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product differentiation is either low or high.
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1 Introduction

In various industries, such as e.g. automobiles, clothing, electronics, pharmaceuticals,

and food, manufacturers develop networks of exchange both with input suppliers and

retailers or wholesalers. Moreover, in the last few decades the importance of spot ex-

change in input or output procurement has decreased in favor of other methods such

as manufacturer-supplier long-term contracting and manufacturer-retailer exchange net-

works. For automobiles, Nishiguchi (1994) has presented wide ranging evidence on the

ways in which the Japanese industrial model has evolved from the traditional bargaining-

oriented manufacturer-supplier relationship to the current problem-solving-driven strategic

industrial outsourcing. Firms rely more and more on a subset of suppliers with whom they

maintain closed business ties. The number of direct suppliers to Japanese car manufactur-

ers in 1988 was roughly one half of what it was for American or European manufacturers,

for similar volumes of production. The manufacturer-retailer relationship for the Euro-

pean motor vehicle industry has also evolved over the last years. Until October 2002, only

one type of distribution (a system of exclusive territories and selectivity) was permitted.

The European Commission was not satisfied with the unexplained differences in prices

across European countries and this motivated a legal change. The new regulation recently

issued1 is seeking for a change in the car distribution industry. As Commissioner Monti

said: “The new rules that will become effective as of 1 October 2003 open the way to

new distribution techniques, such as Internet sales and multi-branding - introducing more

competition between different retail channels”.2 Then it is expected that multi-branding

dealers will appear and coexist with exclusive ones.

The literature on network formation has focused on the upstream part of the vertical

chain, neglecting the analysis of the downstream part where manufacturers and retail-

ers enter in long-term relationships.3 Kranton and Minehart (2000a) have examined the

emergence of buyer-seller networks when sellers have an outsourcing motivation in order

to see whether networks of buyers and sellers can perform better than vertically inte-

grated markets or spot exchange markets. Manufacturers can decide to build a dedicated

1Regulation 1400/2002 on the application of Article 81(3) of the Treaty to categories of vertical agree-

ments and concerted practices in the motor vehicle sector.
2Extracted from "New rules for car sales and servicing" (September 2003) and European Com-

missioner Monti’s speech "The new legal framework for car distribution" (February 2003). See

http://www.europa.eu.int/comm/competition/ for more details.
3The data in Betancourt (2004) suggests that there has been substantial forward vertical integration

by manufacturers in the form of internalizing the wholesale function by selling directly to retailers. This

process is most pronounced in the durable sectors: automobiles and other motor vehicles, 95.5 percent of

sales; electronics, 70.9 percent of sales; toys and hobby goods, 95.6 percent of sales (US retail sector in

1987).
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asset to produce their own inputs or, alternatively, they can invest in links to external

sellers from which they will buy specialized inputs. They have established a connection

between industrial structure and uncertainty in demand: outsourcing networks appear

to be more efficient than vertically integrated structures when uncertainty in demand is

substantial. Kranton and Minehart (2001) have focused on when the noncooperative for-

mation of buyer-seller networks leads to the formation of efficient networks, while Kranton

and Minehart (2000b) have examine the competitive equilibrium prices in buyer-seller net-

works. Wang and Watts (2003) have analyzed the formation of buyer-seller links when

sellers can produce products of different quality.4 In this paper, we are first to examine

the emergence of manufacturer-retailer networks when both manufacturers and retailers

decide the bilateral links they want to establish among them.

The literature on distribution systems initially addressed two questions: (i) whether

manufacturers would prefer having a single common retailer rather than separate exclusive

retailers;5 and (ii) whether a manufacturer’s brand is excluded from the market by use of

exclusive contracts.6 A series of papers have studied the distribution systems that arise

when there is market power at both the manufacturing and retailing levels.7 In particu-

lar, for the successive duopoly case, Chang(1992) and Dobson and Waterson (1997) have

analyzed the distribution systems that arise by the joint maximization of the manufacturer-

retailer pair profits, allowing for side-payments if an exclusive contract is signed. Chang

(1992) has found that manufacturer-retailer pairs always choose exclusive dealing. Once

manufacturers and retailers are differentiated, Dobson and Waterson (1997) have shown

4There is a vast literature devoted to analyze the important role played by network structures in

determining the outcome of many other economic situations. For example, Hendricks, Piccione and Tang

(1997) have shown that the structure of airline connections influences competition. Belleflamme and Bloch

(2004), Goyal and Moraga (2001) and Goyal and Joshi (2003) have studied the formation of research

and development networks and collusive alliances among corporations. Calvó-Armengol (2004) and Calvó-

Armengol and Jackson (2004) have examined the role played by personal contacts in obtaining information

about job opportunities.
5An exclusive dealing agreement is a restriction of the retailer’s behavior under which the retailer agrees

not to buy from any other manufacturer. Similarly, an exclusive distribution agreement is a manufacturer’s

behavior restriction under which the manufacturer agrees not to sell to any other retailer. Lin (1990) and

O’Brien and Shaffer (1993) have shown that exclusive dealership rather than common dealership is chosen

to dampen competition between the manufacturers.
6In a setting with two manufacturers and only one retailer, O’Brien and Shaffer (1997) and Bernheim

and Whinston (1998) have shown that vertical foreclosure is not an equilibrium. We refer to Rey and

Tirole (2003) for a complete survey on vertical foreclosure.
7The possibility of a manufacturer hiring more than one retailer has been considered out of the successive

duopoly structure. See Rey and Stiglitz (1995) for the case where manufacturers can hire several retailers

in a perfect competition setting, and Besanko and Perry (1994) for the case of spatially differentiated

retailers whose number is endogenously determined by free entry.
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that the manufacturer-retailer pairs prefer non-exclusive dealing contracts when products

and retailers are sufficiently differentiated. Moner-Colonques, Sempere-Monerris and Ur-

bano (2004) have analyzed a successive duopoly where two manufacturers with asymmetric

and differentiated brands choose strategically how many undifferentiated retailers to em-

ploy. When product differentiation is strong and brand asymmetry is moderate, both

manufacturers distribute through both retailers. However, when both product differenti-

ation and brand asymmetry are weak, exclusive dealing through a single retailer is used.

There are also asymmetric equilibria in which one manufacturer distributes through both

retailers but the other manufacturer distributes through one retailer. These equilibria can

arise when both product differentiation and brand asymmetry are strong. Finally, Myciel-

ski, Riyanto and Wuyts (2000) have studied manufacturers’ choice of two types of vertical

arrangement with retailers; exclusive dealing and exclusive territory. When products are

less substitutable, in other words, the interbrand rivalry is weak, manufacturers prefer

to sell brands to a large number of competitive retailers. When the interbrand rivalry is

strong, exclusive territory with exclusive dealing is adopted by manufacturers.

In this paper we address the following questions:

(i) What are the incentives of manufacturers and retailers to link and what is the archi-

tecture of "stable" networks of distribution when both manufacturers and retailers

decide the bilateral links they want to establish among them?

(ii) Are individual incentives to link adequate from a social welfare point of view?

In order to answer these questions we develop a three-stage game in a successive

duopoly. Each manufacturer produces a differentiated product (brand) which is sold to

retailers at a constant per unit price and retailers can be multiproduct sellers. In the first

stage, the two manufacturers and the two retailers decide about bilateral relationships (or

links) they want to establish among them. A link between a manufacturer and a retailer

is necessary in order to sell the manufacturer’s brand to consumers. The cost of a link is

shared equally between the manufacturer and the retailer.8 The collection of pairwise links

between manufacturers and retailers defines a distribution network. In the second stage,

both manufacturers choose simultaneously the terms of trade of their good to retailers

(transfer prices). In the third stage, both retailers compete by setting simultaneously the

quantity of each brand they are going to market.

8In the motor vehicle industry the "just-in-time" philosophy has been present for decades. It requires

the coordination and collaboration across organizations and throughout the supply chain. This means that

there should be a permanent relationship among them and this is costly. Also, it is becoming more common

to find a supply channel management approach in different industries where independent members of the

supply chain coordinate in the management of such a chain.
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A simple way to analyze the networks that one might expect to emerge in the long

run is to examine a sort of equilibrium requirement that agents not benefit from altering

the structure of the network. A weak version of such condition is the pairwise stability

notion defined by Jackson and Wolinsky (1996). A network is pairwise stable if no agent

benefits from severing one of their links and no other two agents benefit from adding a link

between them, with one benefiting strictly and the other at least weakly. While pairwise

stability is natural and quite easy to work with, there are some limitations of the concept.

First, it is a weak notion in that it only considers deviations on a single link at a time.

For instance, it could be that an agent would not benefit from severing any single link

but would benefit from severing several links simultaneously, and yet the network would

still be pairwise stable. Second, pairwise stability considers only deviations by at most

a pair of agents at a time. It might be that some group of agents could all be made

better off by some complicated reorganization of their links, which is not accounted for

under pairwise stability. A strongly stable network, whose definition is due to Jackson

and van den Nouweland (2005), is a network which is stable against changes in links by

any coalition of agents.9

Stable networks obtained from the joint consent of the agents involved might result

in distribution networks that coincide with those resulting from both manufacturers and

retailers signing exclusive dealing or exclusive distribution contracts. Thus, this model

might be used by the competition authorities to distinguish whether exclusive dealing is

agreed by all agents in the market (i.e. not imposed by one kind of agent), whether it is

efficient and whether it is socially optimal. Exclusive dealing as many as other nonprice

vertical restraints is challenged by competition authorities. The legal treatment of nonprice

vertical restraints has not been uniform along the years. In the U.S. vertical restraints

were initially considered as not per se illegal, then per se illegal and now a rule of reason

is applied. The analytical justification for a rule of reason is the twofold effect of nonprice

vertical restraints in general and exclusive dealing in particular.10 Vertical restraints

have a procompetitive effect when they are used to avoid the double marginalization

inefficiency or to reduce the underprovision of services that affect the demand of the good.

Vertical restraints have an anticompetitive effect when they are used to reduce or eliminate

intrabrand competition (same brand is sold at different outlets), to dampen competition at

the upstream levels, or to foreclose market access and prevent entry. The procompetitive

effect is more likely to dominate the anticompetitive effect provided interbrand competition

9Jackson (2003, 2005) provides surveys of models of network formation.
10Caballero-Sanz and Rey (1996) and Dobson and Waterson (1997) have provided a detailed analysis of

the economic evaluation of vertical restraints and the implications for competition policy.
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is sufficiently strong.11
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Figure 1: The six qualitatively different distribution networks.

