
1

Multi-Agent Spiral Software Engineering :

A Lakatosian Approach

Christophe Schinckus+, Yves Wautelet*, Manuel Kolp*

+ CEREC – Centre de Recherche en Economie
Facultés Universitaires St Louis
Email: {schinckus@fusl.ac.be}

* IAG – Institut d’Administration et de Gestion, ISYS – Unité de Systèmes
d’Information, Université Catholique de Louvain, 1 Place des Doyens, Belgium

Email: {wautelet, kolp@isys.ucl.ac.be}

Abstract. This paper presents an epistemological approach for the devel-
opment and validation of an original agent oriented software development
methodology (see [Wautelet05a, Wautelet05b]). Agent orientation has been
widely presented as a new modeling, design and programming paradigm that
could be adopted to build systems mark to the determinant advantages it of-
fers. This will be exposed and put into perspective in the paper through the
Lakatosian approach. Spiral development (see [Boehm00a]) has become
popular, especially through object-oriented software project development
since it allows efficient software project management, continuous organiza-
tional modeling and requirements acquisition, early implementation, con-
tinuous testing and modularity, etc.. The iterative nature of this requirements
engineering process will be studied here through Herbert Simon’s bounded
rationality principle and Popper’s knowledge growth principle but nuanced
by Lakatos’ falsification principle criticism.

1 Introduction

Information systems are deeply linked to human activities. Unfortunately, devel-
opment methodologies have been traditionally inspired by programming concepts and
not by organizational and human ones. This leads to ontological and semantic gaps
between the systems and their environments. The adoption of Multi-Agent Systems
(MAS) helps to reduce these gaps by offering modeling tools based on organizational
concepts (actors, agents, goals, objectives, responsibilities, social dependencies, etc.)
as fundamentals to conceive systems through all the development process. Moreover,
software development is becoming increasingly complex. Stakeholders’ expectations
are growing higher while the development time has to be as short as possible. Project
managers, analysts and software developers need adequate processes to model the orga-
nizational context, capture requirements and build efficient and flexible software sys-

2

tems. Facing user-interactive software applications this objective will be better
achieved using a Spiral Software Development Life Cycle (SDLC) [Boehm88]. Indeed,
the use of such development methodology allows to capture and to refine requirements
continuously and consequently to efficiently deal with users’ and stakeholders’ expecta-
tions appearing continuously during the project life cycle.

This paper presents an epistemological approach for the development and validation
of an original agent oriented software development methodology (see [Wautelet05a,
Wautelet05b]). Agent orientation has been widely presented as a new modeling, design
and programming paradigm that could be adopted to build systems mark to the deter-
minant advantages it offers. This will be exposed and put into perspective in the paper
through the Lakatosian approach. Spiral development (see [Boehm00a]) has become
popular, especially through object-oriented software project development since it al-
lows efficient software project management, continuous organizational modeling and
requirements acquisition, early implementation, continuous testing and modularity,
etc.. The iterative nature of this requirements engineering process will be studied here
through Herbert Simon’s bounded rationality principle and Popper’s knowledge
growth principle but nuanced by Lakatos’ falsification principle criticism.

The paper is organized as follows. Section 2 presents the context of the research,
some reasons of the software crisis are presented, spiral development and agent-
oriented systems as well as their benefits are studied. In section 3, the epistemological
approach is exposed. Agent–Orientation is successively considered as a paradigm and
as a research program; the iterative nature of the requirements engineering process is
also studied. Finally, some conclusions on our approach will be taken.

2 State of the art

2 . 1 The Software Crisis

Although constant and huge progress has been made in information technology,
complex information systems often imperfectly match users’ requirements. The “soft-
ware engineering crisis”-diagnostic made in the late sixties remains up to date. Com-
puters often take the responsibility to the public (“it is the computer’s fault!”), but
often the true dysfunctional causes are the result of human decisions or methodological
insufficiencies.

Software engineering (SE) can be defined as the whole of the methodological proc-
esses and of the relevant products used for the development of software on a large
scale. It was created to provide a more suitable methodological research.
The crisis has different reasons:

3

• the increasing complexity of modern information systems : con-
tinuous technological progresses allow to develop huger and huger software
applications while the increasing demand exceeds the productivity gains ob-
tained by methodological, techniques and tools improvements;

• the common under-estimation of the difficulty and conse-
quently of the software development cost (the methods, widely em-
piric, of individual programming are not applicable to the development of
huge and complex systems), with consequently a complex, long, costly, con-
flicting software development process and inadequate software products;

• a weaker reliability and maturity of software compared t o
hardware whereas its relative importance in the realization of the complex
system functions is getting higher;

• a substantial delay of the software industry compared to what a good applica-
tion of the principles would permit (see [Davis95, Meyer97, Som-
merville92]). This delay is due to the complexity and to the teaching costs of
software developers in a constantly evolving discipline;

• an inherent complexity:
- the problems software has to deal with can be arbitrary complex; for

example, the limits of a system functionalities are often much less
clear than those of more tangible products;

- the sequential decomposition of the development phases is not so
natural for SE than it is for other engineering disciplines (mechani-
cal engineering for example).

2.2 Software Development Methodologies

A Software Development Methodology (SDM) or a System Development Life Cy-
cle (SDLC) is a conceptual model used in software project management [Royce98] to
describe the stages involved in an information system development project; from an
initial feasibility study through maintenance of the completed application. Several
development methodologies using various SDLC such as the Sequential/Waterfall
Model [Royce70], the V-Model [Forsberg97], the Incremental Model [Dorfman97], the
Evolutionary Model or the Spiral Model [Boehm88, Boehm94] were developed over
the years. Depending on the project, some SDLC appear to be more adequate than
others. For the development of huge and complex user-interactive enterprise informa-
tion systems the Spiral SDLC is more appropriate than the use of a traditional Water-
fall SDLC. Indeed the former is much less risky than the later, especially in the last
stages of the project. The aim of this section is to discuss this assumption.

