g(a) is decreasing with «, is bounded above by g(a = 0) = 0.551, and is bounded below
by g(a = 1) = 0.285. Then, ¢? is pairwise stable if and only if ¢ > g(a).

Using Figures 6 and 7 we can study the stability of different networks. (i) The empty
network ¢¢ is never stable because two firms have incentives to collaborate. (ii) The
star network ¢° is never stable, because the "spoke" firms that have only one link have
incentives to link to each other. Thus, the complete network ¢¢ is always pairwise stable.
(iii) Whether the partially connected network ¢” is stable will depend on spillovers ¢ and

a. If spillovers are large enough, the isolated firm has a significant cost disadvantage
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and it will tend to be pushed out of the market as spillovers become very large. Thus,
collaborating firms may decide to keep isolated the third firm and to divide between them
most of the market letting only a small share to the isolated firm, rather than forming
a star network by offering a collaboration link to the isolated firm. On the contrary, if
spillovers are small, collaborating firms have incentives to link with the isolated firm in
order to become the "hub" firm in the star network and to benefit from cost reductions due
to the increase of effective R&D. The gains due to the increase of effective R&D are not
offset by the increase in product competition. The former isolated firm is more competitive
under the star network because it benefits from direct spillovers from the "hub" firm and
from indirect spillovers from the other "spoke" firm.

As ¢ decreases, the profits of the firms in the different networks become similar, ir-
respective of the network structure (in the limiting case ¢ — 0 the profits are all equal).
Thus, network structures become more important when direct spillovers are large.® An-
other observation concerns the impact of spillovers on the stability of different networks.
Smaller spillovers (direct and indirect) destabilize the partially connected network rapidly.”
The intuition behind this is that the stability of the partially connected network relies on
the great cost asymmetry existing between the linked firms and the isolated firm. It is
this asymmetry that discourages a linked firm from forming a link with the isolated firm,
for large direct spillovers and large indirect spillovers. As ¢ decreases, this asymmetry
reduces, and that destabilizes the partially connected network g”. Moreover, the larger
¢ and « are, the smaller the cost asymmetry existing between firms in the star network
is, and the smaller cost advantage the "hub" firm has. In contrast, the complete network
remains stable for all values of ¢; we note however that the losses from deleting a link
diminish as ¢ decreases and as « increases (in this sense the complete network becomes
more vulnerable with decreasing ¢ and increasing a).

We now study pairwise stable networks when unions settle wages.

Proposition 4 Suppose unions settle wages. The complete network g¢ is the unique pair-

wise stable network.

Proof. First we show that the complete network ¢¢ is always pairwise stable. No pair of

firms ¢ and j have incentives to delete their link ij € ¢g°. That is, IT} (¢ u) > II(¢%,u)

8Goyal and Moraga-Gonzslez (2001) found that network structures are more important when public

spillovers are modest. This is why we assume no public spillovers.
°The smaller the spillovers from indirect collaborations are, the larger the spillovers from direct collab-

orations have to be in order to make the partially connected network ¢g” pairwise stable.
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and I13(g% u) > 13(g% u) with ij ¢ g°. Let

Ay = 4468900 + 96(114060 — 20060 — 3(11904 — (302 + 1003cx)) b
+54(156 4+ (32 + 30))p? — 648(2 + )¢®).

Since
(o) = 9 (151 — 1864)(73 4 18¢) (a —¢)*
L= (675 — 36¢ (5 — 3¢))?
D) = 36(302 — 9(2 + @) $) (146 + 9(2 + @) $) (667 4+ 9(19 — 6¢)¢)?(a —¢)2

(A2)?
= H;f (gs7 u)

with ij ¢ ¢°, it follows that ¢¢ is pairwise stable. Obviously, the star network ¢° cannot
be pairwise stable since firms ¢ and j have incentives to form the link ij ¢ g°.
Second, the empty network ¢¢ is never pairwise stable. That is, IT} (¢?,u) > ITf (g%, u)
and II3(g?,u) > 115(g°, u) with ij € gP. Since
_4004001(151 — 9¢) (73 +9¢) (a — ¢)> _ 99207 (a —¢)”

H:Lk p7u - > = H;k e7u ’
(") (1117225 — 90276 (10 — 3¢))? 2805625 (9" w)

with ¢ € N(g¢”), it follows that ¢g¢ is not pairwise stable.
Third, the partially connected network ¢? is never pairwise stable. That is, IT7(¢°, u) >
I} (g?,u) and 113(g%, u) > 13(gP, u) with ij ¢ g7, ij € g° and i ¢ N(g?). Since we have

36(302 — 9(2 + 0)$)(146 + 9(2 + a)9) (667 + 9(19 — 66)#)*(a — ) _

I (g% u) = (A2)?
D) = P9207T(667 —96(10 ~ 30)) (a — o)’
i\ = (1117225 — 9027¢ (10 — 3¢))*
and
(g — AO0AV0LU5L = 096) (75 +06) (o —2)°
G\ = (1117225 — 90276 (10 — 3¢))
Ty — 2051 180)(73 +180)(2668 +36(29 — 5a)¢ — 27(1 — a)(2 + )e*)*(a — )"
VACHE o |

(Ag)?

with ij & gP, ij € g%, i ¢ N(g”), j € N(g*), ¢” is never pairwise stable.