In a successive duopoly, there are fifteen possible network architectures. But given the

symmetry of products and retailers, there are only six qualitatively different distribution

networks which are depicted in Figure 1. Depending on the distribution network, two

kinds of competition may be eventually at place: interbrand competition and intrabrand

competition. Therefore, the distribution network that will emerge is the result of the

interplay of two effects: first, the one associated to the cost of implementing a particular

network which depends on both the link cost size and the number of links; and a second

one which is associated to the combination of inter and intrabrand competition that arises

in each particular network. Given that agents act strategically and in their self-interest,

the stable distribution network might differ from the one preferred by consumers or the

11This point has been included in the EC Guidelines on vertical restraints: “The market position of

the supplier and his competitors is of major importance, as the loss of intrabrand competition can be

problematic if interbrand competition is limited. The stronger the position of the supplier, the more

serious is the loss of intrabrand competition. . . ” (see Official Journal of the European Communities, C

291, 13/10/2000). Recently, the European Commission has exempted for five years certain exclusive

distribution agreements between Telenor and Canal + Nordic, under which Telenor will have the exclusive

right to distribute Canal + Nordic’s premium pay-TV channels in the Nordic region through its satellite

television platform Canal Digital. The argument of this exemption was the presence of a second satellite

pay-TV distributor in the Nordic region, MTG/Viasat and that consumers would have available two distinct

pay-TV brands at competitive prices, i.e. sufficient interbrand competition (see the IP/04/2, January 5,

2004 and the EC Commission Competition Policy Newsletter, Summer 2004).
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one that maximizes social welfare.

We find that only three distribution networks are strongly stable for particular values

of the degree of product differentiation and link costs. A first distribution network with

four links, referred as non-exclusive distribution & non-exclusive dealing, in which both

retailers distribute both products is strongly stable for intermediate degree of product

differentiation and small link costs. In this distribution network, both interbrand and

intrabrand competition are present in the market. A second distribution network with

two links, referred as exclusive distribution & exclusive dealing, in which each retailer

distributes a different product is strongly stable for low degrees of product differentiation.

In this distribution network, no intrabrand competition appears in the market. A third

distribution network with three links, referred as mixed distribution system, in which one

retailer distributes both products while the other retailer sells only one is strongly stable for

high degrees of product differentiation and large link costs. Finally, for some values of the

degree of product differentiation and link costs, no distribution network is strongly stable.

In particular, when the degree of product differentiation is high enough or intermediate,

the non-exclusive distribution & non-exclusive dealing system will not emerge in the "long-

run" while Mycielski, Riyanto and Wuyts (2000) andMoner-Colonques, Sempere-Monerris

and Urbano (2004) have shown that it is a "short-run" equilibrium.12

We also wonder whether the stable distribution network is efficient, in the sense that

it generates the greatest surplus for the agents that integrate the network. We find that

the three stable distribution networks can be efficient for particular values of the degree of

product differentiation and link costs, but not necessarily for the values under which they

are stable. Moreover, the distribution network, referred as exclusive distribution & non-

exclusive dealing, in which two manufacturers distribute their products using a single and

identical retailer is never stable but it is efficient for low degrees of product differentiation.

Thus, a conflict between stability and efficiency may occur.

Since consumers do not account for link costs, the non-exclusive distribution & non-

exclusive dealing system maximizes consumer surplus. Thus, consumers are better off the

highest the level of competition. That is, they are better off in a market with interbrand

and intrabrand competition in both products. Social welfare is maximized by either of

the four efficient distribution networks depending on the degree of product differentiation

and on the link costs. When link costs are small enough, two distribution networks may

12In Mycielski, Riyanto and Wuyts (2000), the two manufacturers choose simultaneously among combi-

nations of vertical arrangements; exclusive distribution, non-exclusive distribution, exclusive dealing, and

non-exclusive dealing. In Moner-Colonques, Sempere-Monerris and Urbano (2004), two manufacturers

choose simultaneously whether to employ retailer one, retailer two, both or neither of them. Both papers

use the subgame perfect Nash equilibrium to solve the game and assume that links are costless.
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maximize social welfare. The non-exclusive distribution & non-exclusive dealing system

maximizes social welfare if the degree of product differentiation is high enough; otherwise,

themixed distribution system maximizes social welfare. When link costs become large, two

other distribution networks may maximize welfare. The exclusive distribution & exclusive

dealing system maximizes welfare if the degree of product differentiation is high enough;

otherwise, the exclusive distribution & non-exclusive dealing system maximizes welfare.

Thus, a conflict between stability and social welfare is likely to occur, even more if the

degree of product differentiation is either low or high.13

The paper is organized as follows. The model is presented in Section 2. In Section 3 we

analyze the stable distribution networks. In Section 4 we analyze the efficient networks

and the networks that maximize consumer surplus and social welfare. Finally, Section 5

concludes.

2 The model

We develop a three-stage game to study the formation of networks among manufacturers

and retailers in a successive duopoly. To reach consumers manufacturers and retailers

should form a product distribution network consisting of different bilateral relationships

(or links) between them. In an initial stage, manufacturers and retailers decide the links

they want to establish among them. A link between a manufacturer and a retailer is

necessary in order to sell the manufacturer’s brand to consumers. In the second stage,

once the distribution network has been formed, manufacturers decide simultaneously the

transfer prices to retailers. Finally, retailers decide simultaneously the quantity of each

brand they are going to market.

The two manufacturers (M1 and M2) produce their own branded good under constant

returns to scale and incur a common unit cost c. The retailers (R1 and R2) are supplied by

the manufacturers at a constant unit price, the transfer price.14 Let wi denote the transfer

13Mycielski, Riyanto and Wuyts (2000) have studied the welfare implications of manufacturers’ choices

of vertical arrangements and its policy implications in a setting where retailers compete à la Bertrand.

They have shown that, for a high degree of product differentiation, any policy measure to restrict vertical

restraints is unnecessary. However, we get that such policies become necessary once retailers compete à la

Cournot. Then, restricting exclusive distribution and exclusive dealing arrangements might have a positive

impact on social welfare.
14We limit attention to linear contracts. Although the superiority of two-part tariff contracts over linear

ones is usually established because with the former manufacturers have two instruments (the transfer price

used to give the right incentives to retailers and the fixed fee used to extract all the rent generated by

the selling of the good), linear contracts may turn appropriate if there are observability or renegotiation

problems (see chapter 4 in Tirole 1988). Linear contracts are used in several industries. Iyer and Villas-

Boas (2003) have reported that in sectors such as grocery retailing or department stores retailers do not
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price set by manufacturer i for supplying brand i, i = 1, 2. We assume that retailers

may be multi-product, in the sense that they are allowed to carry both products. We

also assume that retailers are not differentiated in the sense that consumers get the same

utility for consuming a brand no matter which retailer sells the brand to them. We denote

by N = {M1,M2,R1, R2} the set of agents which are connected in a distribution network.

Let qij be the quantity of brand i that retailer j sells to consumers. In case both

retailers distribute brand i, let Qi = qi1 + qi2 denote the total amount produced of brand

i. The retailing costs supported by the retailers are assumed to be zero. Inverse demand

functions are given by

p1 = a−Q1 − dQ2

p2 = a−Q2 − dQ1

where a > c and 0 < d < 1 (own effects on prices are greater than cross effects). So, brands

1 and 2 are imperfect substitutes and parameter d measures the degree of interbrand

rivalry, that is, how similar the brands are perceived by consumers. When d approaches

1 brands become closer substitutes (interbrand rivalry increases). Intrabrand rivalry, that

is how similar retailers’ services are perceived by consumers to be when selling the same

brand, is maximal since retailers are not differentiated, they are perfect substitutes. Since

retailers can be multi-product sellers, there may be in-store competition, which means

interbrand rivalry in a retailer selling the two products.

The distribution network cannot be enforced. We assume that joint consent is needed

to establish and/or maintain a link between a manufacturer and a retailer. The cost of

maintaining such a distribution link for each agent is denoted by k ≥ 0. In a distribution

network, manufacturers and retailers are the nodes in the graph and links indicate different

bilateral relationships between the agents. Then, a distribution network g is simply a list

of which pair of manufacturers and retailers are linked to each other. If M1 is linked with

R1 and with R2, we write (M1,R1) ∈ g and (M1,R2) ∈ g. In general, if we are considering

a pair of agents i and j, with i, j ∈ N , then (i, j) ∈ g indicates that i and j are linked

under the network g. The network obtained by adding link (i, j) to an existing network

g is denoted g + (i, j) and the network obtained by deleting link (i, j) from an existing

network g is denoted g − (i, j). Let G be the set of all possible distribution networks.

In what follows, g (12, 0) represents the distribution network in which retailer R1 is

selling brand 1 and brand 2 and retailer R2 sells no brand, while g (1, 12) represents

seem to pay lump-sum fees to manufacturers. Sass (2005) has described the U.S. beer industry as a

three-tier system (brewers, distributors and retailers) where brewers set constant per-unit prices for beer

and do not charge distributors explicit franchise fees. Distributors in turn independently set simple linear

wholesale prices to retailers.
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the distribution network in which R1 is selling brand 1 and R2 sells brands 1 and 2;

i.e., g (12, 0) = {(M1,R1), (M2,R1)} and g (1, 12) = {(M1,R1), (M1,R2), (M2,R2)}.

Given the symmetry of products and retailers, there are only six qualitatively different

distribution networks out of fifteen. The six distribution networks we are going to analyze

are g(1, 0), g(1, 1), g(12, 0), g(1, 2), g(12, 1) and g(12, 12) and are depicted in Figure 1. The

distribution network g(1, 0) is symmetric to g(0, 1), g(0, 2) and g(2, 0); g(1, 1) is symmetric

to g(2, 2); g(12, 0) is symmetric to g(0, 12); g(1, 2) is symmetric to g(2, 1); and g(12, 1) is

symmetric to g(12, 2), g(1, 12) and g(2, 12).

Before looking for the stability and efficiency of distribution networks, we derive for

each possible network architecture, the equilibrium transfer prices, quantities produced,

profits, consumer surplus and aggregate welfare. We denote by Πi(g) the profit of i in

network g. Let Φ(g) be the sum of the individual payoffs or profits. That is, Φ(g) =

ΠM1
(g) + ΠM2

(g) + ΠR1
(g) + ΠR2

(g). For the sake of the exposition we present here the

distribution network g(12, 12) = {(M1,R1), (M2, R1), (M1,R2), (M2,R2)}, in which each

retailer sells brands 1 and 2, referred as the non-exclusive distribution & non-exclusive

dealing system.

Agents objective functions in g(12, 12) are:

ΠM1
(g(12, 12)) = (w1 − c)(q11 + q12)− 2k (1)

ΠM2
(g(12, 12)) = (w2 − c)(q21 + q22)− 2k (2)

ΠR1
(g(12, 12)) = (p1 − w1)q11 + (p2 − w2)q21 − 2k (3)

ΠR2
(g(12, 12)) = (p1 − w1)q12 + (p2 − w2)q22 − 2k. (4)

In the last stage of the game, links and transfer prices are given. Under Cournot compe-

tition the retailers compete by choosing simultaneously the quantity of each brand they

are going to market. The unique Nash equilibrium of this stage game is

q11(g(12, 12)) = q12(g(12, 12)) =
a (1− d)−w1 + dw2

3 (1− d2)

q21(g(12, 12)) = q22(g(12, 12)) =
a (1− d) + dw1 −w2

3 (1− d2)
.