2.2.1. Waterfall SDLC
The Waterfall SDLC [Royce70] describes a development process based on a series

of phases (often called disciplines) that are fulfilled one after another in a lin-
ear/sequential way. This type of SDLC can only be successful when a series of as-

4

sumptions are met at the same time. Otherwise, risks are introduced in the process.
Following [Boehm00a], these assumptions are:

• the requirements can be known in advance of implementation;
• the requirements have no unresolved high-risk implications, such as risks due

to cost, schedule, performance, safety, security, user interfaces, and organiza-
tional impacts;

• the nature of the requirements will not change very much either during devel-
opment or evolution;

• the requirements are compatible with all the key system stakeholders’ expec-
tations, including users, customer, developers, maintainers, investors;

• the right architecture for implementing the requirements is well understood;
• there is enough calendar time to proceed sequentially.

If these assumptions are not met, the initial design will likely be flawed with re-
spect to its key requirements and late discovery of design defects results in costly over-
runs and/or project cancellation. Consequently, time and money will be wasted speci-
fying and implementing requirements that are going to change and implementing a
faulty design. This idea is described in the next section.

2.2.2. Spiral SDLC
Following [Boehm00a], the Spiral SDLC is “a risk-driven process model

generator used to guide multi-stakeholder concurrent engineering of software inten-
sive systems. It has two main distinguishing features. One is a cyclic approach for
incrementally growing a system's degree of definition and implementation while de-
creasing its degree of risk. The other is a set of anchor point milestones for
ensuring stakeholder commitment to feasible and mutually satisfactory system solu-
tions.”

As argued in the previous section, the assumptions needed for an optimal Waterfall
SDLC are seldom met. The causes are:

• requirements can rarely be known and defined in advance of im-
plementation, especially for new user-interactive systems. Most of them suf-
fer from what is known as the IKIWISI syndrome [Boehm00b]. Users and
stakeholders are often, during the early stages of the project, unable to ex-
press and describe what their requirements really are. When they are asked
about them they often reply I can’t tell you, but I’ll know it when I see it
(IKIWISI). In such situations, a parallel prototyping – requirements defini-
tion – architecture design – implementation – test is fundamental for the
good achievement of the project;

• defining requirements and freezing them early on in the project is a very risky
task. Early defined requirements can meet users’ expectations but sometimes
analysts discover later in the project that their practical achievement is (too)
constraining (in terms of cost, development time, processing time, human
resources, etc.). These requirements expressed in a less constraining manner
(i.e. longer response time from the system, less precision in the data analy-

5

sis, etc.) keep meeting user’s requirements but reduce the identified con-
straints in a drastic manner. That is why it is important not to fix and
freeze requirements too early in the project but to keep the abil ity
to refine them later if their definition appears to be too constraining. Us-
ing a Spiral SDLC allows to refine requirements many times during the pro-
ject lifecycle;

• requirements often evolve during the development process. Stakeholders
express new ideas, needs or perspectives so that the requirements acquisition
process cannot be made only once in the early stages but must be a continu-
ous process. This development-method also avoid spending a huge time on
requirements analysis at the beginning of the project specifying requirements
that will appear to be out of date or be refined later in the project.

These remarks highlight the need for a SDLC that include continuous requirements
acquisition and modeling. Using a Spiral SDLC implies that risk is considered during
the early stages of the project not at the late ones as in a process driven by fully se-
quential activities.

2.3 Towards More Adequate Organizational Modeling Techniques:
Agent-Orientation

One solution to the SE-crisis can thus be the use of SE methodologies using a spi-
ral SDLC more adequate for the development huge user-centered applications. Another
one can be improvements in conceptual modeling. Indeed, the meteoric rise of Internet
and World-Wide Web technologies has created overnight new application areas for
enterprise software, including eBusiness, web services, ubiquitous computing, knowl-
edge management and peer-to-peer networks. These areas demand software that is
robust, can operate within a wide range of environments, and can evolve over time to
cope with changing requirements. Moreover, such software has to be highly custom-
izable to meet the needs of a wide range of users, and sufficiently secure to protect
personal data and other assets on behalf of its stakeholders.

Not surprisingly, researchers are looking for new software designs that can cope
with such requirements. One promising source of ideas for designing such business
software is the area of multi-agent systems. Multi-agent system architectures appear to
be more flexible, modular and robust than traditional including object-oriented ones.
They tend to be open and dynamic in the sense they exist in a changing organizational
and operational environment where new components can be added, modified or re-
moved at any time.

Multi-agent systems are based on the concept of agent which is defined as “a
computer system, situated in some environment that is capable of flexible autono-
mous action in order to meet its design objective” [Wooldridge95]. An agent exhibits
the following characteristics:

6

• Autonomy: an agent has its own internal thread of execution, typically ori-
ented to the achievement of a specific task, and it decides for itself what ac-
tions it should perform at what time.

• Situateness: agents perform their actions in the context of being situated
in a particular environment. This environment may be a computational one
(e.g., a Web site) or a physical one (e.g., a manufacturing pipeline). The
agent can sense and affect some portion of that environment.

• Flexibility: in order to accomplish its design objectives in a dynamic and
unpredictable environment, the agent may need to act to ensure that its goals
are achieved (by realizing alternative plan). This property is enabled by the
fact that the agent is autonomous in its problem solving.

Agents can be useful as stand-alone entities that delegate particular tasks on behalf
of a user (e.g., personal digital assistants and e-mail filters [Maes94], or goal-driven
office delivery mobile devices [Mataric92]). However, in the overwhelming majority
of cases, agents exist in an environment that contains other agents. Such environment
is a multi-agent system (MAS).

In MAS, the global behavior derives from the interaction among the constituent
agents: they cooperate, coordinate or negotiate with one another. A multi-agent sys-
tem (MAS) is then conceived as a society of autonomous, collaborative, and goal-
driven software components (agents), much like a social organization. Each role an
agent can play has a well defined set of responsibilities (goals) achieved by means of
an agent’s own abilities, as well as its interaction capabilities.

This sociality of MAS is well suited to tackling the complexity of today’s organi-
zation software systems for a number of reasons:

• it permits a better match between system architectures and their operational
environment (e.g. a public organization, a corporation, a non-profit associa-
tion, a local community, …);

• the autonomy of an agent (i.e., the ability an agent has to decide what actions
it should take at what time [Wooldridge95]) reflects the social and decentral-
ized nature of modern enterprise systems [Tennenhouse00] that are operated
by different stakeholders [Parunak97];

• the flexible way in which agents operate to accomplish their goals is suited
to the dynamic and unpredictable situations in which business software is
now expected to run [Zambonelli00a, Zambonelli00b].