Using Figure 8 for « = 1 we can study the stability of different networks. This analysis
goes through for all values of a € [0,1].1% (i) The empty network g€ is still never stable.

(i) The star network ¢° is never stable either. Indeed, "spoke" firms that have only one

1ONotice that & = 1 makes the star network less asymmetric than with @ < 1. If the partially connected

network ¢ is not pairwise stable for o = 1, then for sure ¢” is not pairwise stable for a < 1.
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link have still incentives to link to each other. Thus, the complete network ¢¢ is pairwise
stable. (iii) But, once the unions settle wages, the partially connected network g¢” is no
longer stable even when spillovers ¢ are large. Without unions, the isolated firm will
tend to be pushed out of the market as spillovers become very large. However, under
unionization, a large share of the benefits of the linked firms thanks to cost reductions due
to R&D collaborations goes to the unions which diminishes their competitive advantage
with respect to the isolated firm. As a consequence, collaborating firms have less incentives
to make R&D, meanwhile the isolated firm may even make more R&D effort in presence
of unions. Even when ¢ goes to one the isolated firm maintains a significant market share.
In fact unionization reduces considerably the asymmetry between the linked firms and
the isolated firm. Thus, unionization destabilizes g making g° the unique pairwise stable

network.

3.2 Strongly stable networks

While pairwise stability is natural and quite easy to work with, there are some limitations
of the concept. First, it is a weak notion in that it only considers deviations on a single
link at a time. For instance, it could be that an agent would not benefit from severing
any single link but would benefit from severing several links simultaneously, and yet the
network would still be pairwise stable. Second, pairwise stability considers only deviations
by at most a pair of agents at a time. It might be that some group of agents could all be
made better off by some complicated reorganization of their links, which is not accounted
for under pairwise stability.

Alternatives to pairwise stability that allow for larger coalitions than just pairs of
agents to deviate were first considered by Dutta and Mutuswami (1997). The definition
of strong stable networks is in that spirit, and is due to Jackson and van den Nouweland
(2004). A strongly stable network is a network which is stable against changes in links by
any coalition of agents.

A network ¢ € G is obtainable from g € (G via deviations by S if
(i) ij € ¢ and ij ¢ g implies ¢j C S, and
(i) ij € g and ij ¢ ¢ implies ij N S # .

The above definition identifies changes in a network that can be made by a coalition
S, without the need of consent of any agents outside of S. Part (i) requires that any new
links that are added can only be between agents in S. This reflects the fact that consent

of both agents is needed to add a link. Part (ii) requires that at least one agent of any
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deleted link be in S. This reflects the fact that either agent in a link can unilaterally sever

the relationship.

Definition 2 A nectwork g is strongly stable if for any S C N, ¢ that is obtainable from
g via deviations by S, and i € S such that 11;(¢') > I;(g), there exists j € S such that

IL;(g") < l;(g).

Strong stability provides a powerful refinement of pairwise stability. The concept of
strong stability mainly makes sense in smaller network situations where agents have sub-
stantial information about the overall structure and potential payoffs and can coordinate

their actions. That is, it makes sense to model agreements between firms in an oligopoly.

Proposition 5 Suppose firms settle wages. If ¢ > g(a) the partially connected network

gP is the unique strongly stable network. Otherwise, no network g € G is strongly stable.

Proof. First, since strong stability is a refinement of pairwise stability, we have that the
empty and star networks are never strongly stable. Second, we show that the complete
network ¢° is never strongly stable. Indeed, we have IT}(¢”, f) > IIf(¢°, f) and IT}(g”, f) >
I3(g%, f) with ij € g7, where

(T+4(3—¢)¢)(a—7)”
(13— 4¢ (1 —¢))”
(T-@)(1+0)(a-2)"
(13 —5¢ (2 — ¢))”

Third, from Proposition 3 we know that if ¢ < g(a) then the partially connected net-

I (g% f) = W3¢ f) =

(g, f) = (", f)=

work is not pairwise stable, and so is not strongly stable; where g(a) is a cutoff function
which gives the value of ¢ such that II*(¢*, f) = III(¢°, f), with ¢ € N(g”) and i hav-
ing two links in ¢®. But, if ¢ > g(a), then ¢? is pairwise stable. Is ¢P strongly stable
too? Since ¢P is pairwise stable, it suffices to show that no coalition has incentives to add
links to form the complete network g¢. The answer is no since IIf(g?, f) > IIf (g%, f) and
I5(g?, f) > 113 (g°, f) with ij € gP as shown above. So, if ¢ > E(a) then ¢? is the unique
strongly stable network, and if ¢ < 5(@) then no network is strongly stable.

Since a strongly stable network is a pairwise stable network, the only two candidates
to be strongly stable are gP and g¢ when firms settle wages. First, we consider the case
when both ¢ and ¢¢ are pairwise stable. That is, if ¢ > g(a). Using Figures 6 and 7 we
see that the complete network ¢° is not strongly stable because two firms have incentives
to form a coalition and to delete their links with the third firm; so moving to the partially

connected network ¢”. Such deviation was not allowed with pairwise stability. Thus, ¢?
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is the unique strongly stable network when spillovers are large, ¢ > g(a). Second, we
consider the case when only ¢¢ is pairwise stable. That is, if ¢ < g(a). From Figures 6
and 7 we observe that g¢ is never strongly stable.

We now consider the situation when unions settle wages.