In the second stage, manufacturers decide simultaneously the transfer prices to retailers.

The unique Nash equilibrium of this stage game is

w1(g(12, 12)) = w2(g(12, 12)) = w(g(12, 12)) = a−
(a− c)

(2− d)
.

Then, one can easily obtain the equilibrium profits:
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ΠM1
(g(12, 12)) = ΠM2

(g(12, 12)) =
2(1− d)(a− c)2

3(1 + d)(2− d)2
− 2k (5)

ΠR1
(g(12, 12)) = ΠR2

(g(12, 12)) =
2(a− c)2

9(1 + d)(2− d)2
− 2k. (6)

To determine the efficient distribution network, we compute the sum of the individual

equilibrium payoffs, Φ(g(12, 12)). Then,

Φ(g(12, 12)) =
4(4− 3d)(a− c)2

9(1 + d)(2− d)2
− 8k. (7)

Let C(g(12, 12)) denote the consumer surplus in case g (12, 12) is formed. The correspond-

ing consumer surplus for this system of inverse linear demands is given by the expression
1

2
[(q11 + q12)2 + (q21 + q22)2]. Substituting for the equilibrium quantities, we obtain

C(g(12, 12)) =
4(a− c)2

9(1 + d)2(2− d)2
. (8)

For any distribution network g, social or aggregate welfare is defined as the sum of con-

sumer surplus and total equilibrium profits. Let W (g(12, 12)) denote aggregate welfare in

network g (12, 12). Then,

W (g(12, 12)) =
4(5 + d− 3d2)(a− c)2

9(1 + d)2(2− d)2
− 8k (9)

In the appendix we give the equilibrium profits, the sum of the individual equilibrium

profits, the consumer surplus and the social welfare for each possible distribution net-

work among the two manufacturers and the two retailers. The other relevant equilibrium

variables q’s and w’s are available from the authors upon request.

3 Stable distribution networks

A simple way to analyze the networks that one might expect to emerge in the long run

is to examine a sort of equilibrium requirement that agents not benefit from altering the

structure of the network. A weak version of such condition is the pairwise stability notion

defined by Jackson and Wolinsky (1996). A network is pairwise stable if no agent benefits

from severing one of their links and no other two agents benefit from adding a link between

them, with one benefiting strictly and the other at least weakly.

Definition 1 A network g is pairwise stable if

(i) for all (i, j) ∈ g, Πi (g) ≥ Πi (g − (i, j)) and Πj (g) ≥ Πj (g − (i, j)), and
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(ii) for all (i, j) /∈ g, if Πi (g) < Πi (g + (i, j)) then Πj (g) > Πj (g + (i, j)).

Let us say that g′ is adjacent to g if g′ = g + (i, j) or g′ = g − (i, j) for some (i, j). A

network g′ defeats g if either g′ = g − (i, j) and Πi (g
′) ≥ Πi (g), or if g

′ = g + (i, j) with

Πi (g′) ≥ Πi (g) and Πj (g′) ≥ Πj (g) with at least one inequality holding strictly. Pairwise

stability is equivalent to saying that a network is pairwise stable if it is not defeated by

another (necessarily adjacent) network.

While pairwise stability is natural and quite easy to work with, it is a concept with

some limitations. First, it is a weak notion in that it only considers deviations on a single

link at a time. For instance, it could be that an agent would not benefit from severing

any single link but would benefit from severing several links simultaneously, and yet the

network would still be pairwise stable. Second, pairwise stability considers only deviations

by at most a pair of agents at a time. It might be that some group of agents could all be

made better off by some complicated reorganization of their links, which is not accounted

for under pairwise stability. The definition of strong stable networks is in that spirit, and

is due to Jackson and van den Nouweland (2005). A strongly stable network is a network

which is stable against changes in links by any coalition of agents.

A network g′ ∈ G is obtainable from g ∈ G via deviations by S ⊂ N if

(i) ij ∈ g′ and ij /∈ g implies ij ⊂ S, and

(ii) ij ∈ g and ij /∈ g′ implies ij ∩ S �= ∅.

The above definition identifies changes in a network that can be made by a coalition S,

without the need of consent of any agents outside of S. Part (i) requires that any new

links that are added can only be between agents in S. This reflects the fact that consent

of both agents is needed to add a link. Part (ii) requires that at least one agent of any

deleted link be in S. This reflects the fact that either agent in a link can unilaterally sever

the relationship.

Definition 2 A network g is strongly stable if for any S ⊂ N, g′ that is obtainable from

g via deviations by S, and i ∈ S such that Πi(g′) > Πi(g), there exists j ∈ S such that

Πj(g′) < Πj(g).

Strong stability provides a powerful refinement of pairwise stability. The concept of

strong stability mainly makes sense in smaller network situations where agents have sub-

stantial information about the overall structure and potential payoffs and can coordinate
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their actions.15 That is, it makes sense to study the stability of distribution networks

between manufacturers and retailers in a successive duopoly.

In order to characterize the strongly stable distribution networks we first derive the

pairwise stable networks since a strongly stable network is pairwise stable while the reverse

is not true. To make meaningful comparisons we impose an upper bound on the link cost

k so that for each possible distribution network any equilibrium output and payoffs are

positive. The upper bound on k is given in the next lemma and displayed in Figure 2.16

Figure 2: Bounds on the link cost k.

Lemma 1 All agents’ equilibrium payoffs are positive in each possible distribution net-

work if the link cost k is bounded above as follows, k ≤
(a−c)2

36 if 0 < d ≤ 0.779 and

15Coordination may be facilitated through industry associations which regroup firms having some com-

mon interest within an industry. For instance, the agri-food industry in Canada has 31 industry associ-

ations. One of them is the Brewers Association of Canada whose role is to foster and improve business

relations and cooperation generally between brewers in Canada and between them and the public in the

furtherance and protection of their respective interests and welfare. The assocation provides services to

industry including statistics on beer consumption, monitoring government and policy issues, and the promo-

tion of responsible consumption. Another association is the Food and Consumer Products Manufacturers of

Canada whose aim is to enhance growth and competitiveness of the food and consumer products manufac-

turing industry. There is also the Canadian Association of Independent Grocers which is a non-profit trade

association founded in 1962 with the purpose of furthering the unique interests of Canada’s independently

owned and franchised supermarkets. More information can be found at http://www.agr.gc.ca/
16In all figures that appear in the paper we have considered the case where (a− c) = 1.
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k ≤
(1−d)(a−c)2

3(1+d)(2−d)2
if 0.779 < d < 1.

All proofs can be found in the appendix. Denote the upper bound on k as k, where

k ≡ min

{
(a− c)2

36
,
(1− d)(a− c)2

3(1 + d)(2− d)2

}
.

The first term corresponds to the constraint on k that implies that ΠR1
(g(1, 1)) is positive

while the second is the one that ensures ΠM1
(g(12, 12)) > 0. The following remarks are

useful in understanding Figure 3 which displays the pairwise stable distribution networks.

a) The distribution network g(12, 12) is pairwise stable if and only if k < min{kM(12,12),

kR(12,12)} since no agent wants to sever a link.

b) The distribution network g(1, 2) (and g(2, 1)) is pairwise stable if and only if k >

min{kM(1,2), k
R
(1,2)} since no pair manufacturer-retailer wants to create a link and no

agent wants to destroy a link.

c) The distribution network g(12, 1) (and g(12, 2), g(1, 12) and g(2, 12)) is pairwise

stable if and only if k > min{kM(12,12), k
R
(12,12)} and k < min{kM(1,2), k

R
(1,2)} since no

agent wants to sever a link and the pair manufacturer-retailer with only one link

does not want to create another link.

Therefore, in the area C the only pairwise stable distribution network is g(1, 2); in the area

B both g(1, 2) and g(12, 12) are pairwise stable; in the area A only g(12, 12) is pairwise

stable; and in the area D g(12, 1) is the only pairwise stable distribution network. The

following proposition summarizes pairwise stability among distribution networks.

Proposition 1 Only three distribution networks can be pairwise stable: g(12, 12), g(12, 1)

and g(1, 2). The parameter space (k, d) is partitioned into four regions. In the first region,

for low values of d, g(12, 12) is the only pairwise stable network. In the second, for low

values of d and intermediate values of k, g(12, 1) is the only pairwise stable network. In

the third region, for high and low values of d and values of k close to the upper bound,

g(1, 2) is the only pairwise stable network. In the fourth region, for intermediate values of

d, there are two pairwise stable networks g(12, 12) and g(1, 2).

It is interesting to note that when k = 0, only two distribution networks are pair-

wise stable:17 the non-exclusive distribution & non-exclusive dealing system g(12, 12) and

17For k = 0 (assumption made in Mycielski, Riyanto and Wuyts (2000) and Moner-Colonques, Sempere-

Monerris and Urbano (2004)), the pairwise stable distribution networks coincide exactly with the subgame

perfect Nash equilibrium distribution systems of Moner-Colonques, Sempere-Monerris and Urbano (2004)

when brands are symmetric:
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Figure 3: Pairwise stability of distribution networks.

the exclusive distribution & exclusive dealing system g(1, 2); g(12, 12) is stable when the

products are sufficiently differentiated d ∈ (0, 0.682), both g(12, 12) and g(1, 2) are stable

for intermediate values d ∈ (0.682, 0.909), and finally, g(1, 2) is stable when products are

close substitutes d ∈ (0.909, 1).18 In the absence of link costs, the pairwise stability of a

network depends on the strategic incentives of manufacturers and retailers to introduce in-

trabrand competition once there is interbrand competition. Take the distribution network

g(1, 2). A manufacturer and a retailer would like to form a link between them only if the

degree of interbrand rivalry is not too high; that is, if and only if d ∈ (0, 0.682). Thus, for

d ∈ (0, 0.682), the distribution network g(1, 2) is defeated by the network g(12, 2). Take

now the distribution network g(12, 2). In order for g(12, 2) to be stable, the pair formed

by M1 and R2 should have no interest in adding a link between them. But, given the low

degree of interbrand rivalry, d ∈ (0, 0.682), they also prefer to establish a link between

them. Thus, for d ∈ (0, 0.682), the distribution network g(1, 2) is defeated by the network

g(12, 2) and g(12, 2) is defeated by g(12, 12). Observe that g(12, 2) is defeated by g(12, 12)

not only for these values of interbrand rivalry but also for d ∈ (0.682, 0.909).

18When joint consent is needed to establish and/or maintain a link between a manufacturer and a

retailer, the asymmetric distribution network g(12,2) is no more stable. In Moner-Colonques, Sempere-

Monerris and Urbano (2004) this network appears at equilibrium for sufficiently large brand asymmetry. In

Mycielski, Riyanto and Wuyts (2000), g(12,2) is an equilibrium outcome when goods are strong substitutes

but not perfect ones. Here only for positive link costs, one can sustain g(12,2) as pairwise stable.
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Once the formation of links is costly, the pairwise stability of a given distribution

network also depends on the size of link costs. In such case, the incentives to add a link

between a manufacturer and a retailer when the degree of interbrand rivalry is low can be

offset by the negative effect of the costly link on profits. When it happens, the distribution

networks g(12, 2) and g(1, 2) can be pairwise stable for low values of interbrand rivalry;

see Figure 3.