3 Epistemological Approach

In the second part of this paper, we will show that a lakatosian methodology is
well adapted for an epistemological reading of the emergence, on the one hand, of
agent-orientation and, on the other hand, of spiral development.

7

We will firstly reconsider the literature use of the “paradigm”-concept to character-
ize the evolution from object-orientation to agent-orientation. We will explain why
we think that the lakatosian “research program”-concept is more adequate than the
kuhnian “paradigm”-concept to illustrate the evolution of modeling and programming
concepts.

We will also reject the use of the popperian model of knowledge, which is often
used to explain the iterative process of computer development. According to us, this
popperian vision of computer development is inadequate because the “quasi-empirical”
character of software development does not allow any radical falsification of computer
solutions. We will show that the lakatosian epistemology provides a very interesting
and accurate theoretical framework to analyze the iterative process inherent to spiral
development.

3.1 Agent-Orientation: “Paradigm” or “Research Program”?

The evolution from object-orientation to agent-orientation is often presented in the
literature as an evolution from one paradigm to another. In this section, we will re-
consider the definition of the “paradigm”-concept in order to show that its use to char-
acterize the evolution of computer science is often abusive. Afterwards, we will dem-
onstrate that the use of the lakatosian “research program”-concept is more adequate for
an epistemological analysis of an applied discipline such as computer science.

3.1.1 Kuhnian Vision of Computer Science

3.1.1.1 “Paradigm”-Concept: a Definition
The word “paradigm” comes directly from the philosophical world where its mean-

ing remains surprisingly rather vague. As reminded by Göktürk and Akkok [Gök-
türk04], Plato and Aristote were the first authors to introduce this concept. According
to them, the paradigm is a kind of explanatory model, which allows people to under-
stand, in terms of causality, the changes imposed by Nature. However, the paradigm is
not, strictly speaking, a logic. For Aristote, the “paradigm” was “different from both
deduction, which goes from universal to particular, and induction, which goes from
particular to universal, in the sense that the paradigm goes from particular to particu-
lar.” [Göktürk04].

The term “paradigm” has not really been used before the 20th century when Thomas
Kuhn developed a specific epistemology based on this concept. According to Kuhn,
the paradigm is defined as “a constellation of concepts, values, perceptions and prac-
tices shared by a community and which forms a particular vision of reality that is the
basis of the way a community organizes itself ” [Kuhn96]. Nevertheless, Kuhn him-
self admits that the use of the word remains rather vague. According to Masterman
[Masterman70], it is possible to identify twenty-two different meanings of the “para-
digm”-concept used in the kuhnian epistemology. In the last edition of his book,

8

Kuhn even recognized that the “paradigm”-concept is vague but he explained that it is
close to what he calls a “disciplinary matrix”.

That is why we will consider in this paper the “paradigm” as a way of representing
the world, which necessarily includes conceptual tools and methods (the conjunction
of these two elements forming what Kuhn called a disciplinary matrix), such that an
observer can create models. Each paradigm refers to a particular ontology and repre-
sents a subset of “what is representable”. The representation abilities of a paradigm are
basically related to the conceptual tools, to the modelization methodology and to the
use of these two elements by theoreticians.

3.1.1.2 Paradigms and Computer Science
Göktürk retraces briefly the evolution of the paradigms in computer science and ex-

plains that the first one in computer programming was the procedural paradigm
[Göktürk04]. This paradigm was based on the use of algorithms to execute particular
tasks. The second paradigm was the data-hiding paradigm, which was focused on
the data’s organization and introduced the concept of modules (to hide the data’s). This
paradigm was followed by the data-abstraction paradigm, which was concen-
trated on the types and on the operations defined on these types. Next paradigm was
the object-oriented paradigm, “built upon the data-abstraction” one [Göktürk04]
but introducing new concepts like heritage or polymorphism. Finally, using the flexi-
bility of the component-oriented logic, the agent-oriented paradigm has divided
software into independent and communicating entities called “agents” [Woolridge95].
This last paradigm has been described in detail in the first part of this paper.

Programming languages and modelization paradigms are interdependant. We could
use the “chicken and egg” metaphor to characterize their reciprocal relationship [Gök-
türk04] : sometimes, specific needs for a programming language leads to a better
implementation of a modelization paradigm and sometimes, the evolution of the mod-
elization paradigm influences and improves the development of a specific program-
ming language. However, even if the programming languages and the modelization
paradigms are interdependent, an important specificity of the agent-oriented paradigm
is that it is not formally related to its own programming language. The concepts used
in agent-orientation have been inspired from the organizational structures of the real
world. At the beginning, the agent-oriented models were implemented in object-
oriented languages but further evolutions allow to implement the multi-agents sys-
tems directly in terms of Beliefs, Desires and Intentions (BDI) (see [Jack, Jadex]).
However, these languages are nowadays still based on object-oriented architectures.

3.1.2 Lakatosian Vision of Computer Science
In the literature, the paradigm-concept is often used (for example in [Göktürk04]

and in [Castro02]) to explain, in methodological terms, the emergence of agent-
orientation. In the following sections, we propose to review this vision that is to
demonstrate that the paradigm-concept is not the best adapted to describe the emer-
gence of agent-orientation. After presenting the concept of research program developed

9

by Lakatos, we will explain why, according to us, a lakatosian reading of the evolu-
tion to agent-orientation is more appropriate than a kuhnian one.

3.1.2.1 “Research Program”-Concept: a Definition
In the continuity of the popperian philosophy (which will be briefly presented in

the following section), Imre Lakatos has developed in 1974 an original approach of
science. He considers scientific theories as general structures that he calls “research
programs”. A lakatosian research program is a kind of scientific construction, a theo-
retical framework which guides future research (in a specific field) in a positive and
negative way. Each research program is constituted by an hard core, a protective belt
of auxiliary hypotheses, a positive heuristic and a negative heuristic.

The hard core is composed by general theoretical assumptions which constitute
the basic knowledge for the program development. In other words, these axioms are
the assumptions that the theorists will not challenge in their later researches. This
hard core is surrounded with a protective belt composed of the auxiliary hypothe-
ses, which complete the hard core and with assumptions related to the description of
the initial conditions of a specific problem. These auxiliary hypotheses will be thor-
oughly studied again, widened and completed by theorists in their further studies
within the program. This widening of the protective belt hypotheses contributes to the
evolution of the research program without calling into question the basic knowledge
shared by a scientific community.