Proposition 6 Suppose unions settle wages. The complete network ¢° is the unique

strongly stable network.

Proof. First, since strong stability is a refinement of pairwise stability, we have that the
empty, partially connected and star networks are never strongly stable. Second, we show
that the complete network ¢¢ is always strongly stable. From Proposition 4 we know that
the complete network is always pairwise stable. It suffices to show that no coalition of
firms have incentives to delete links to form either the partially connected network or the

empty network. Since

9 (151 — 18¢)(73 + 18¢) (a —¢)*

I (g% u) = (675 — 366 (5 — 3¢))?
e i K
i = T

(g ) = SO2UT(E6T—90.(10 = 30)) (a — )"

(1117225 — 9027¢(10 — 3¢))?

we have that I1;(¢%) > ILi(¢?) > ILi(¢¢) > IL;(g”), with ¢ € N(¢?) and j ¢ N(¢”), and so
the complete network ¢° is strongly stable for ¢ € (0, 1].

Using Figure 8 we observe that ¢¢ is strongly stable whatever ¢ > 0 since a coalition
of two firms never has incentives to form and to delete its links with the third firm. The
intuition is that unionization again reduces the asymmetry of the partially connected
network ¢g©’. Thus, the strongly stable network that will emerge in the long run is different
whether firms settle wages or unions settle wages.

What would happen if unions had a word to say in the decision about R&D collab-
orations? One extreme case is a situation where unions decide about links instead of
firms. Using Figure 9 we observe that (i) ¢¢, ¢*, and ¢° are never pairwise, (ii) ¢¢ is the
unique pairwise stable network. Is g¢ strongly stable too? If ¢ < 0.663 then ¢ is strongly
stable, otherwise no network is strongly stable. We conclude that in terms of network

architecture, firms and unions aspirations are very close.
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Figure 9: Unions’ rents when o = 1.
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3.3 Aggregate performance of networks

We now explore the aggregate performance of different networks. In Figure 10 and Fig-
ure 11 we plot the aggregate profits of firms when firms settle wages and unions settle
wages, respectively. Remember that the symbol f (u) indicates that firms (unions) settle
wages. Define ¢ p as the solution to equation >, IL;(¢¢, f) = >, IL;(¢?, f). Figure 10
shows that ¢pp exists and is unique, and reveals that if ¢ < ¢pp then ¢° is the network
that maximizes aggregate profits when firms settle wages, otherwise it is g*. Notice that
aggregate profits are not always increasing with the number of collaborations. We now
provide some intuition for this pattern. When spillovers are large, the isolated firm tends
to be pushed out of the market and the collaborating firms will obtain profits close to
the duopoly case which are greater than those obtained in the complete network where
all firms have equal market share. As ¢ — 1 we converge to a situation where in ¢? two
firms collaborate in R&D and share the whole market, while in ¢g¢ three firms collaborate
in R&D and share the whole market. However, we observe in Figure 11 that the complete
network ¢g¢ dominates in terms of aggregate profits when unions settle wages. Moreover,
aggregate industry profits are increasing with the number of collaborations and with the
spillover parameter ¢.

In Figure 12 and Figure 13 we plot the aggregate production of the industry when firms
settle wages and unions settle wages, respectively. Define ¢, as the solution to equation
Q9% f) = Q9% f,a) and ¢gg as the solution to equation Q(g?,f) = Q(g°, f, ). We
have that, if ¢ < ¢ then g° is the network which maximizes aggregate production.
Aggregate production is increasing with the number of collaborations. If ¢ € (d)Ql, d)QQ)
then g° is the network which maximizes aggregate production. Finally, if ¢ > ¢9 then
g? maximizes aggregate production. So, when spillovers are large, intermediate levels of
collaborations maximize aggregate production of the industry. Notice that if spillovers
are small, aggregate production is increasing with the spillover parameter ¢. But, when
spillovers become large, aggregate production is decreasing with ¢, except for g”. In case of
unionization, aggregate production is increasing with the number of collaborations except
for very large spillovers. Finally, notice that total effective R&D and aggregate unions

rents have a shape very close to the plot of the aggregate production.

3.4 Efficient networks

We now examine social welfare under the different networks. To compute social welfare
W(g) under a network g we substitute equilibrium quantities and profits in the social
welfare expression (9). These computations are given in the appendix. We say that a

network g is efficient if and only if W(g) > W(g') for all ¢. In Figure 14 we plot the
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welfare levels under the different networks without unions. Define ¢ as the solution to
equation W (g?) = W(g°). The figure shows that ¢ exists and is unique: ¢ = 0.6305. We
are ready to state the following proposition (see the Appendix for details).

3.4

3.2

Welfare
N
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N

.

o))
T

N

.

IS
T

2.2 |

Figure 14: Social welfare when firms settle wages.

Proposition 7 Suppose firms settle wages. If spillovers are weak, ¢ < ¢, then the com-
plete network ¢¢ is the unique efficient network. If spillovers are strong, ¢ > ¢, then the

partially connected network gP is the unique efficient network.