Now, we turn to the characterization of strongly stable distribution networks. We

already know that the only pairwise stable distribution networks are g (1, 2) , g (12, 1) and

g (12, 12) . To check for strong stability we have to examine the incentives that a coalition

of agents have to move from the pairwise stable networks to other networks. Specifically,

a) In considering the strong stability of g(1, 2), we have to check for the incentives to

move from g (1, 2) to g (12, 12), next to g (12, 0), and then to g(1, 1).

b) In considering the strong stability of g(12, 12), we have to check for the incentives

to move from g(12, 12) to g(1, 2), next to g (12, 0), and then to g (1, 1).

c) In considering the strong stability of g (12, 1), we have to check for the incentives to

move from g (12, 1) to g (1, 0).

Proposition 2 The distribution network g(1, 2) is always strongly stable when it is pair-

wise stable. However, the distribution networks g(12, 1) and g(12, 12) are not necessarily

strongly stable when they are pairwise stable.

Figure 4 displays the areas in the space (k, d) where the three distribution networks are

strongly stable or pairwise stable. It is interesting to note that for k = 0, the non-exclusive

distribution & non-exclusive dealing system g(12, 12) is strongly stable when the products

are rather differentiated d ∈ (0.202, 0.510), and the exclusive distribution & exclusive

dealing system g(1, 2) is strongly stable for d ∈ (0.682, 1). Contrary to the case of pairwise

stability, there are some values of product differentiation for which no network is strongly

stable. This happens because g(12, 12) is defeated by g(1, 2) either when the products are

very differentiated (for d ∈ (0, 0.202)) or for intermediate levels of product differentiation

(for d ∈ (0.510, 0.682)). In fact, when products are very differentiated, d ∈ (0, 0.202),

the coalition of two retailers prefers to delete two links, one with each manufacturer, in

order to form a differentiated duopoly without intrabrand rivalry (a situation close to

two successive monopolies). For intermediate levels of d ∈ (0.510, 0.682) the coalition of

two manufacturers prefers to delete two links, one with each retailer, in order to form

a differentiated duopoly in the distribution market and avoiding introducing intrabrand

rivalry. Thus, when the degree of product differentiation is high enough or intermediate,
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Figure 4: Strongly stable and pairwise stable distribution networks.

the non-exclusive distribution & non-exclusive dealing system will not emerge in the "long-

run" while Mycielski, Riyanto and Wuyts (2000) andMoner-Colonques, Sempere-Monerris

and Urbano (2004) have shown that it is a "short-run" equilibrium.

Once the formation of links is costly, the stability of a given distribution network

also depends on the size of link costs. In such a case, the incentives to delete links by

the coalition of two retailers when the degree of interbrand rivalry is very low, or by the

coalition of the two manufacturers when the degree of interbrand rivalry is intermediate

can be reinforced by the negative effect of the costly links on profits. There is a size of link

costs from which the distribution network g(12, 12) is no longer strongly stable. Higher size

of link costs and low degree of interbrand rivalry make the distribution networks g(12, 1)

and g(1, 2) strongly stable. But contrary to the case of pairwise stability, the possibility

that M1 and R1 delete respectively their links with R2 and M2 moving to g(1, 0), makes

g(12, 1) no longer strongly stable for some values of d and k for which it was pairwise

stable. For high degree of interbrand rivalry, the fact of costly links does not prevent the

strong stability of g(1, 2). In Figure 4, one can observe that while there are always at least

a pairwise stable network, for some values of the degree of product differentiation and link

costs there is no strongly stable network.

When no network is strongly stable we will observe a sequence of distribution networks

due to continuously profitable deviations. In terms of competition policy, it would be
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interesting to know which networks are likely to be visited by such sequence of profitable

deviations. In fact we will show that some distribution networks will be visited at most

once, while others will belong to a closed cycle and will be visited regularly. We now define

what is meant by a closed cycle. A network g′ strongly defeats g if (i) g′ is obtainable from

g via deviations by S ⊂ N and (ii) Πi(g
′) ≥ Πi(g) for all i ∈ S and Πj(g

′) > Πj(g) for

some j ∈ S. An improving path from a network g to a network g′ is a finite sequence of

graphs g1, g2, ..., gK with g1 = g and gK = g′ such that for any k ∈ {1, ..., K − 1} we have

gk+1 strongly defeats gk. A set of networks G form a cycle if for any g ∈ G and g′ ∈ G

there exists an improving path connecting g to g′. A cycle G is a closed cycle if no network

in G lies on an improving path leading to a network that is not in G. In characterizing

the closed cycles (whose proof is given in the appendix) we distinguish two cases:

a) If min{min{kR(12,12), k
M
(1,2)}, max{kM

s(12,1), k
R
s(12,1)}} > k > min{kM

s(1,2), k
R
s(1,2)}, then

there is a unique closed cycle which consists of networks g(12, 12), g(1, 2), g(2, 1),

g(12, 1), g(12, 2), g(1, 12) and g(2, 12).

b) If min{kR(1,2), k
M
(1,2)} > k > max{kM

s(12,1), k
R
s(12,1)}, then there is a unique closed cycle

which consists of all possible distribution networks.

Figure 5 displays the areas in the space (k, d) where there is no strongly stable network

(areas A and E) and where some of the three distribution networks are strongly stable. In

area A no strongly stable network exists and there is a unique closed cycle which consists

of networks g(12, 12), g(1, 2), g(2, 1), g(12, 1), g(12, 2), g(1, 12) and g(2, 12). In area E

no strongly stable network exists and there is a unique closed cycle which consists of all

possible networks. In areas B, C and D the distributions networks g(12, 12), g(1, 2) and

g(12, 1) are, respectively, the unique strongly stable distribution network. Thus, when

the degree of differentiation is high and link costs are not too high or when the degree

of differentiation is intermediate and link costs are small (area A in Figure 5) we will

observe a cycle of distribution networks where non-exclusive distribution & non-exclusive

dealing will succeed tomixed distribution system, exclusive distribution & exclusive dealing

will succeed to non-exclusive distribution & non-exclusive dealing, and mixed distribution

system will succeed to exclusive distribution & exclusive dealing. Moreover, there is no

cycle beside the closed one and networks outside the closed cycle will be visited at most

once. So, from any other distribution networks all sequences of profitable deviations long

enough go to the closed cycle.
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Figure 5: Cycles and strongly stable networks.

4 Efficiency, consumer surplus and social welfare

Some of the very central questions about network formation concern the conditions under

which the networks which are formed by the players turn out to be efficient from an overall

societal perspective. In order to discuss these issues we need to define what is meant by

efficiency. The network structure is the key determinant of the level of productivity or

utility to the society of players involved. In our case, a manufacturer’s expected profit

and a retailer’s expected profit from establishing a link among them in order to sell the

manufacturer’s brand to consumers depend on how many links each of them has formed

and on how many links the other manufacturer and retailer have established. Remember

that Φ is a function that assigns to each network g a value Φ(g) that represents the overall

total value of network g which is the sum of the equilibrium profits of the four agents.

An obvious notion of efficiency is simply maximizing the overall total value among

all possible networks. This notion was referred to as strong efficiency by Jackson and

Wolinsky (1996), but we will simply refer to it as efficiency.

Definition 3 A network g is efficient relative to Φ if Φ(g) ≥ Φ(g′) for all g′ ∈ G.

It is clear that there will always exist at least one efficient network, given that there

is only a finite set of networks. A starting point is to examine efficiency when the cost of

the links is negligible.
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Proposition 3 Suppose that links are costless, k = 0. Then, the efficient distribution

network is g(12, 12) for 0 < d ≤ 0.735, g(12, 1) for 0.735 < d ≤ 0.863, and g(12, 0) for

0.863 < d < 1.

In the absence of costly links, the degree of product differentiation determines the stable

networks but also the more profitable network from the manufacturers and retailers point

of view. A low degree of product differentiation implies a more competitive environment

and thus manufacturers (and retailers) prefer a distribution network without intrabrand

competition. Since the transfer price under g(12, 0) is smaller than the transfer price

under g(1, 2), the distribution network with a unique multiproduct retailer g(12, 0) is more

efficient than the distribution network with two differentiated retailers g(1, 2). Higher

degrees of product differentiation will give incentives to one manufacturer to use two

retailers making g(12, 1) the new efficient network. Further increases in the degree of

product differentiation will now give incentives to the second manufacturer to use two

retailers too. Since the output expansion effect dominates the competition effect, g(12, 12)

becomes the new efficient distribution network.

We now analyze efficiency for positive link costs. Positive link costs adds a second

negative effect to the formation of a new link. For that reason, the distribution networks

g(12, 12) and g(12, 1) are no more efficient for high enough link costs. Only g(1, 2) and

g(12, 0) are efficient for high sizes of link costs. As the degree of product differentiation

increases, the exclusive distribution & exclusive dealing network g(1, 2) will lead to higher

aggregate profits than the exclusive distribution & non-exclusive dealing network g(12, 0)

with in-store interbrand competition. Indeed, the difference in transfer prices is compen-

sated by the increased degree of product differentiation. Figure 6 displays the efficient

distribution networks. The network g(12, 12) is the efficient one in the area A; g(1, 2) is

the efficient network in the area C; g(12, 1) is the efficient network in the area B; and

g(12, 0) is the efficient network in the area D. The next proposition summarizes the main

interesting features about efficient distribution networks when links are costly. The com-

plete characterization of the efficient distribution networks is given in Proposition 7 of the

appendix.

Proposition 4 Suppose that links are costly, k > 0. Any distribution network marketing

two products is efficient under particular conditions on the degree of product differentiation

and the size of link costs.

The distribution network g(12, 12) is efficient for low enough link cost and enough degree

of product differentiation. As link costs increase the efficient distribution network is either

g(1, 2), for high and intermediate degrees of product differentiation, or g(12, 1) for lower
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degrees of product differentiation. Further increases in link costs and intermediate degrees

of product differentiation imply that the efficient distribution network is either g(1, 2) or

g(12, 0). Finally, for small enough degrees of product differentiation the efficient network

is g(12, 0).

Figure 6: Efficient distribution networks.

There is no coincidence between the set of efficient networks and that of pairwise

or strongly stable distribution networks. We find that the three stable networks can be

efficient for particular values of the degree of product differentiation and link costs, but

not necessarily for the values under which they are stable. Moreover, the network g(12, 0)

is efficient for large enough link costs and low enough product differentiation but it is

never stable.

Before analyzing the social welfare implications of the different distribution networks,

it is worthy to study how consumer surplus is affected. Depending on the distribution

network, one or two products are present in the market. Different combinations of intra-

brand, interbrand and in-store competition can be present. Which distribution network

will give the highest consumer surplus?