The positive heuristic represents the agreement among the theoreticians over
the scientific evolution of the research program. It is a kind of “problem solving ma-
chinery” composed by proposals and indications on the way to widen and to enrich the
research program. The negative heuristic is the opposite of the positive heuristic.
Within each research program, it is important to maintain the basic assumptions
unchanged. It means that all the questions or methodologies that are not in accordance
with the basic knowledge must be rejected. All doubts appearing about the basic
knowledge of the main theoretical framework become a kind of negative heuristic of
the research program. When the negative heuristic becomes more and more important,
a research program can become “degenerative” (i.e. it has more and more empirical
anomalies). This means that theoreticians have to reconsider the basic knowledge of
the program, which can lead to the creation of another research program. Let us men-
tion that this revision is always a very slow process.

According to Lakatos, we can characterize the evolution of knowledge as a series of
“problems shifts” which allow the scientific theories to evolve without rejecting the
basic axioms shared by theorists within a specific research program. The concept of
“research program” represents a descriptive and minimal unit of knowledge, which
allows for a rational reconstruction of the history of science.

At first sight, the “research program”-concept seems rather close to the “paradigm”-
concept. Indeed, it is, in both cases, a matter of “disciplinary matrix” used to describe

10

a particular ontology of the external world. However, differences exist between these
two concepts especially in the evolution of science and knowledge in a large sense.

According to Kuhn, the evolution of science does not follow a straight line and
does not converge towards something, which would be the « truth ». In the kuhnian
vision, the evolution of science could be represented by a broken line where disconti-
nuity would mark the passage from one paradigm to another. From this point of view,
different paradigms cannot be compared. Moreover, Kuhn specifies that a paradigm
always emerges within a discipline facing a methodological crisis (characterized by the
absence of a dominating theoretical framework) [Kuhn96]. Following a crisis under-
gone by a previously dominating paradigm, a new paradigm emerges with a new lan-
guage and a new rationality. This new way of thinking the world does not allow a
comparison between the old and the new paradigm. Given that a new paradigm is a
new way of thinking the world, there is no comparison base. The thesis of paradigms
incommensurability has become a very well known issue in the philosophy of sci-
ences [Sankey94].

Lakatos decomposes the evolution of science into successive methodological and
epistemological steps. These steps form a kind of vertical structure built with a multi-
tude of “layers of knowledge” and where each layer represents a particular research
program. In the lakatosian vision, the emergence of a new research program is induced
by an empirical degeneration of a previously dominating research program. The new
research program will constitute a superior layer of knowledge, which will integrate
the same conceptual tools as the former one but which would be able to solve its
empirical anomalies through what Lakatos calls a “problems shift”. “Problems shifts”
are characterized by an extension or a redefinition of the protective belt of the preced-
ing program. In this vision, research programs remain comparable to each other (in
both conceptual and empirical terms). The language and rationality of the new research
program result from a progressive evolution of knowledge and from the resolution of
the empirical anomalies of the previous research program. In opposition to the
kuhnian vision, Lakatos explains that there is no discontinuity between the different
research programs.

3.1.2.2 Agent-Orientation as a Research Program
Although some authors present the emergence of the agent-orientation as an evolu-

tion towards a new paradigm, we propose to use the lakatosian concept of research
program to characterize this evolution. In this section, we present three main argu-
ments for the use of the lakatosian research program to understand the shift from ob-
ject to agent-orientation.

• Kuhnian Crisis or Lakatosian Problem Shift?

As exposed in the first part of this paper, we observe a SE-crisis due to the fact that
little software projects really manage to satisfy users’ requirements. In the kuhnian
vision, this crisis could be considered as a favourable argument for the emergence of a

11

new paradigm. In this perspective, an interesting question is: does the current crisis
characterize the end of a dominating paradigm or is it simply the result of a pre-
paradigmatic step specific to “young sciences” which have not found a dominating
paradigm yet? Using the kuhnian rhetoric to analyse this crisis, we can consider the
situation as a paradigm evolution. Indeed, the pre-paradigmatic step in computer sci-
ence was rather characterized by the procedural framework (which was defined by an
algorithmic and sequential logic i.e. a strictly computer/mathematical logic) as well as
the data-hiding and the data-abstraction frameworks. This pre-paradigmatic period was
essential for the evolution towards object-orientation. However, the crisis situation
observed in SE must be carefully analysed. Even if the “SE-crisis” diagnostic has been
noted for several years, we think that the context in which agent-orientation has
emerged cannot be considered as a crisis in the kuhnian sense. Indeed, most methodo-
logical rules existed before agent-orientation and the current software development field
does not seem to be so chaotic: IT specialists dispose of analysis methods and meth-
odological tools with a high level of abstraction. These elements tend to show that
what looks like a crisis is rather an (animated but normal) evolution of knowledge in
computer science, which could be interpreted as a “problem shift” in the lakatosian
vision.

• Kuhnian Discontinuity or Lakatosian Continuity?

According to us, the kuhnian discontinuity between paradigms is not appropriate to
explain the emergence of agent-orientation because there is no real “fracture” between
object and agent-orientation. Indeed, in some computer solutions, communicating
objects are used and are completely relevant and sufficient. If we would like to use
agents in these solutions, the agents would behave exactly as objects: they would just
transfer messages and would not behave like learning and collaborating agents pursu-
ing goals. In this special case, there is no contribution of the agent concept to the
computer solution provided by the previous technology based on the object concept.
We can see that the cohabitation within the same application between modules ex-
ploiting object technology and modules exploiting agent technology is thus a solution
which can be “optimal”. In a lakatosian vision, this cohabitation represents a progres-
sive evolution of knowledge in computer science. Indeed, the lakatosian epistemology
implies that the transition between research programs is not clear and depends on the
specific aspects of the experiment made (computer solution in the software field). An
hybrid solution between modules developed on the basis of objects and modules devel-
oped on the basis of agents can thus be explained by the continuity between research
programs inherent to the lakatosian vision of knowledge applied to SE.

• Kuhnian Incommensurability or Lakatosian Commensurability ?