The above result shows that the welfare-maximizing number of collaborations declines
with respect to the spillover parameter. For low spillover parameter ¢, the complete net-

work g€ is efficient. But for large spillover parameter, ¢ > 0.6305, the partially connected

30



network ¢? is efficient. It is efficient because when spillovers are large, the isolated firm
tends to be pushed out of the market and the collaborating firms will obtain profits close
to the duopoly case which are greater than those obtained in the complete network where
all firms have equal market share. Moreover, consumer surplus is also maximized with the
partially connected network when spillovers are large. The reason is that the increase in
effective R&D output by the collaborating firms results in an increase in their output that
more than compensate the reduction in the isolated firm’s output. The partially connected
network is the only network where the collaborating firms are able to reduce drastically
the rival’s market share when spillovers are very large.

Define ¢ as the solution to equation W(g?) = W(g®,a = 0). The figure shows that
¢¢ exists and is unique: ¢y = 0.526.

Corollary 1 Suppose firms settle wages. If spillovers are weak, ¢ < ¢, then social welfare

is increasing with the number of collaborative links.

Notice that, only if spillovers are weak, ¢ < ¢y, then social welfare is increasing with
the number of collaborative links whenever firms settle wages. Indeed, when spillovers are
strong, intermediate levels of collaborations are preferred from a social point of view.

Figure 15 contrasts the efficient and pairwise stable networks. We observe that a con-
flict between pairwise stability and efficiency may occur when firms settle wages. Mean-
while the efficient network is always pairwise stable, the reverse is not true. For instance,
the partially connected network may be stable when the complete network is efficient, and
the complete network is stable when the partially connected network is efficient. Notice

that there is always a unique efficient network.

complete is always pairwise stable

partial network is not partial network is
pairwise stable pairwise stable
||
. . . — S
0 o) (a) $(0) & 1
||
complete is efficient partial is efficient

Figure 15: A conflict between stability and efficiency when firms settle wages.

This conflict is much stronger when we consider the notion of strongly stable network.
The efficient network may not be strongly stable. More precisely, the complete network

is the efficient network for ¢ < ¢ = 0.6305 but the complete network is never strongly
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stable. However, if ¢ > ¢ then the partially connected network is the efficient network

and is the unique strongly stable.

no network is partial network is
strongly stable unique strongly stable
||
. . . — . 0
0 o) b 60 9 1
||
complete is efficient partial is efficient

Figure 16: A conflict between strong stability and efficiency when firms settle wages.

We turn now to the case where unions settle wages. In Figure 17 we plot the welfare
levels under the different networks with unions. We observe that the complete network

C

g¢ is the efficient network. Moreover, social welfare is increasing with the number of

collaborative links (see the Appendix for details).

Proposition 8 Suppose unions settle wages. The complete network ¢° is the unique ef-
ficient network and social welfare is increasing with the number of collaborative links:

W(g°) > W*(g°) > W*(g¥) > W*(g°).

That is, whenever unions settle wages, there is no conflict between stability and ef-
ficiency. The complete network ¢¢ is both the unique pairwise stable network and the
efficient network. It is also the unique strongly stable network. Thus, unionization recon-

ciles the private incentives to form R&D collaborations with the social welfare viewpoint.

4 Conclusion

We have developed a model of strategic networks in order to analyze how unions will af-
fect the stability and efficiency of R&D collaboration networks in an oligopolistic industry
with three firms. We have found that, whenever firms settle wages, the complete network
is always pairwise stable and the partially connected is stable if and only if spillovers
are large enough. However, the complete network is the efficient network if spillovers are
small, while the partially connected network is the efficient network if spillovers are large.
Thus, a conflict between stability and efliciency may occur: efficient networks are pairwise
stable, but the reverse is not true. Strong stability even reinforces this conflict. But, once

unions settle wages such conflict disappears: the complete network is the unique pairwise
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Figure 17: Social welfare when unions settle wages.
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and strongly stable network and is the efficient network whatever the spillovers.
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Appendix A: Empty network

In the last stage of the game, the R&D collaboration links have already been chosen,
the wage levels have already been determined and the research efforts have already been
chosen. Under Cournot competition the firms compete by choosing simultaneously their
outputs to maximize profits with price adjusting to clear the market. The unique Nash

equilibrium of this stage game is
* 1 = .
qi<ge7f) :Z<G_C+3I¢—Ij—xk), ZGN,
if the firm settles the wage, and

1 .
q;‘(ge,u):Z—l(a—E—i’)wi—l—wj—l—wk—|—3aci—acj—ack;),ZGN,

if the union settles the wage. The symbol f (u) indicates that the firm (union) chooses
the wage. In the third stage, wages are settled at the firm-level. We have w}(¢¢, f) = 0.

Standard computations give us

Wi (g ) = — (T(a—72) + 13 — 3 (2 + 24))..

- 28
Then, we obtain the profits as function of R&D outputs:
* 1 _ B
H7,<ge7f) = E<a_c+7xl_<xj+xk))(a_C—%—(IJ—I—xk)),
* 1 B
(g% w) = oy (21(a—2) + 151 — 9 (2 +23)) -

(21 (a —7¢) — T3z; — 9 (z; + 1)) ,
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It follows that marginal benefits from R&D are decreasing with the research outputs from

the other firms. Indeed,

aHi<ge7 f) 3 aHi<ge7 U) 9
T T) 2 0 and S
Dz,0z; 8 <0 ¢ o0, 6272

< 0.

Then, z; and z; are strategic substitutes. Moreover, we observe that marginal benefits
from R&D are decreasing less with the research outputs from the other firms when unions

settle wages;

aHi<ge7 f) > aHi<ge7 u)
c%ci@acj axlaxj .