Proposition 5 The highest level of consumer surplus is achieved when the distribution

network g(12, 12) is formed. Moreover, consumer surplus is increasing with the introduc-

tion of product items in the outlets.
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Consumers prefer that the three types of competition are present in both outlets, that

is two product items in the two outlets. If this is not possible, they prefer one retailer with

in-store competition and the other not, but with the presence of both inter and intrabrand

competition, that is one outlet with one product item and the other with two products. If

the latter two options are not possible, consumers prefer at least two product items, either

two different products concentrated in one outlet for low enough product differentiation,

for 0.8597 < d < 1, or the same product item in each of the outlets for 0.2826 < d < 0.8597,

or finally, two different product items each one in a different outlet, for 0 < d < 0.2826.

The consumer surplus depends on both the number of product items and its distribution

among outlets. When the number of product items is the same, then its distribution also

affects the degree of competition among manufacturers and among retailers. For example,

in the distribution network g(12, 0) although there is only one retailer the rivalry among

manufacturers implies that the transfer price is lower than the transfer price in a network

where only one product is present in the market, as for example g(1, 1). In contrast, in the

latter distribution network the rivalry among retailers is higher than in the former. The

combination of both effects explains why g(12, 0) generates a higher consumer surplus than

g(1, 1) when d is large enough.19 Finally, the worst distribution network for consumers

is the one with only one product item in a unique outlet. The complete characterization

of consumers preferences over distribution networks at equilibrium can be found in the

appendix.

Finally, we analyze the effects of the different distribution networks on social welfare.

We give in the text the main features while the complete characterization is relegated to the

appendix. The distribution networks that attain the maximum social welfare are g(1, 2) or

g(12, 0) or g(12, 1) or g(12, 12), depending on both the degree of product differentiation

and the size of the link costs. Thus, only distribution networks that market both products

can achieve the highest social welfare. That is, interbrand competition is always socially

desirable in the market. However, intrabrand competition and in-store competition are

not necessarily socially desirable.

Proposition 6 The distribution network that attains the highest level of social welfare is

always one that markets both products. In particular the highest social welfare is obtained

with

a) g(12, 12) for high enough degrees of product differentiation and low enough link costs.

Regardless of the size of k, g(12, 12) maximizes social welfare for 0 < d ≤ 0.0326.

19The equilibrum transfer price ranking is: w(g(12,12)) = w(g(12,0)) < w2(g(12,1)) < w1(g(12,1)) <

w(g(1,2)) < w(g(1,1)) = w(g(1,0)).
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b) g(12, 1) for low enough degrees of product differentiation and intermediate sizes of link

costs. Regardless of the size of k, g(12, 1) maximizes social welfare for d ≥ 0.954.

c) g(1, 2) for intermediate degrees of product differentiation, 0.0326 < d < 2

3
, and high

sizes of link costs.

d) g(12, 0) for intermediate degrees of product differentiation, 2

3
< d < 0.880 and high

sizes of link costs.

Figure 7 displays the distribution networks that maximize social welfare. The area A

corresponds to the range of parameters where g(12, 12) maximizes social welfare; in the

area C g(1, 2) maximizes social welfare; in the area D g(12, 0) maximizes social welfare,

and in the area B g(12, 1) maximizes social welfare. Comparing Figure 5 with Figure 7 we

observe that the distribution networks that firms will endogenously form following their

own interest enter, in general, in contradiction with those that maximize welfare.

Figure 7: Social welfare maximizing distribution networks.

For the particular case k = 0, we find that: (i) when g(12, 12) is strongly stable it is

the one that maximizes social welfare, but the reverse is not true; (ii) g(12, 1) maximizes

social welfare when d ∈ (0.954, 1) but it is not strongly stable. Once the formation of links

is costly, g(1, 2) and g(12, 0) also maximize social welfare for some values of the degree of

product differentiation and of the link costs. While g(1, 2) could be strongly stable when

it maximizes social welfare, the networks g(12, 0) and g(12, 1) are never stable when they
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reach the maximum welfare. Moreover, costly links increase the conflict between social

welfare and strong stability with respect to the network g(12, 12).

In general, there are distribution networks like g(12, 12), g(12, 0) and g(12, 1) that

are less likely to arise when leaving the market forces on their own, as compared with

the socially desirable outcome. By contrast, the distribution network g(1, 2) appears

to be stable under more situations than what would be socially desirable. Mycielski,

Riyanto and Wuyts (2000) have studied the welfare implications of manufacturers’ choices

of vertical arrangements and its policy implications in a setting where retailers compete

à la Bertrand. They have shown that, for a low degree of interbrand rivalry, any policy

measure to restrict vertical restraints is unnecessary. Such policies become necessary once

there is a high degree of interbrand rivalry. Their results contrast with the ones we obtain

in a setting where retailers compete à la Cournot. Even for costless links, we get that such

policies are also necessary for high degrees of product differentiation. Then, restricting

exclusive distribution and exclusive dealing arrangements might have a positive impact

on social welfare. Impeding the profitable deviation of both retailers from g(12, 12) to

g(1, 2) would make strongly stable the distribution network g(12, 12), which is the one

that maximizes social welfare.

5 Conclusion

We have analyzed the networks between two manufacturers of differentiated goods and

two multi-product retailers that one might expect to emerge in the long run. We have

found that only three distribution networks are strongly stable for particular values of the

degree of product differentiation and link costs. A first distribution network, the non-

exclusive distribution & non-exclusive dealing system, in which both retailers distribute

both products is strongly stable for intermediate degrees of product differentiation and

small link costs. In this distribution network, both interbrand and intrabrand competition

are present in the market. A second distribution network, the exclusive distribution & ex-

clusive dealing system, in which each retailer distributes a different product is strongly

stable for low degrees of product differentiation. In this distribution network, no intra-

brand competition appears in the market. A third distribution, the mixed distribution

system, in which one retailer distributes both products while the other retailer sells only

one is strongly stable for high degrees of product differentiation and large link costs.20

20The mixed distribution system seems quite common in the beer industry. The analysis made by Slade

(1998) for the U.K. beer industry reveals that one of the effects of the U.K. Monopolies and Mergers

Commission report and the Beer Orders passed after 1989 was the formation of public-house chains which

most often operate under exclusive purchasing contracts with major brewers. In 1994, 54% of the public
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Finally, for some values of the degree of product differentiation and link costs, no distrib-

ution network is strongly stable. In particular, when the degree of product differentiation

is high enough or intermediate and link costs are moderate, the non-exclusive distribution

& non-exclusive dealing system will not emerge in the "long-run" in contrast with My-

cielski, Riyanto and Wuyts (2000) and Moner-Colonques, Sempere-Monerris and Urbano

(2004). However, we will observe a cycle among the above three distribution networks.

This is consistent with the observation that the distribution chains organization differs

across markets and industries over time.21

Consumers are better off in a market with interbrand and intrabrand competition in

both products. Thus, they prefer the non-exclusive distribution & non-exclusive deal-

ing system. We have also investigated whether the stable distribution network, when

it exists, maximizes social welfare. When link costs are small enough, two distribution

networks may maximize social welfare. The non-exclusive distribution & non-exclusive

dealing system maximizes social welfare if the degree of product differentiation is high

enough; otherwise, the mixed distribution system maximizes social welfare. When link

costs become large, two other distribution networks may maximize welfare. The exclu-

sive distribution & exclusive dealing system maximizes welfare if the degree of product

differentiation is high enough; otherwise, the exclusive distribution & non-exclusive deal-

ing system maximizes welfare. Thus, a conflict between stability and social welfare is

likely to occur, even more if the degree of product differentiation is either low or high.

This conflict is crucial from a competition policy perspective and is summarized in Table 1.
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Link Product differentiation

cost high medium low

Strong small cycle

Non-excl. distribution

& non-excl. dealing,

or cycle

Excl. distribution

& excl. dealing

stability medium cycle cycle
Excl. distribution

& excl. dealing

high

Excl. distribution

& excl. dealing,

or cycle,

or mixed system

Excl. distribution

& excl. dealing,

or cycle

Excl. distribution

& excl. dealing

Social small
Non-excl. distribution

& non-excl. dealing

Non-excl. distribution

& non-excl. dealing

Non-excl. distribution

& non-excl. dealing,
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welfare medium
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& non-excl. dealing
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& excl. dealing
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Appendix

A Manufacturers and retailers payoffs

We give the payoffs of the different possible distribution networks between two manufac-

turers and two retailers. Given the symmetry of the model, only six different distribution

networks are at play. Apart from the distribution network g(12, 12) already examined in

Section 2, the other distribution networks are as follows.

a) The distribution network g(1, 0) is symmetric to the distribution networks g(0, 1),

g(2, 0) and g(0, 2). There is a successive monopoly in the market: one manufacturer

sells its product through a single retailer. Agents’ payoffs, its sum, consumer surplus

and social welfare are:

ΠM1
(g(1, 0)) = ΠM1

(g(2, 0)) = ΠM2
(g(0, 1)) = ΠM2

(g(0, 2))

=
(a− c)2

8
− k (10)

ΠR1(g(1, 0)) = ΠR1
(g(2, 0)) = ΠR2

(g(0, 1)) = ΠR2(g(0, 2))

=
(a− c)2

16
− k (11)

Φ(g(1, 0)) = Φ(g(2, 0)) = Φ(g(0, 1)) = Φ(g(0, 2)) =
3(a− c)2

16
− 2k (12)

C(g(1, 0) = C(g(2, 0)) = C(g(0, 1)) = C(g(0, 2)) =
(a− c)2

32
(13)

W (g(1, 0) = W (g(2, 0)) =W (g(0, 1)) =W (g(0, 2)) =
7(a− c)2

32
− 2k (14)
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b) The distribution network g(1, 1) is symmetric to g(2, 2).

ΠM1
(g(1, 1)) = ΠM2

(g(2, 2)) =
(a− c)2

6
− 2k (15)

ΠR1
(g(1, 1)) = ΠR2

(g(1, 1)) = ΠR1(g(2, 2)) = ΠR2
(g(2, 2))

=
(a− c)2

36
− k (16)

Φ(g(1, 1)) = Φ(g(2, 2)) =
2(a− c)2

9
− 4k (17)

C(g(1, 1) = C(g(2, 2)) =
(a− c)2

18
(18)

W (g(1, 1) = W (g(2, 2)) =
5(a− c)2

18
− 4k (19)

c) The distribution network g(1, 2) is symmetric to g(2, 1).