Another drawback to the use of the kuhnian epistemology in SE is the incommen-
surability between paradigms. Object-orientation and agent-orientation can be com-
pared since collaborating agents can be used as communicating objects and, more
important, agents can be implemented using object-oriented languages. In this per-

12

spective agents can be considered as “super objects” i.e. objects possessing skills as
collaboration, learning, etc. If we consider SE development as an history of “raising
the level of abstraction”, agent-orientation can be seen as an evolution of object-
orientation because it raises the level of abstraction a little higher. In this perspective
research programs preceding object-orientation can also be considered as lower layered
than the later. This vision matches perfectly with the lakatosian concept of layers of
knowledge introduced earlier. Indeed, considering the SE evolution, each new research
program raises the level of abstraction and constitutes a higher layer of knowledge.
These layers are comparable so that OO and AO are commensurable.

• Lakatosian Vision

Agent-orientation is based on basic knowledge that existed before its emergence.
We could say that the agent-oriented programming has a hard core composed of the
concepts defined in the previous research programs (procedural, data hiding and data
abstraction) on the one hand and by the artificial intelligence field [Wooldridge95] on
the other hand. The protective belt of the agent-orientation research program would
be characterized by the evolution towards a methodology of SE allowing to develop
very important projects implying an intensive implication of the users (see for exam-
ple [Wautelet05, Do03, Faulkner05]).

Table 1 presents a summary of the opposition between the kuhnian and the lakato-
sian epistemologies applied to the emergence of agent-orientation.

The kuhnian
epistemology :
the paradigm

Critics of the kuhnian
epistemology

The lakatosian epistemology :
the research program

Emergence of
Knowledge

:
Crisis

or
“Problem shift”

?

Existence of a meth-
odological crisis al-
lowing the emer-
gence of a new para-
digm.

The context in which
agent-orientation has
emerged cannot be consid-
ered as a kuhnian crisis be-
cause of the existence of
methodological rules pre-
ceding the emergence of
agent-orientation.

Empirical degeneration of the
dominating research program
allowing the progressive
emergence of a new research
program (i.e. “problems
shift”).

Evolution of
Knowledge

:
Discontinuity

or
Continuity

?

Emergence of a new
paradigm implying a
complete redefinition
of the concepts and
methodologies (ra-
tionality) of the for-
mer scientific
framework.

Agent-orientation seems to
be based on the evolution
of the previous methodo-
logical rules. Continuity
between object and agent-
orientation is thus exist-
ing.

Unchanged hard core based on
the previous research pro-
grams and on the concepts
defined by artificial intelli-
gence. Change in the protec-
tive belt showing a method-
ology evolution towards a
higher level of abstraction
(new layer of knowledge).

13

Evolution of
Knowledge

:
Incommensurability

or
Commensurability

?

Incommensurability
between paradigms
as a consequence of
the knowledge dis-
continuity.

Object-orientation and
agent-orientation are di-
rectly commensurable
since we can interpret
some object-oriented solu-
tions in terms of agent-
oriented systems.

Commensurability between
two research programs due to
the unchanged hard core.

Table 1. kuhnian and lakatosian visions to the emergence of the agent-orientation.

In the light of the arguments presented above, we conclude that the kuhnian epis-
temology, often refeered to in the literature, is not appropriate to provide a correct
epistemological analysis of knowledge in SE. We propose to rather use the lakatosian
epistemology to characterize the emergence of the agent-orientation.

According to us, the lakatosian epistemology is directly in line with the idea of
computer knowledge depicted as a « structure in layers ». We have represented this
architecture in the following Figure 1.

Figure 1. Evolution of Knowledge in SE

3.2 The Iterative Nature of the User Requirements Collecting Process

Adaptive rationality that can be found in the lakatosian epistemology is very useful
for a methodological reading of Spiral development. Indeed it is in accordance with the
iterative nature of the requirements elicitation process.

According to [Toffolon99], the iterative nature of the requirements elicitation proc-
ess is based on Herbert Simon bounded rationality principle and on Karl Popper

14

knowledge theory. In this section, we will show that the principle of bounded rational-
ity is directly in line with the adaptive rationality described in lakatosian epistemol-
ogy. Inspired by Lakatos, we will reject the use of the popperian theory of the knowl-
edge in applied to Spiral SE.

3.2.1 Bounded Rationality
Herbert Simon (Nobel Prize in economics, 1978) proposes the concept of bounded

rationality [Simon83] to characterize the human reasoning and behavior in uncertain
situations. This concept illustrates the idea that human being has limited abilities to
analyze all the parameters of the solutions he/she faces. According to Simon, the
rationality of human being is related to the present and to the psychological biases.
The rationality suggested by Simon is much broader than the perfect rationality which
would be able to evaluate all the present and future parameters of a particular solution.
This idea of perfect rationality is often used in economics that is why Simon won a
Nobel prize in this field.

The bounded rationality principle is more in accordance with the rationality used in
social sciences and this concept has allowed the emergence of behavioral economics
which tend to be more and more dominant1. In a “bounded rationality” vision, we have
to take into account the fact that human being cannot evaluate perfectly the moving
contexts and that this mis-interpretation of the situation leads human being to seek a
satisfactory solution. This satisfactory solution depends directly on each individual and
this seeking of a satisfactory solution allows people to meet their fundamental needs
and to develop themselves. In this human reasoning model, no way to determine if
this “satisfactory solution” maximizes a specific utility function or to know if another
choice would have provided an higher level of satisfaction. This vision of rationality
can be used to characterize an organization behavior: given the uncertainty and the
complexity of the real world (and the technological progress), there is no universal and
optimal software solution (which would be rationality superior to the other possible
solutions). Because software engineering is a human practice, the perfect software
solution driven by a perfect rationality does not exist. We have to think the computer
solution in terms of satisfactory solution which can be improved by an iterative proc-
ess.

According to Brian Arthur [Arthur94], the concept of perfect rationality is ex-
tremely useful to solve some theoretical problems. Perfect rationality presupposes that
individuals have much higher computational abilities than they have in the real world.
Indeed, beyond a certain level of complexity, the logical abilities of people are not
sufficient to evaluate the situation. Moreover, in complex situations implying interac-
tions between people, an individual, who would have perfect rationality, would have
to guess the behavior of other people (led by bounded rationality). So human behavior

1 Kahneman (psychologist of economics) won the Nobel Prize in Economics in

2002.