In the second stage, the firms choose simultaneously their research outputs to maximize

profits anticipating perfectly wages and outputs. The unique (symmetric) Nash equilib-
rium of this stage game is

3(a—7)
13

117(a —7¢)
1675

*

x;<ge7f): ,Ii<ge,u): , 1€ N.

Since there is no collaboration, firm #’s own R&D output is its effective R&D output. One

can easily obtain the equilibrium outputs, profits, and wages:

4(a —7) 7(a—2)?
¥ ) = T e gy NETCG
qz(.g:f)_ 13 7Hz<g7f) 169 7Z€N7
in case the firm settles the wage;
336 (a — ) 99207 (a —¢)? 448 (a — )
* € = * € = * € =
495w =gy Hildhw) o wilehw) 1675

in case the union settles the wage. In ¢g¢ the global effective R&D effort is given by

_ 9(a—2¢)
13

351 (a —¢)

X* (g%, f) , X' (g% ) = 1675

Unions payoffs are

\ \ 150528 (a —¢)?
Ui(g°, ) =0, U (¢ u) = 16752

Appendix B: Partial network

Let k be the firm which is isolated and has no link. Firm ¢ and firm ;7 are linked
to each other, and share R&D activities. The unique Nash equilibrium of the Cournot

competition stage game is

G S) = Jla—t+3n— (0 + o)1+ 0),
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if the firm settles the wage, and
1

g (gP,u) = Z(a —¢—3w; + wy, + wj +x;(3 — @) — z — x;(1 — 30)),
1
49" w) = (a—2— 3wy +wi+w;+ 3w, — (zi +25)(1 + ),

if the union settles the wage.
In the third stage, wages are settled at the firm-level. We have w;(¢?, f) = wi(¢?, f) =

0. Standard computations give us

Wi ) = o(7(a )+ (13— 36) — 3m — (3 — 130),
wi(gPou) = 2—18(7(a—E)—|—13Jck;—3(aci—|—acj)(1—l—¢)).

Incorporating the equilibrium outputs and wages into profits, we get

% B _%<3_¢)<1—3¢)<Oifandon1yif¢<§7
% - 62972 (13— 3¢)<3_13¢)<0ifandonlyiqu<1_337
A P
T = —§<3—¢><0
A P
S - —§<l+¢><o
P
% - 6325712< +9) <

More precisely,

: BHZ( p:f) ( )
(1) Bsci(%scj < 893 g:cu < 0if ¢ < 13a

(i) TGl <0< BB it <o <4

o P [o) P
(iii) 0 < Zged)  Fhulgru) jp 1 < < SUOB2YH0 () 363;

Ol (g?, f) O, (gP,u) ¢ 3119—32/5590
( )0< Ox;0z; < 0x;0; if 2001 <¢<1'

Notice that R&D efforts for the collaborating firms can be either strategic substitutes or

complements depending on the spillovers parameter ¢. However, the strategic interaction

between R&D efforts of a collaborating firm and the isolated one (or the opposite) is of

substitution regardless spillovers size and unionization. Moreover, we observe that:

marginal benefits from R&D for the isolated firm is decreasing more with R&D done by
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a collaborating firm than marginal benefits from R&D for the collaborating firm do with
R&D done by the isolated firm,

aHk<gp7 f) < 8H1<gp7 f) and aHk<gp7 U) < 8H1<gp7 U)
axkaxl axlaxk axkaxl axlaxk

(il) Marginal benefits from R&D for a collaborating firm are decreasing more with R&D
done by the isolated firm than with R&D done by its research partner,
(P (P (P (P
aH%(Q 7f) < aH%(Q 7f) and aH’L(g 7u) < aH’L(g 7u)
Ox;0xy, Ox;0x; Ox;0xy, Ox;0x;

(iii) Marginal benefits from R&D for a firm are decreasing much more with R&D done by
a firm which is not linked to it whenever firms settle wages,

Ollu(9”, ) _ Olu(g”,w) OLi(g?, f) _ OlLi(g®,u)
Ox1.0x; dxpOx; = OxiOxy Ox;0xy,

In the second stage, the firms choose simultaneously their research outputs to maximize
profits anticipating perfectly wages and outputs. Invoking symmetry for the firms linked

to each other, i.e. x; = x;, the unique Nash equilibrium of this stage game is

: _ B9 o, _30-9) @0
I'L‘(gp:f) - 13_5<2_¢)¢7Ikz<gp7f)_ 13_5<2_¢)¢ )
\ _ 6003(13—3¢)(a—7) _117(667 — 9¢ (10 — 36)) (a —7)
0% = 117295 — 0270(10 = 39)” “H9 Y T T 1117295 — 00276(10 - 30)

We observe that research efforts are decreasing with spillovers (¢) when the union
settles the wage. That is, %ﬁf’u) < 0 and %ﬁf’u) < 0. In case the firm settles the wage,
research efforts made by the isolated firm k are always decreasing with ¢, while research
efforts made by firm ¢ and firm ;7 are decreasing with ¢ if and only if spillovers are strong

enough. That is, —h% <0 and 2 (g S < 0 if and only if ¢ > 1(15 - 2V/35).