ΠM1
(g(1, 2)) = ΠM2

(g(1, 2)) = ΠM1
(g(2, 1)) = ΠM2

(g(2, 1)) (20)

=
2(2− d)(a− c)2

(2 + d)(4− d)2
− k

ΠR1
(g(1, 2)) = ΠR2

(g(1, 2)) = ΠR1(g(2, 1)) = ΠR2
(g(2, 1)) (21)

=
4(a− c)2

(2 + d)2(4− d)2
− k

Φ(g(1, 2)) = Φ(g(2, 1)) =
4(6− d2)(a− c)2

(2 + d)2(4− d)2
− 4k (22)

C(g(1, 2) = C(g(2, 1)) =
4(a− c)2

(2 + d)2(4− d)2
(23)

W (g(1, 2) = W (g(2, 1)) =
4(7− d2)(a− c)2

(2 + d)2(4− d)2
− 4k (24)

d) The distribution network g(12, 0) is symmetric to g(0, 12).

ΠM1
(g(12, 0)) = ΠM2

(g(12, 0)) = ΠM1
(g(0, 12)) = ΠM2

(g(0, 12)) (25)

=
(1− d)(a− c)2

2(1 + d)(2− d)2
− k

ΠR1(g(12, 0)) = ΠR2(g(0, 12)) =
(a− c)2

2(1 + d)(2− d)2
− 2k (26)

Φ(g(12, 0)) = Φ(g(0, 12)) =
(3− 2d)(a − c)2

2(1 + d)(2− d)2
− 4k (27)

C(g(12, 0)) = C(g(0, 12)) =
2(a− c)2

8(1 + d)2(2− d)2
(28)

W (g(12, 0)) = W (g(0, 12)) =
(7 + 2d− 4d2)(a− c)2

4(1 + d)2(2− d)2
− 4k (29)
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e) The distribution network g(12, 1) is symmetric to g(12, 2), g(1, 12) and g(2, 12).

ΠM1
(g(12, 1)) = ΠM1

(g(1, 12)) = ΠM2
(g(12, 2)) = ΠM2

(g(2, 12))

=
(1− d)(2− d)(2 + d)(8 + 5d)2(a− c)2

6(1 + d)(16− 7d2)2
− 2k (30)

ΠM2
(g(12, 1)) = ΠM2

(g(1, 12)) = ΠM1
(g(12, 2)) = ΠM1

(g(2, 12))

=
(1− d)(8 + 4d− d2)2(a− c)2

2(1 + d)(16− 7d2)2
− k (31)

ΠR1(g(12, 1)) = ΠR1(g(12, 2)) = ΠR2(g(1, 12)) = ΠR2(g(2, 12))

=
(52 + 28d− 7d2 − d3)(a− c)2

36(1 + d)(16− 7d2)
− 2k (32)

ΠR2(g(12, 1)) = ΠR2(g(12, 2)) = ΠR1(g(1, 12)) = ΠR1(g(2, 12))

=
(8 + 3d− 2d2)2(a− c)2

9(16− 7d2)2
− k (33)

Φ(g(12, 1)) = Φ(g(12, 2)) = Φ(g(1, 12)) = Φ(g(2, 12))

=
(a− c)2

36(1 + d)(16− 7d2)2
(3776 + 1280d− 3232d2

−1192d3 + 509d4 + 155d5)− 6k (34)

C(g(12, 1)) = C(g(12, 2)) = C(g(1, 12)) = C(g(2, 12))

=
(a− c)2

72(1 + d)2(16− 7d2)2
(1600 + 1856d− 112d2

−712d3 − 127d4 + 80d5 + 25d6) (35)

W (g(12, 1)) = W (g(12, 2)) =W (g(1, 12)) =W (g(2, 12))

=
(a− c)2

72(1 + d)2(16− 7d2)2
(9152 + 11968d− 4016d2

−9560d3 − 1493d4 + 1408d5 + 335d6)− 6k (36)

B Several results and proofs

B.1 Bounds on k

Proof of Lemma 1

Consider first the distribution networks g(1, 0) and g(1, 1). From direct inspection of

the agents’ profits, the most binding constraint for k is the one which ensures that

ΠR1
(g(1, 1)) > 0, that is, k <

(a−c)2

36 . Similarly, for g(1, 2) the most binding constraint

for k is the one that imposes ΠR1
(g(1, 2)) > 0, that is k <

4(a−c)2

(4−d)2(2+d)2
. For g(12, 0),
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ΠR1
(g(12, 0)) > 0 or equivalently k <

(a−c)2

4(2−d)2(1+d)
is the most binding constraint. Com-

paring (a−c)2

36 with 4(a−c)2

(4−d)2(2+d)2
and with (a−c)2

4(2−d)2(1+d)
, it follows that the former expression

is smaller than each of the other two expressions for 1 > d. For g(12, 1) and g(12, 12),

it follows that k <
(a−c)2

36 is a more binding condition for k than those imposed by

ΠR1
(g(12, 1)) > 0, ΠR2

(g(12, 1)) > 0 and ΠR1
(g(12, 12)) > 0 for 1 > d. Similarly, the

condition on k that ensures ΠM1
(g(12, 12)) > 0, that is k < (1−d)(a−c)2

3(2−d)2(1+d)
, is more binding

that those ensuring ΠM1
(g(12, 1)) > 0 and ΠM2

(g(12, 1)) > 0. Therefore, by comparing

expressions (a−c)2

36 and (1−d)(a−c)2

3(2−d)2(1+d) we have the upper bound on k as a function of d pre-

sented in Lemma 1.

B.1.1 Pairwise stable distribution networks.

Proof of Proposition 1

Remember that the link cost parameter is bounded above as indicated by Lemma 1. We

proceed by steps.

a) First, the distribution networks where one manufacturer and one retailer are out of

the market (i.e. g(1, 0), g(2, 0), g(0, 1) and g(0, 2)) are not pairwise stable since the

manufacturer present in the market and the retailer selling no product would have

incentives to create a link between them (i.e., g (1, 0) is defeated by g (1, 1)).

b) Second, in case of distribution networks g(1, 1) and g(2, 2) there is one manufacturer

out of the market and the other with two links. Note that no retailer wants to

break its unique link. Furthermore, the manufacturer with two links wants to

break one link if and only if k >
(a−c)2

24 which contradicts the restriction on k <

k ≡ min{ (a−c)
2

36 ,
(1−d)(a−c)2

3(1+d)(2−d)2
}. Then, it remains to check whether any retailer wants

to create a link with the manufacturer out of the market. Take for example R1.

ΠR1
(g(12, 1)) = (52+28d−7d2−d3)(a−c)2

36(1+d)(16−7d2)
− 2k > ΠR1

(g(1, 1)) = (a−c)2

36 − k if and only if
(6+2d+d3)(a−c)2

6(1+d)(16−7d2)
> k, which always holds since (6+2d+d3)(a−c)2

6(1+d)(16−7d2)
>

(1−d)(a−c)2

3(1+d)(2−d)2
. Then,

we conclude that g(1, 1) and g(2, 2) are not pairwise stable since one link between a

retailer and the manufacturer out of the market will always be created.

c) Third, in case of distribution networks g(12, 0) and g(0, 12) there is one retailer out

of the market and the other with two links. No manufacturer wants to break its

unique link. Furthermore, the retailer with two links wants to break one link if

and only if k >
(4+3d2−d3)(a−c)2

16(1+d)(2−d)2
. Since this expression is greater than k this re-

tailer never breaks one link. Now we show that one manufacturer wants to create

a link with the retailer out of the market. Take for example M1. ΠM1
(g(12, 1)) =
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(1−d)(2−d)(2+d)(8+5d)2(a−c)2

6(1+d)(16−7d2)2
− 2k > ΠM1

(g(12, 0)) = (1−d)(a−c)2

2(1+d)(2−d)2
− k if and only if

(1−d)(256−208d2+64d3+45d4−25d5)(a−c)2

6(2−d)2(16−7d2)2
> k. This inequality always holds since the left

hand side of the inequality is greater than k. We conclude that the distribution

networks g(12, 0) and g(0, 12) are not pairwise stable since one link between a man-

ufacturer and the retailer out of the market will always be created.

d) Fourth, consider the distribution networks g(1, 2) and g(2, 1). First, note that no agent

wants two break a link. Therefore we have to find the conditions under which both

one manufacturer and one retailer want to create a link.

A manufacturer, say M2, wants to create a link with a retailer, say R1 if and only

if ΠM2
(g(12, 2)) = (1−d)(2−d)(2+d)(8+5d)2(a−c)2

6(1+d)(16−7d2)2
− 2k > ΠM2

(g(1, 2)) = 2(2−d)(a−c)2

(2+d)(4−d)2
− k

which is equivalent to k < (2−d)(1024−1088d2−1120d3−728d4−52d5+45d6−25d7)(a−c)2

6(1+d)(2+d)(4−d)2(16−7d2)2

≡ kM(1,2). It is easy to check that kM(1,2) > k for d ∈ (0, 0.265) and is negative for

d ∈ (0.682, 1).

Similarly, R1 wants to create a link with M2 if and only if

ΠR1
(g(12, 2)) = (52+28d−7d2−d3)(a−c)2

36(1+d)(16−7d2)
− 2k > ΠR1

(g(1, 2)) = 4(a−c)2

(2+d)2(4−d)2
− k which

is equivalent to k <
(1024+1152d+832d2+176d3−8d4+68d5−3d6−d7)(a−c)2

36(1+d)(16−7d2)(2+d)2(4−d)2
≡ kR(1,2), where

kR(1,2) > k for d ∈ (0.295, 1).

d.i) Thus, the distribution network g(1, 2) and g(2, 1) are stable if and only if k >

min{kM(1,2), k
R
(1,2)}, where k

R
(1,2) < kM(1,2) if d ∈ (0, 0.269).

e) Fifth, consider distribution network g(12, 12). Note that the only way to break the

stability of this distribution network is by breaking a link.

A manufacturer, say M1, wants to break a link if and only if ΠM1
(g(12, 2)) =

(1−d)(8+4d−d2)2(a−c)2

2(1+d)(16−7d2)2
− k > ΠM1

(g(12, 12)) = 2(1−d)(a−c)2

3(1+d)(2−d)2
− 2k which is equivalent

to k >
(1−d)(256−320d2−96d3+88d4+36d5−3d6)(a−c)2

6(1+d)(2+d)2(16−7d2)2
≡ kM(12,12), where kM(12,12) > k for

d ∈ (0, 0.344) and is negative for d ∈ (0.909, 1).

Similarly, a retailer, say R1 wants to break a link if and only if ΠR1
(g(2, 12)) =

(8+3d−2d2)2(a−c)2

9(16−7d2)2
− k > ΠR1

(g(12, 12)) = 2(a−c)2

9(1+d)(2−d)2
− 2k which is equivalent to

k >
(1−d)(256+64d−100d2+28d3−7d4−20d5+4d6)(a−c)2

9(1+d)(2+d)2(16−7d2)
≡ kR(12,12), where 0 < kR(12,12) < k for

all d ∈ (0, 1).

e.i) The distribution network g(12, 12) is pairwise stable if and only if k <min{kM(12,12),

kR(12,12)}, where k
R
(12,12) < kM(12,12) if d ∈ (0, 0.480).

f) Finally, consider the distribution networks g(12, 1), g(12, 2), g(1, 12) and g(2, 12). Take

for example g(12, 1). In this case M2 and R2 never want to break its unique link.