15

is always determined by bounded rationality and this rationality does not depend only
on the ability to evaluate a situation but also on the interactions with other (non-
perfectly rational) people. Let us remind that human relations are partly driven by
subjective beliefs which complicate the rational evaluation of a particular situation.
We could say the complex interactive situations can be seen as undefined problems.
To face such problems, Arthur [Arthur94], in accordance with the behavioral econom-
ics (and with the bounded rationality principle), proposes to think the human mind as
a simplification machine of the problems. This simplification is possible thanks to
internal patterns developed by people. Each actor has a collection of internal beliefs
which materialize in a particular evolving behavior. Indeed, actors improve their be-
haviors and learn which of their internal belief is adapted to face a complicated and
undefined situation. We can then observe a kind of iterative improvement of human
behavior. According to Kaplan [Kaplan82], the principle of bounded rationality results
from a particular conservative incrementalism materialized in a careful attitude always
concerned by feedbacks provided by human interactions.

The principle of bounded rationality is an interesting concept for the theoretical
analysis of software development. Indeed, thanks to the bounded rationality principle
we can characterize the complexity observed in software solutions supposed to give an
efficient response to organizational problems which are not always well defined. In
this vision, the organizational interactions allow users to improve their knowledge in
an iterative manner and to improve their requirements comprehension. Spiral software
development uses an iterative requirements collecting process to progressively im-
prove the software solution during the project lifecycle.

According to us, the use of the bounded rationality principle in software develop-
ment enhances a the lakatosian reading of it. Our two major arguments are:

• Bounded rationality illustrates the adaptive character of the human mind and
the iterative process of knowledge which results from this adaptive logic.
This iterative vision of knowledge is directly in line with the lakatosian idea
of a progressive “problems shift” presented in the previous sections;

• In his works about the mathematical formalisms, Lakatos proposes two cate-
gories of theories: Euclidean theories and quasi-empirical theories. Whereas
the first are connected with an axiomatic approach (imposing a purely deduc-
tive logic from a priori axioms), the seconds are determined by the empiri-
cism because they evolve through a continuous feed-back between the theory
and its empirical results. As we will show in the next section, this point of
view is different from the popperian one because in its epistemology, the
theoreticians have to change the whole theory if it is falsified. Once again,
we think that the lakatosian epistemology can be useful in SE because his it-
erative process of theories adjustment is directly in line with the quasi-
empirical logic observed in software development.

16

3.2.2 Knowledge Growth Theory
According to Popper [Popper72], scientific knowledge evolves thanks to a continu-

ous and infinite problems resolution process. Knowledge increases by confronting
theories with reality. This confrontation, called falsification by Popper himself, often
generates new problems that theoreticians have to define, to theorize and to solve. The
empirical refutation of the proposed theory provides new problems and so on. The
knowledge growth process is ad infinitum because, according to Popper, the resolution
of new problems requires new knowledge (i.e. new theories and new conceptual tools).
Popper calls “crucial experiment” [Popper59] any theory refutation allowing the emer-
gence of new problems. This refutation constitutes a real source of inspiration for the
development of new theories supposed to solve the new problems.

According to [Toffolon99], the popperian knowledge growth model can be applied
to iterative software development. Indeed, by disturbing the established relations in a
particular organizational context, each software solution generates new problems
which are specific to this organization. It is impossible to predict exactly how a new
software solution will disturb the organizational context. This context is often very
complex because a lot of interactions between its components exists and moreover, an
iterative process leads to a moving evolution of this context. At first time, the
stakeholders, by using a software solution, modify their requirements to solve the new
problems created by this system and then improve their use of the system.
Stakeholders requirements cannot be fully described and specified before the implemen-
tation because they evolve in an iterative way during the use of the software system.
[Toffolon99] explains that this iterative evolution can be characterized by a popperian
approach. In the following section, the use of the popperian knowledge growth theory
applied to iterative software development will be reconsidered.

3.2.3 Falsification Principle: a Critical View
The aim of this section is to moderate the use of popperian epistemology in SE.

At first sight, the popperian knowledge growth model is very close to what Lakatos
calls the “quasi-empirical theories”. However, the two visions are different and, accord-
ing to us, only the lakatosian one is adequate for an epistemological analysis of soft-
ware development. We present our arguments in this section.

Popper developed his epistemology for “hard sciences”, especially for physics. That
is why he thinks science mainly in terms of “representation of the world” rather than
in terms of “efficient answers” as it would be in the field of applied sciences. This
detail is from preliminary importance because, at the opposite of physical sciences, an
universal law true for every software development cannot exist. There is no universal
and optimal computer solution (cfr. principle of bounded rationality): no computer
solution is identical to another because each organization is different. The practical
software use supposed “to falsify” the developed solution appears to be extremely
complex and multiple. In this context, it is impossible to dispose of what Popper
calls a “crucial experiment”, therefore, we cannot reject all the theoretical bases (like
object or agent-orientation, the used requirements elicitation process, etc) of the devel-

17

oped solution in case of failure. Consequently the falsification principle specific to the
popperian epistemology cannot be applied in the strict sense to software engineering
as it would be to “hard science”. In software development, each new solution is a new
experiment based on various theoretical concepts and trying to satisfy various require-
ments. Each computer solution is developed for a particular organization employing
various people pursuing various goals and it is very difficult to compare the reasons of
an empirical failure. Moreover, as [Priestley2005] explains, it is, in software devel-
opment, very hard to identify correctly the nature of the error. The reason of an em-
pirical failure can be conceptual or result from a bad representation of the organiza-
tional logic but it could simply be the consequence of a programming mistake or to a
technical problem in the physical layer. The variety of errors strongly complicates the
idea of a “crucial experiment”. As we mentioned earlyer, software development is not a
pure empirical science but rather a “quasi empirical” applied discipline.

For sure, the empirical failure of a software solution leads to and has to lead to a
modification of the theoretical foundations but all the modeling techniques on which
the solution is based cannot be directly and purely rejected. The popperian model of
knowledge (also called “dogmatic falsificationnism” in philosophy of science) appears
to be too radical for an epistemological reading of SE because, in case of failure, it
simply suggests to reject the theoretical tools used during that development. This
popperian radicality is recognized and caused a plentiful literature in philosophy of
science (see [Kuhn96] or [Lakatos77]). In line with the opposition to the radicalism
of falsification, Lakatos developed its methodology of “research programs”.