One can easily obtain the equlhbrlum outputs, profits and wages:

vy 4(a-?) L ) S Gt
q; (g 7f) - 13_5(2_¢)¢7qk< f) 5<2_¢)¢
e o 224112 (a — ) i p \ 336667 — 96 (10 — 39)) (a —©)
(") = T —o02rg(0 = 39)” 9 = T 117235 — 0027610 — 30)
Hi<g 7f) = (13_5<2_¢)¢)2 ’
e o T1=9) (a7
sz<g 7f) - (13_5<2_¢)¢)2’
— _4004001(151 — 96)(73 + 9¢) (a —¢)*
i) = (1117225 — 9027¢(10 — 3¢))2
T(Pou) = 99207(667 — 96 (10 — 36))2 (a —¢)

(1117225 — 9027¢(10 — 3¢))?
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. B 208816 (a — 7) . _ 448(667 — 96 (10 — 3¢)) (a — )
wil9" ) = 117995 — 90270(10 — 30)” R Y = 117995 — 90276(10 — 30)

The global effective R&D effort is given by

(9-(2-9¢)¢)(a—7)
13-52—-¢)p '

9(26013 + 12176(10 — 3¢)) (a — ©)
1117225 — 9027¢(10 — 3¢)

X" (4" f)

X* (g% u) =

Unions payoffs are

66968251392 (o — ¢)?
(1117225 — 9027¢(10 — 3¢))2’
150528(667 — 9¢ (10 — 3¢))2 (a —¢)*
(1117225 — 90274(10 — 3¢))2

Ui* <gp7 u) =

Ui(g" u) =
Appendix C: Star network

Let ¢ be the "hub" firm linked to the "spoke" firms j and k. The unique Nash equi-

librium of the Cournot competition stage game is

G5 0) = gl +ai(6—49) — (o) + 01)(2 — (6~ )a)
G6 ) = 5 @) +2,6 - 2+0)0) — (2~ 146) — ru(2 + (2 30)5)
and
g (9°,u) = é@(a—ﬁ)—6w¢+2(wj+wkz)+%(6—4¢)—(Ij+$kz)(2—(6—0¢)¢)),
G(5°0) = (2a—7) — 6wy + 2w +wy) + 756 — 2+ a)6) — (2~ 19)

(2 + (2 - 30)3)).

In the third stage, wages are settled at the firm-level. We have wj(g°, f) = wj(g°, f) = 0.

Standard computations give us

wio' ) = 2o (14 —2) 420 (26— 126) — (25 4 4) (6~ (26— 30) 6)),
Wio' ) = 2o (14 —2) 4 (26 — 32+ )6) — (6 — 200) — w1 (6 + (6 — 130) 8)).
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Incorporating the equilibrium outputs and wages into profits, we get

% = L (3-20)2~(6—0)) <0 i andonly if < =,

W - 12244 (13- 69) (6 — (26— 3a)¢) < 0 if and only if ¢ < o~

% - 116(1—2¢)(6—(2+a)¢)<01fand only if¢<%,

% = —ﬁ(?} —10¢)(26 — 3(2+ a)¢) < 0 if and only if ¢ < %

G G230 - 2 +a)) <o

% _ 25388@ (6 — 130)6)(26 — 3(2 + a)é) < 0 if cither o < %
ora > %and¢<13a6_6.

In the second stage, the firms choose simultaneously their research outputs to maximize
profits anticipating perfectly wages and outputs. We write z}(g°, f, 1) for zf(¢°, f,a = 1)
and zf(g®%, f,0) for z(¢°, f, = 0). Invoking symmetry for the firms at the spokes, i.e.

x;j = T, the unique Nash equilibrium of this stage game is

(3 —2¢) (4 +3¢(8 — 3¢)) (a — ©)

2 (9" f,1) 52 + ¢(264 — $(169 — 6¢(15 — 4¢)))
o 6(2—¢)(1+¢(5-2¢))(a—2¢)
w39, f,1) 52 + ¢(264 — ¢(169 — 6¢(15 — 4¢)))’
o 9(13 — 6¢)(2668 + 276(32 — 9¢)) (a —©)
zi(g°u, 1) 4468900 + 96(94000 — 9¢(3533 — 66(191 — 36¢)))’
o 18(26 — 99) (667 + 9¢(19 — 6¢)) (a —©)
23 (g% u, 1) 4468900 + 9¢(94000 — 96(3533 — 6(191 — 36¢)))

(s (3=2¢) (1 +¢(7—2¢)) (a —
(e £,0) = 13 + ¢(T1 — 26(20 — ¢(9 — 2¢)))’

B—0) (14 ¢(5—2¢))(a—

Q |
~

Olv
~— | ~—

7910 = T S 2020 0(9— 20)))

*( s _ 9(13 — 6¢)(667 + 99(29 — 6¢)) (a — )
797w 0) = 97795 T 276(9505 — 66(496 — 96(13 — 26)))’
w0y — 208~ 66667 +96(19 ~66)) (0 =)

1117225 + 276(9505 — 66(496 — 96(13 — 26)))’

We have that research efforts are decreasing with spillovers (¢) When the union settles the

9z (g°,u,1) 0% (g° u,1) 9z (g° u,0) % (g°,u,0)
o0 ](% 0% <0 a d—JT<O In case

the firm settles the wage, research efforts made by firm 7 and firm %k are decreasing with
93 (9%, /1)

@, —JT < 0 and —M < 0; but the research effort made by the "hub" firm may

wage. That is, < 0, < 0,
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increase or decrease with ¢ depending on how large spillovers are. As ¢ goes from zero to
one, research effort first increases with ¢, then it starts to decrease with ¢.