M1 does not want to break the link with R2 since it is proved in c) above that there

is always an incentive to create a link between both. Similarly, R1 does not want
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to break the link with M2 since it is proved in b) above that there is always an

incentive to create a link between both. Considering the link between M1 and R1 it

happens that M1 will break the link if and only if k > kM(1,2) while R1 will do it if

and only if k > kR(1,2) (see d) above). Finally, M2 and R2 will create a link if both

have incentives to do it, that is if and only if k < min{kM(12,12),k
R
(12,12)}.

f.i) Thus, the distribution network g(12, 1) (and g(12, 2), g(1, 12) and g(2, 12)) is

pairwise stable if and only if k > min{kM(12,12), k
R
(12,12)} and k < min{kM(1,2), k

R
(1,2)}.

Combining d.i), e.i) and f.i) yields the proposition.

B.1.2 Strong stable distribution networks

Proof of Proposition 2

First we show that g (1, 2) is always strongly stable when it is pairwise stable. In or-

der for g (1, 2) not to be strongly stable with respect to g (12, 12), the coalition formed

by the two manufacturers and the two retailers must benefit from the move. The four

agents are better off with g (12, 12) if and only if k < min{4(4−10d+6d
2
−4d3+d4)(a−c)2

3(1+d)(2+d)(8−6d+d2)
,

−2(4−20d+d2)(2+2d−d2)(a−c)2

9(1+d)(2+d)2(8−6d+d2)2
}. The first term of the above expression corresponds to the

threshold for k denoted by kMs(1,2), and such that for k ≤ kMs(1,2) the manufacturers want to

create two links and move to g (12, 12). This threshold is decreasing with d and reaches

zero at d = 0.510. The second term above is the threshold for k denoted by kR
s(1,2), and

such that for k ≤ kRs(1,2) retailers want to create two links and move to g (12, 12). This

threshold increases with d reaching zero at d = 0.202. However, it is easy to check that

the region defined by 0 ≤ k ≤ min{kMs(1,2), k
R
s(1,2)} does not intersect the region where

g (1, 2) is pairwise stable (see Figure 4). In order for g (1, 2) not to be strongly stable with

respect to g (12, 0), each member of the coalition S = {M2, R1} must gain with the move

that entails severing the link between M2 and R2 and creating a new link between them.

However, it is easily proved that M2 always prefers g (1, 2) since 2(2−d)(a−c)2

(4−d)2(2+d)
is always

greater than (1−d)(a−c)2

2(2−d)2(1+d) , and then g(1, 2) is strongly stable with respect to g(12, 0). In

order for g (1, 2) not to be strongly stable with respect to g (1, 1), each member of the

coalition S = {M1, R2} must gain with the move that entails severing the link between

M2 and R2 and creating a new link between them. However, it is easily proved that R2

always prefers g (1, 2) since 4(a−c)2

(4−d)2(2+d)2
is always greater than (a−c)2

36 , and then g(1, 2) is

strongly stable with respect to g(1, 1).

Considering the strong stability of g (12, 12) with respect to g (1, 2) it is enough that

two agents decide to break a link each (the coalition S that deviates is any coalition of

cardinality two). Therefore, we conclude that g (12, 12) is not strongly stable for k >
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min{kM
s(1,2), k

R
s(1,2)}. To see if g (12, 12) is strongly stable we have to check if the coalition

S = {M1,M2} wants to move to g (12, 0). This happens for k greater than (1−d)(a−c)2

6(2−d)2(1+d) .

This later threshold is always greater than kM(12,12) (see Figure 3), which means that the

intersection between the region where g (12, 12) is pairwise stable and k >
(1−d)(a−c)2

6(2−d)2(1+d)
is

empty. Finally, we check the strong stability of g (12, 12) with respect to g (1, 1). The

coalition to be considered is S = {R1,R2} which has to break the links withM2. Retailers

gain in the move from g (12, 12) to g (1, 1) if and only if k >
(4+3d2−d3)(a−c)2

36(2−d)2(1−d)
. But this

inequality is never satisfied since k <
(4+3d2−d3)(a−c)2

36(2−d)2(1−d)
. Thus, g (12, 12) is strongly stable

against g (1, 1). Summarizing, g(12, 12) is strongly stable for k ≤ min{kM
s(1,2), k

R
s(1,2)}.

Considering the strong stability of g (12, 1) with respect to g (1, 0), the coalition to be

considered is S = {M1,R1}. Each agent in the coalition has to sever simultaneously its

link with R2 and M2, respectively. It is easy to show that M1 prefers to sever the link

with R2 if k is greater than (256−512d−464d2+208d3+73d4−47d5)(a−c)2

24(16−7d2)2(1+d)
. Let us denote the later

threshold by kM
s(12,1). This threshold is decreasing with d and reaches zero at d = 0.3892.

Similarly, R1 prefers to sever the link withM2 if k is greater than (63−32d+35d2+59d3)(a−c)2

144(16−7d2)(1+d) .

We denote the later threshold by kR
s(12,1). It is always positive, initially decreasing with

d and then increasing reaching k at d = 0.7490. We conclude that both agents in S

= {M1,R1} gain with the move to g(1, 0) if k > max{kMs(12,1), k
R
s(12,1)}. Remind that

g(12, 1) is pairwise stable in the region defined by the intersection of the k satisfying

k < min{kM(1,2), k
R
(1,2)} and those satisfying k > kR(12,12) (see Figure 3). Figure 4 displays

the relationship between the thresholds under which g(12, 1) is pairwise stable and those

that imply that the agents in the coalition S = {M1,R1} gain with the move to g(1, 0).We

therefore conclude that g(12, 1) is strongly stable in the region defined by the intersection

of k < min {kR(1,2), k
M
s(12,1)} and k > kR(12,12).

Characterization of closed cycles when no strongly stable network exists

We should consider two different cases.

1. When min{min{kR(12,12), k
M
(1,2)}, max{kMs(12,1), k

R
s(12,1)}} > k > min{kMs(1,2), k

R
s(1,2)}. In

this area there is no strongly stable network and we observe a closed cycle formed

by the networks g(12, 12), g(1, 2), g(2, 1), g(12, 1), g(12, 2), g(1, 12) and g(2, 12).

For such values of the link costs we know that the network g(12, 12) is not strongly

stable because the coalition of two manufacturers, or the coalition of two retailers,

or both coalitions, would have incentives to break two links moving to g(1, 2) (or

g(2, 1)). Once g(1, 2) (or g(2, 1)) has been reached, we know by the proofs of pairwise

and strong stability that no coalition has incentives to move to networks g(1, 0) (or

g(2, 0), g(0, 1), g(0, 2)), g(1, 1) (or g(2, 2)), or g(12, 0) (or g(0, 12)). However, the
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coalition formed by a manufacturer and a retailer would have incentives to form a

link between them moving to g(12, 2) (or g(12, 1), g(1, 12), g(2, 12)). Then, from

g(12, 2), the coalition S = {M1,R2} would like to form the link between them

moving to g(12, 12). From g(12, 2) no coalition wants to move to any other network

structure.

2. When min{kR(1,2), k
M
(1,2)} > k > max{kM

s(12,1), k
R
s(12,1)}. In this area there is no strongly

stable network and we observe a closed cycle formed by all possible networks; i.e.,

there exists an improving path connecting any two network structures. For such

values of the link costs we know that neither the network g(12, 12) nor the network

g(12, 1) (or g(12, 2), g(1, 12), and g(2, 12)) is strongly stable.

For k < kR(12,12), g(12, 12) is not strongly stable because the coalition of two manu-

facturers, or the coalition of two retailers, or both coalitions, would have incentives

to break two links moving to g(1, 2) (or g(2, 1)). Once g(1, 2) (or g(2, 1)) has been

reached, the coalition formed by a manufacturer and a retailer would have incen-

tives to form a link between them moving to g(12, 2) (or g(12, 1), g(1, 12), g(2, 12)).

From g(12, 2), the coalition S = {M1,R2} would like to form the link between them

moving to g(12, 12), but also coalition S = {M2,R1} would like to sever simultane-

ously its link with R2 andM1 moving to g(2, 0). Once g(2, 0) has been reached, the

networks g(2, 2), g(12, 0) and g(2, 1) defeat the network g(2, 0). Next, the networks

g(2, 2), g(12, 0) and g(2, 1) are defeated by one of the asymmetric networks g(12, 2),

g(12, 1), g(1, 12), or g(2, 12). And so on.

For k > kR(12,12), g(12, 1) (or g(12, 2), g(1, 12), and g(2, 12)) is not strongly stable

because the coalition S = {M1,R1} would like to sever simultaneously its link with

R2 and M2 moving to g(1, 0). Once g(1, 0) has been reached, the networks g(1, 1),

g(12, 0) and g(1, 2) defeat the network g(1, 0). Next, the networks g(1, 1), g(12, 0)

and g(1, 2) are defeated by one of the asymmetric networks g(12, 2), g(12, 1), g(1, 12),

or g(2, 12). But the networks g(1, 1) and g(12, 0) are also defeated by g(12, 12), and

g(12, 12) is defeated by any of the asymmetric networks g(12, 2), g(12, 1), g(1, 12),

or g(2, 12). And so on.

B.1.3 Efficient distribution networks

We first fully characterize the efficient distribution networks. See Figure 6.

Proposition 7 The efficient distribution network with positive link costs depends on both

d and k as follows

a) For 0 < d ≤ 0.2156 and
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a.1) 0 < k < kB(d) < (a−c)2

36 is g(12, 12)

a.2) 0 < kB(d) < k <
(a−c)2

36 is g(1, 2)

b) For 0.2156 < d ≤ 2
3 and

b.1) 0 < k < kA(d) < kC(d) < (a−c)2

36 is g(12, 12)

b.2) 0 < kA(d) < k < kC(d) < (a−c)2

36 is g(12, 1)

b.3) 0 < kA(d) < kC(d) < k <
(a−c)2

36 is g(1, 2)

c) c) For 2
3 < d ≤ 0.735 and

c.1) 0 < k < kA(d) < kE(d) < (a−c)2

36 is g(12, 12)

c.2) 0 < kA(d) < k < kE(d) < (a−c)2

36 is g(12, 1)

c.3) 0 < kA(d) < kE(d) < k <
(a−c)2

36 is g(12, 0)

d) For 0.735 < d ≤ 0.863 and

d.1) 0 < k < kE(d) < min{ (a−c)
2

36 ,
(1−d)(a−c)2

3(1+d)(2−d)2
}is g(12, 1)

d.2) 0 < kE(d) < k < min{ (a−c)
2

36 ,
(1−d)(a−c)2

3(1+d)(2−d)2
} is g(12, 0)

e) For 0.863 < d < 1 and 0 < k <
(1−d)(a−c)2

3(1+d)(2−d)2
is g(12, 0)

Proof of Proposition 7 and Proposition 4 (main text).