The lakatosian epistemology (often “called methodological falsificationnism”) is
less radical than the popperian one. Indeed, Lakatos tries to explain why scientific
theories continue to exist in spite of the existence of empirical refutations. Even if
empiricism plays a very important role in the evolution of the knowledge, Lakatos
recognizes that all the theories born, are refuted and die refuted. The Hungarian phi-
losopher strongly criticizes the concept of “crucial experiment” and argues it is impos-
sible to explain the evolution of science only in popperian terms. Lakatos recognizes
the importance of empiricism since it is precisely through the confrontation to the real
world that sciences evolve, however, the philosopher explains why the “ad hoc”2 char-
acteristic often observed in empirical studies can be useful to improve the theory. In
the lakatosian vision of science, it is not necessary to change the whole theory in case
of refutation. The empirical failure just represents a sign of a problem which must be
solved by improving the tested theory. However, as long as the tested theory does not
face a continuous empirical failure (which would mark the degenerative character of the
research program in which the theory has been developed), nothing obliges the theo-

2 Ad hoc is a latin expression which means “for this purpose”. In philosophy and science

ad hoc often means the addition of corollary hypotheses to a scientific theory to prevent
this theory from being falsified by anomalies not anticipated by its inital theory. Popper
rejects this « ad hoc » character in science. According to [Popper59], this character is a
kind of intellectual dishonesty.

18

rists to modify their theoretical framework3. This vision is particularly well adapted to
the epistemological study of software development lifecycles.

In this paper, we showed that a lakatosian epistemology would be better adapted
than a popperian one to characterize the knowledge evolution in SE. Indeed, the laka-
tosian epistemology, by rejecting the concept of “crucial experiment” is less radical
with the importance of the empiricism and allows a feed-back process between the
empirical and the theoretical levels. Moreover, as we mentioned in the previous sec-
tion, the “quasi-empirical” character of software development and the complexity of
organizational entities require flexibility in the interpretation of problems encountered
during the implementation of a software solution. Finally iterative development can
be explained in epistemological terms by two principles. On the one hand, bounded
rationality explains why stakeholders’ requirements cannot be determined once for all
at the early stages of the project. On the other hand, the lakatosian philosophy ex-
plains how software development allows a periodic re-examination of the theoretical
tools determined through an adaptive knowledge (due to organizational contexts
shifts).

4 Conclusion

Users requirements poorly taken into account as well as modeling and program-
ming languages inspired by programming concepts in spite of by organization and
enterprise ones has led to a software crisis. Solutions can be found on different do-
mains, among those domains agent-orientation and spiral development constitutes two
promising areas. Agent-orientation furnishes concepts to model the organization more
precisely and spiral development allows a more efficient requirements elicitation proc-
ess.

This paper has presented an epistemological analysis of these two improvements.
Often described as “the” new paradigm, agent-orientation is a considerable innovation
in tools allowing analysts to model the world. We showed in this paper that the emer-
gence of this innovation can be better explained using lakatosian ideas rather than
kuhnian ones. In this vision, agent-orientation would be considered as a research pro-
gram rather than a paradigm. Even if it seems to be just a matter of terminology, the
differences between these two epistemological concepts is clear and profound so that
they should not be confused. We confronted the kuhnian and the lakatosian vision of
the emergence of agent-orientation in order to show that, contrarily to what is pre-
sented in literature, agent-orientation is not a paradigm but a research program.

3 [Lakatos77] reminds that science is a human practice and that it is sometimes very diffi-

cult for the scientists do to reject all their theoretical framework when they have devoted
several years of their life to this theoretical framework.

19

Spiral development is a well-known practice in SE, however, its use remains too
low compared to the benefits brought by a more accurate requirements engineering
process. This process is generally characterized in literature by the bounded rationality
principle and the knowledge growth theory. In this paper we tried to show that a laka-
tosian analysis of spiral development would be more adequate than a popperian one.
Indeed, the theory of the knowledge developed by Popper cannot be applied in software
development because, in case of empirical failure (“crucial experiment”), the well-
known popperian falsification principle leads to a rejection of the theoretical tools on
which the falsified solution is based. The “quasi-empirical” character (defined by Laka-
tos) of software development combined with the complexity of the organizational
context implies the impossibility of the existence of a popperian “experiment crucial”,
so that, the concept of falsification cannot be applied in software development.

In response to the popperian shortcomings, we propose to use a lakatosian ap-
proach to provide an epistemological analysis of, on the one hand the emergence of
agent-orientation and, on the other hand, the iterative nature of the requirements engi-
neering process. As regards the emergence of agent-orientation, lakatosian epistemol-
ogy enables to explain the continuity and the commensurability between this new
research program and the older modeling and programming techniques. Furthermore
the “quasi-empirical” character developed by Lakatos enables to better include and
understand the adaptive and iterative nature of the requirements elicitation process (in
conformity with the principle of bounded rationality developed by Simon) on which
spiral software development is based.

20

References

[Arthur94] Arthur W.B., “Inductive Reasoning and Bounded Rationality”, American Eco-
nomic Association Annual Meetings, 1994.

[Boehm00a] B. Boehm edited by Wilfred J. Hansen, “Spiral Development : Experience,
Principles, and Refinements”, Spiral Development Workshop February 9, 2000, July
2000.

[Boehm00b] Barry Boehm, “Requirements that Handle IKIWISI, COTS, and Rapid Change”
Computer, IEEE, July 2000, pp. 99-102.

[Castro02] J. Castro, M. Kolp and J. Mylopoulos. “Towards A Requirements-Driven Devel-
opment Methodology : The Tropos Project.” In Information Systems, Elsevier, 2002.

[Davis95] Davis. A. “201 principles of software development.”, McGraw-Hill, 1995.

[Do03] T. T. Do, M. Kolp and A. Pirotte. “Social Patterns for Designing Multi-Agent Sys-
tems”, In Proceedings of the 15thInternational Conference on Software Engineering
and Knowledge Engineering (SEKE 2003), San Francisco, USA, July 2003.

[Dsouza98] D. D’Souza and A. Wills, “Objects, Components, and Frameworks with UML:
The Catalysis Approach.”, Addison-Wesley, 1998.

[Faulkner05] S. Faulkner, M. Kolp and P-Y. Schobbens, “An Architectural Description
Language for BDI Multi-Agent Systems”, submitted to International Journal of
Autonomous Agents and Multi-Agent Systems (JAAMAS), Kluwer, 2005.

[Foucault75] M. Foucault, “Surveiller et Punir: Naissance de la Prison.” Paris: Gallimard,
1975.