One can easily obtain the equilibrium outputs, profits, and wages:

o 4(4+3¢(8 — 3¢)) (a — )
(911 = oo $(264 — (169 — 6¢(15 — 4¢)))’
" 16(1 + ¢(5 — 2¢)) (a — )
(9" 11 = oo $(264 — $(169 — 66(15 — 40)))’
o A1+ ¢(7 = 29)) (a —7)
4 (9% 10) = 37 O(T1 — 26(20 — (9 — 2¢)))’
GO = e

13+ ¢(T1 = 2¢(20 — ¢(9 — 2¢)))’

M 1) = (=2000+260) (4 +3(8=36)6)"(a —2)’
R (52 + (264 — $(169 — 66(15 — 49))))?
(g 1) = 204=30)2436) 1+ (5-20))" (a—2)°
NI = (52 + (264 — $(169 — 6¢(15 — 49))))>

e, o) = (200042001407 =26)0) (@2
Ii(g*, f,0) = (7= )1+ ¢)(1+ (5—24) ) (a_§)7

when firms settle wages, and

336(2668 + 27¢(32 — 9¢)) (a —©)

a(9%w1) = Ti5s900 1 9¢(94000 — 9¢(3533 — 66(191 — 36¢)))’
ey 1344(667 4 99(19 — 66)) (a — )
G971 = 168000 + 96(94000 — 96(3533 — 66(191 — 364)))"
0 336(667 + 94(29 — 6¢)) (a — )
69w 0) = sy 276(9505 — 66(496 — 9¢(13 — 2¢)))’
. 336(667 + 94(19 — 6¢)) (a — )
4(9°%0) = ooy 276(9505 — 66(496 — 96(13 — 2¢)))’
(e gy — 3051 —186)(73 + 189)(2668 + 27¢(32 — 96))* (a —2)”
ig* 1) = (4468900 + 96(94000 — 96(3533 — 66(191 — 36¢))))2
(et 1) — 0302 276)(146 + 276)(667 + 96(19 — 66))* (a — e’
(g% ul) = (4468900 + 96(94000 — 9¢(3533 — 6¢(191 — 36¢))))2 ’
s oy 3051 = 189)(73 + 186)(667 + 96(29 — 66))? (a — 7)’
i(g%u,0) = (1117225 + 27¢(9505 — 66(496 — 9p(13 — 29))))?
—\2
(gt 0,0y = P51 90)(T3+96)(667 +96(19 —66))* @ —7)

(1117225 + 27¢(9505 — 66(496 — 96(13 — 2¢))))2 '
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448(2668 + 276(32 — 9¢)) (a — ©)

wilg'w 1) = 6000 + 9¢(94000 — 96(3533 — 6(191 — 36¢)))’
) 1792(667 4 96(19 — 6¢)) (a —©)
wi\g U, T 4468900 + 9¢<94000 — 9¢<3533 - 6¢<191 - 36¢)))7
ey 448(667 + 94(29 — 6¢)) (a — ©)
wilg" w00 = 777395 + 2769505 — 66496 — 96(13 — 20)))’
W0 = i a0 Gt g

1117225 + 27¢(9505 — 6¢(496 — 9¢(13 — 2¢)))’
when unions settle wages. The global effective R&D effort is given by
(36 + ¢(232 4+ ¢(107 — 18¢(15 — 4¢)))) (a — )

XHg S = 52 + ¢(264 — ¢(169 — 66(15 — 48)))
5/ 5 (9405394 64(4 — 9)(1 —2¢))) (a —¢)
AL = TR 2@ a0 - 20))
e qy 90104052 + G(162416 — 3¢(13003 + 54¢(191 — 366))) (a —7)
(g% w1) = 4468900 + 96(94000 — 9(3533 — 66(191 — 366))) ’
X (¢ u0) (26013 + $(34519 — 186(304 + 276(13 — 26)))) (a — ©)

1117225 4 27¢(9505 — 6¢(496 — 96(13 — 2¢)))
Unions payoffs are

150528(2668 + 27¢(32 — 96))2 (a — ¢)?

Uie™s u 1) = 71168900 + 9(94000 — 96/(3533 — 66(191 — 360))))%"
U 1) = 2408448(667 + 96(19 — 66))? (a —7)?

e (4468900 + 96(94000 — 9¢(3533 — 66(191 — 369))))?’
U u0) = 150528(667 + 96(29 — 66))2 (a —)?

N (1117225 + 276(9505 — 66(196 — 96(13 — 20))))2’
Vg us0) = 150528(667 + 96(19 — 66))2 (a — ©)?

(1117225 + 27¢(9505 — 66(496 — 96(13 — 2¢))))?”

Appendix D: Complete network

The unique Nash equilibrium of the Cournot competition stage game is either

. 1 _ L.
%‘(gcyf):Z<a_c+3xi_xj_xkz+2<xj+xkz_xi)¢)7l7é]7ék7

or
1 . .
q;‘(gc,u):Z—l(a—E—i’)wi—l—wj—l—wk—|—3aci—acj—ack—l—2(acj—|—ack—aci)¢),z#];ﬁk.