[Göktürk04] Göktürk E., Akkok N. “Paradigm and Software Engineering”, In Proceedings
of Impact of Software Process on Quality, May 2004.

[Gruber93] T. R. Gruber, “A translation approach to portable ontology specifications.”
Knowledge Acquisition, vol. 5, pp. 199-220, 1993.

[Jack] JACK Intelligent Agents, http://www.agent-software.com/.

[Jadex] JADEX BDI Agent System,
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/.

[Jennings] Jennings N.R and Woolridge M., "Agent-Oriented Software Engineering," in
Handbook of Agent Technology, J. Bradshaw, Ed.: AAAI/MIT Press, (to appear).

[Jureta05] I. Jureta, M. Kolp, S. Faulkner, Y. Wautelet, “A Goal-Oriented Framework for
Business Modelization”, Working Paper IAG 126/04, Université Catholique de Lou-
vain, January 2005.

21

[Kaplan82] Kaplan S., Kaplan R. : “Cognition and Environment : Functioning in an Uncer-
tain World”, Praeger, 1982.

[Kolp97] Kolp M., Pirotte A., Zimanyi E., “Modélisation conceptuelle et ingénierie des
systèmes d'information”, In Actes des Journées Francophones Sciences de la Cognition
vers les Applications, Villeneuve d'Ascq, France, July 1997.

[Kuhn96] Kuhn T., “The structure of Scientific Revolutions”, 3rd ed: University of Chi-
cago Press, 1996.

[Lakatos74] Lakatos I., “Methodology of Scientific Research Programmes” In Criticism
and the Growth of Knowledge, edited by I. Lakatos and A. Musgrave. Cambridge: Cam-
bridge University Press, 1974.

[Lakatos77] Lakatos I., “The Methodology of Scientific Research Programmes: Philoso-
phical Papers Volume 1”. Cambridge: Cambridge University Press, 1977.

[Maes94] P. Maes. “Agents that reduce work and information overload”. Communications
of the ACM, 37(7): 30-40, 1994.

[Masterman70] Masterman M., “The Nature of Paradigm”in I. Lakatos et A.Musgrave, Criti-
cism and the Growth of Knowledge, Cambridge, Cambridge University Press, 1970.

[Mataric92] M. Mataric. “Integration of representation into goal-driven behaviour-based
robots”. IEEE Transactions on Robotics and Automatation, 8:59-69, 1992.

[Meyer97] B. Meyer. “Object-oriented Software Construction.” Prentice Hall, second edi-
tion, 1997.

[Parunak97] V. Parunak. “Go to the ant: Engineering principles from natural agent sys-
tems”, Annals of Operations Research, 75: 69-101, 1997.

[Popper59] Popper K.R. The Logic of Scientific Discovery. (translation of Logik der
Forschung). Hutchinson, London, 1959.

[Popper72] Popper K.R. : “Objective Knowledge, An Evolutionary Approach”,Oxford
University Press, 1972.

[Priestley2005] Priestley M. : “The Logic of Correctness in Software Engineering”- Cav-
endish School of Computer Science, University of Westminster, London -
http://users.wmin.ac.uk/priest

[Pylyshyn87] Z. Pylyshyn. Cognitive science. In S. Shapiro and D. Eckroth, editors, Ency-
clopedia of artificial intelligence, pages 120–124. John Wiley & Sons, 1987.

[RUP] IBM, “The Rational Unified Process. Version 2003.06.00.65”, Rational Software
Corporation, 2003.

[Royce70] W. Royce, “Managing the Development of Large Software Systems”, Proceed-
ings of the IEEE WESCON, August 1970, pp. 1-9.

[Sankey94] H. Sankey, “The Incommensurability Thesis”, Ashgate, Sydney, 1994.

22

[Simon83] Simon H.A.: “Models of Bounded Rationality”, (2 volumes), MIT Press, Cam-
bridge, 1983

[Sommerville92] I. Sommerville. “Software Engineering.” Addison-Wesley, fourth edition,
1992.

[Tennenhouse00] D. Tennenhouse. “Embedding the Internet: Proactive computing”, Com-
munications of the ACM, 43(5), 2000.

[Toffolon99] Toffolon C., Dakhili S., “Requirements Elicitation Process: An Iterative
Approach based on the Spiral Model”, XVIth International Symposium on Information
and Computer Sciences (ISCIS'99), Izmir, Turkey, October 1999.

[Tropos] “The Tropos Project. Requirements-Driven Development for Agent Software”.
http://www.troposproject.org.

[Wautelet05a] Wautelet Y., “Multi-Agent Spiral Development of Enterprise Information
Systems”, Avant-projet de thèse, avril 2005.

[Wautelet05b] Wautelet Y., Kolp M. and Achbany Y.,”S-Tropos, An Iterative SPEM-Centric
Software Project Management Process”, Working Paper IAG, 2005.

[Wooldridge95] M. Wooldridge and N.R Jennings. “Intelligent agents: Theory and prac-
tice”, The knowledge Engineering Review, 10(2): 115-152, 1995.

[Zambonelli00a] F. Zambonelli, N.R. Jennings, A.Omicini, and M. Wooldridge. “Agent-
Oriented Software Engineering for Internat Applications”, Coordination of Internet
Agents: Models, Technologies and Applications, pages 326-346, Springer-Verlag: Hei-
delberg, Germany, 2000.

[Zambonelli00b] F. Zambonelli, N.R. Jennings and M. Wooldridge. “Organizational ab-
stractions for the analysis and design of multi-agent systems.” In Proceedings of the 1st
International Workshop on Agent-Oriented Software Engineering, volume 1957 of
LNCS, pages 243-252, Springer Verlag, 2000.

 [Zambonelli00a] F. Zambonelli, N.R. Jennings, A.Omicini, and M. Wooldridge. “Agent-
Oriented Software Engineering for Internat Applications”, Coordination of Internet
Agents: Models, Technologies and Applications, pages 326-346, Springer-Verlag: Hei-
delberg, Germany, 2000.

[Zambonelli00b] F. Zambonelli, N.R. Jennings and M. Wooldridge. “Organizational ab-
stractions for the analysis and design of multi-agent systems.” In Proceedings of the 1st
International Workshop on Agent-Oriented Software Engineering, volume 1957 of
LNCS, pages 243-252, Springer Verlag, 2000.