In the third stage, wages are settled at the firm-level. We have w} (g, f) = 0. Standard

computations give us

Wi su) = g (T(a =)+ (13 = 60) = (a; +24) (3= 100)) i £ 5 £
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We obtain

Mo ) = 1 (0 =7+ (3—26) — (5 +2) (1 - 20)° —a?,
(o) = o @1(a—2) 421 (151 — 186) =3 (a + 22) (3~ 106)-

(21(a—¢) — z; (73 + 18¢) — 3 (x; + =) (3 — 109)) ,

1 # j # k. It follows that marginal benefits from R&D are decreasing with the research
outputs from other firms if and only if spillovers are small, or even smaller if unions settle

wages. Indeed, we have

olLi(g% f) 3 1., _ 1
= —3 - 0 if and only if —
D0z 8—|—¢ 2(1) < 01if and only i (;5<27
—— " = ———(13-6¢)(3 - 10 0 if and only if —.
010 6272 ( o) ( ¢) < 0 if and only if ¢ < 0

More precisely,

o O, f) _ OMLi(g°u) : 3.
(1) 8:’31‘833]' < 8931'833]' < 0 lf d) < 10°

oy Ol (ge,f) OlLi(g°u) ¢ 3 1.
(11) w07, <0< Ow,0; if 10 < ¢ < 9

oM(g°f) _ OMi(g%u) ¢ 1 69 .
(i) 0 < ow.0z; ~ Owi0m; if 3 <¢ <5

: Ol (g%u) _ OL(g°,f) :¢ 69
(IV) 0< Ox;0z; < Ox;0; if 118 < d) <L

In the second stage, the firms choose simultaneously their research outputs to max-
imize profits anticipating perfectly wages and outputs. The unique (symmetric) Nash

equilibrium of this stage game is

*( C (3_2¢)<G_E) *( C
I@(Q 7f): 13_4¢<1_¢)7Ii<g 7u)

We observe that research efforts are decreasing with spillovers (¢). Then, one can easily

9(13 — 66) (a — ©)

= 1675 360(5—30) <"

obtain the equilibrium outputs, profits, and wages:

x( C _ 4(&—6) x/ C _<7+4<3_¢)¢)<G’_E)2
qi(.g?f)_13_4¢<1_¢)7Hi<g7f)_ (13_4¢<1_¢))2 )
. e 336 (a — ) ere _ 9(151 —18¢) (73 4 18¢) (a —©)°
qi<g7u) 1675—36¢<5—3¢)7H1<g7u)_ (1675—36¢<5—3¢))2 )
i) = 148 (a — ¢

1675 — 36¢ (5 — 3¢)
The global effective R&D effort is given by

(3—2¢) (1 +2¢)(a—7)

27 (13 — 6¢) (1 + 26) (a — ©)
13— 46 (1 - 9) |

1675 — 366 (5 — 30)

Xt (g ) =2 LX) =
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Unions payoffs are

150528 (a — ¢)*
(1675 — 366 (5 — 3¢))2"
Appendix E: Social welfare

Ui*<gc7 u) =

In case firms settle wages, the equilibrium welfare in each network configuration is

given by
W(g®) = 793<?6;E)2,
oopy (93— 0(112 — 5¢(8 — (4 — $)¢)))(a —¢)?
W) = (13- 502~ 9))° /
W(g®) = L((Zl_);) :
oy _ 3B1+43-¢)¢)(a—7)
S CF )
where

Az = 1488 4 224(77 — 4a)¢ + 16(2915 — (367 — 30a) )
—8(2784 4 (254 — (241 — 15a)))¢*
—(6816 + (1216 — (164 — 3(52 — 5av)))) "
+4(2 4 )(496 — (6 — a)a(8 + 3a))¢”
—4(2+ )} (24 — (8 — a)a)¢’.

Proof of Proposition 7. Suppose firms settle wages. Simple computations show that,
first, the empty network is the less efficient network: W*(g¢) > W*(¢¢), W*(g%) > W*(¢°),
and W*(¢?) > W*(¢°). Second, if ¢ > ¢; = 0.6035, then W*(¢?) > W*(g®). Third,
W*(g%) > W*(gP) if and only if ¢ < ¢y = 0.6305. Let ¢ = ¢y. Fourth, if ¢ < ¢ = 0.7112,
then W*(g¢) > W*(¢%). Finally, (i) if ¢ > ¢, = 0.788 then W*(g%) > W*(¢%); (ii) if
¢ < g = 0.5258 then W*(g%) > W*(gP).

In case unions settle wages, the equilibrium welfare in each network configuration is

given by
. 1257237(a — )?
W) 2805625
9(a — )% A4
W*(gP
(9”) (1117225 — 90276(10 — 34))2’
*/ 5 9(&—6)2145
W*(g°) = A
. 3(419079 + 972(13 — 3¢)¢)(a — 7)2
e (13 - 30)0)(a ~

(1675 — 366(5 — 3¢))?
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where

Aq
As

= 62147879077 + 3¢(—1655296568 + 3¢(208960760 + 918549¢(—20 + 3¢))),

= 994366065232 4 3¢(—618976(—333503 + 21394a) + 48(—408494973 +
(202998331 + 522401900) )¢ — 216(80192576 + (4374462 + o —4849629
+5103050)))¢? + 81(23047968 + (4756160 + a(—1509972 + o —464404 +
102061a))))¢* + 26244(2 + @) (2064 + (—6 4 @) (40 + 13a))¢* — 78732(2 + «)?
(24 + (=8 + a)a)¢’).

Simple computations lead to Proposition 8.
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