First note that Φ(g(12, 0))−Φ(g(1, 0)) > 0 if k < (a−c)2(12−16d+9d2−3d3)
32(2−d)2(1+d)

which is a condi-

tion on k milder than k ≡min{ (a−c)
2

36 ,
(1−d)(a−c)2

3(1+d)(2−d)2
} since the difference (12− 16d+ 9d2 −

3d3) (a−c)2

32(2−d)2(1+d)
− (a−c)2

36 is always positive. Therefore Φ(g(12, 0)) > Φ(g(1, 0)) for all

k ∈ [0, k].

Second, we show that Φ(g(12, 0))−Φ(g(1, 1)) = (11−18d+12d2−4d3)(a−c)2

18(1+d)(2−d)2
> 0 for all k since

both distribution networks have the same number of links and (11−18d+12d2−4d3) > 0

for 1 > d.

Third, the difference Φ(g(12, 0)) − Φ(g(1, 2)) = d(−2+3d)(16−14d−3d2+2d3)(a−c)2

2(1+d)(4−d)2(2−d)2(2+d)2
is indepen-

dent of k and positive as long as d > 2
3 . Therefore, we will proceed by considering two

cases:

case a) 0 < d < 2
3 where Φ(g(1, 2)) dominates Φ(g(12, 0)) and then, the possible efficient

distribution networks are either g(1, 2), or g(12, 1), or g(12, 12).
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case b) 2
3 < d < 1 where Φ(g(12, 0)) dominates Φ(g(1, 2)) and the possible efficient

distribution networks are either g(12, 0), or g(12, 1), or g(12, 12).

case a) 0 < d < 2
3 and 0 ≤ k <

(a−c)2

36 .

a.1) We compare g(12, 12) with g(12, 1). The distribution network g(12, 12) is more

efficient than g(12, 1) if (1−d)(1280−1024d−1088d2+224d3−212d4+44d5+155d6)(a−c)2

36(1+d)(2−d)2(16−7d2)2 − 2k is

positive, or equivalently when (1−d)(a−c)2

72(1+d)(2−d)2(16−7d2)2
(1280−1024d−1088d2+224d3−

212d4 + 44d5 + 155d6) > k. We denote the left part of the previous expression by

kA(d). It follows that kA(d) is positive for 0 < d < 0.735 and negative for 0.735 < d <

1. We also have that 0 < kA(d) < (a−c)2

36 for all 0 < d < 2
3 . Therefore, the following

conclusion follows: (i) Φ(g(12, 12)) > Φ(g(12, 1)) if and only if 0 ≤ k < kA(d) and

(ii) Φ(g(12, 1)) > Φ(g(12, 12)) if and only if kA(d) < k <
(a−c)2

36 . Thus, for the

particular case, k = 0 and 0 < d < 2
3 , we have Φ(g(12, 12)) > Φ(g(12, 1)).

a.2) We compare g(12, 12) with g(1, 2). Proceeding in the same way as before we have

that: (i) Φ(g(12, 12)) > Φ(g(1, 2)) if and only if 0 ≤ k < kB(d) and (ii) Φ(g(1, 2)) >

Φ(g(12, 12)) if and only if kB(d) < k <
(a−c)2

36 , where kB(d) = (20 − 22d − 4d2 +

3d3) (2−d+2d2)(a−c)2

9(1+d)(4−d)2(2−d)2(2+d)2
. It follows that kB(d) is positive for 0 < d < 0.861 and

negative for 0.861 < d < 1 and that 0 < kB(d) < (a−c)2

36 for all 0 < d < 2
3 . Thus, for

the particular case, k = 0 and 0 < d < 2
3 , it follows that Φ(g(12, 12)) > Φ(g(1, 2)).

Together with the above conclusion for k = 0 implies that the efficient network is

g(12, 12) for 0 < d < 2
3 .

a.3) We compare g(12, 1) with g(1, 2). We have that: (i) Φ(g(12, 1)) > Φ(g(1, 2)) if and

only if 0 < k < kC(d) and (ii) Φ(g(1, 2)) > Φ(g(12, 1)) if and only if kC(d) <

k <
(a−c)2

36 , where kC(d) is equal to (1−d)(a−c)2

72(1+d)(4−d)2(2+d)2(16−7d2)2
(20480 − 18432d +

19200d2 + 20224d3 − 42720d4 − 19872d5 + 7444d6 + 1968d7 − 111d8 + 155d9). It

follows that kC(d) is positive for 0 < d < 0.893 and negative for 0.893 < d < 1 and

that 0 < kC(d) < (a−c)2

36 for all 0 < d < 2
3 .

The final step before proving the proposition is to compare the three thresholds

kA(d), kB(d), and kC(d) for 0 < d < 2
3 . It is easy to check that kA(d) > kB(d) >

kC(d) for 0 < d < 0.2156 and kA(d) < kB(d) < kC(d) for 0.2156 < d < 2
3 . It also happens

that for d = 0 and d = 0.2156 all of them are equal. Therefore, the efficient distribution

network depends on the size of k and the value of d as follows:

case a.i) 0 < d < 0.2156 and 0 < kC(d) < kB(d) < kA(d) < (a−c)2

36 .

(1) If 0 < k < kC(d) < kB(d) < kA(d) then Φ(g(12, 1)) > Φ(g(1, 2)), Φ(g(12, 12)) >

35



Φ(g(1, 2)), and Φ(g(12, 12)) > Φ(g(12, 1)). Therefore, g(12, 12) is the efficient distri-

bution network.

(2) If 0 < kC(d) < k < kB(d) < kA(d) then Φ(g(12, 1)) < Φ(g(1, 2)), Φ(g(12, 12)) >

Φ(g(1, 2)), and Φ(g(12, 12)) > Φ(g(12, 1)). As before, g(12, 12) is the efficient distri-

bution network.

(3) If 0 < kC(d) < kB(d) < k < kA(d) then Φ(g(12, 1)) < Φ(g(1, 2)), Φ(g(12, 12)) <

Φ(g(1, 2)), and Φ(g(12, 12)) > Φ(g(12, 1)). Therefore, g(1, 2) is the efficient distrib-

ution network.

(4) If 0 < kC(d) < kB(d) < kA(d) < k <
(a−c)2

36 then Φ(g(12, 1)) < Φ(g(1, 2)),

Φ(g(12, 12)) < Φ(g(1, 2)), and Φ(g(12, 12)) > Φ(g(12, 1)). Hence, g(1, 2) is the effi-

cient distribution network.

case a.ii) 0.2156 < d < 2
3 and 0 < kA(d) < kB(d) < kC(d) < (a−c)2

36 . Following the same

reasoning as before we have that either, g(12, 12) is the efficient distribution network

for 0 < k < kA(d) < kB(d) < kC(d), or g(12, 1) for 0 < kA(d) < k < kC(d), or

g(1, 2) for 0 < kC(d) < k <
(a−c)2

36 .

Figure 8 summarizes the above result. The area A corresponds to the area where

g(12, 12) is the efficient distribution network, the area B is the one where g(1, 2) is

efficient, and the uncolored area corresponds to the area where g(12, 1) is the efficient

distribution network.

case b) 2
3 < d < 1 and 0 < k < k.

b.1) We compare g(12, 12) with g(12, 0)). We conclude that: (i) Φ(g(12, 12)) > Φ(g(12, 0))

if and only if 0 < k < kD(d) and (ii) Φ(g(12, 0)) > Φ(g(12, 12)) if and only if

kD(d) < k < k, where kD(d) = (5−6d)(a−c)2

72(1+d)(2−d)2
. It follows that kD(d) is positive for

0 < d < 5
6 and negative for 5

6 < d < 1, and that 0 < kD(d) < k for all 0 < d < 1.

Therefore, for 2
3 < d < 5

6 (i) and (ii) are possible, while for 5
6 < d < 1 only (ii) is

possible.

b.2) We compare g(12, 1) with g(12, 0)). We conclude that: (i) Φ(g(12, 1)) > Φ(g(12, 0))

if and only if 0 < k < kE(d) and (ii) Φ(g(12, 0)) > Φ(g(12, 1)) if and only if kE(d) <

k < k, where kE(d) = (1280−2048d−128d2+1504d3−578d4−266d5+155d6)(a−c)2

72(2−d)2(16−7d2)2
. It follows

that kE(d) is positive for 0 < d < 0.863 and negative for 0.863 < d < 1 and that

0 < kE(d) < k for all 0 < d < 1. Then, for 2
3 < d < 0.863 (i) and (ii) are possible,

while for 0.863 < d < 1 only (ii) is possible.

b.3) See a.1) for the comparison between g(12, 12) and g(12, 1).

36



Figure 8: Efficient distribution networks when 0 < d < 2
3 .

Putting together b.1), b.2) and b.3) it follows that kA(d) < kD(d) < kE(d) < k.

Four different cases can be distinguished:

(i) 0 < k < kA(d) < kD(d) < kE(d) < k, where Φ(g(12, 12)) > Φ(g(12, 1)), Φ(g(12, 12)) >

Φ(g(12, 0)) and Φ(g(12, 1)) > Φ(g(12, 0)), with the conclusion that g(12, 12) is the

efficient distribution network.

(ii) kA(d) < k < kD(d) < kE(d) < k, where Φ(g(12, 12)) < Φ(g(12, 1)), Φ(g(12, 12)) >

Φ(g(12, 0)) and Φ(g(12, 1)) > Φ(g(12, 0)), with the conclusion that g(12, 1) is the

efficient distribution network.

(iii) kA(d) < kD(d) < k < kE(d) < k, where Φ(g(12, 12)) < Φ(g(12, 1)), Φ(g(12, 12)) <

Φ(g(12, 0)) and Φ(g(12, 1)) > Φ(g(12, 0)), with the conclusion that g(12, 1) is the

efficient distribution network.

(iv) kA(d) < kD(d) < kE(d) < k < k, where Φ(g(12, 12)) < Φ(g(12, 1)), Φ(g(12, 12)) <

Φ(g(12, 0)) and Φ(g(12, 1)) < Φ(g(12, 0)), with the conclusion that g(12, 0) is the

efficient distribution network.
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Figure 9 displays the efficient distribution networks for case b) 2
3 < d < 1. The area

B corresponds to the area where g(12, 12) is efficient, the uncolored area corresponds to

the area where g(12, 1) is efficient, and finally the area A corresponds to the area where

g(12, 0) is efficient.

Figure 9: Efficient distribution networks when 2
3 < d < 1.

As a corollary, for the particular case k = 0 and 2
3 < d < 1, we have that g(12, 12) is

the efficient distribution network for 2
3 < d < 0.735 since 0 < kA(d) < kD(d) < kE(d) < k

and (i) above applies; g(12, 1) is the efficient distribution network for 0.735 < d < 0.863

since kA(d) < 0 < kD(d) < kE(d) < k and (iii) above applies; finally g(12, 0) is the effi-

cient distribution network for 0.863 < d < 1 since kE(d) < 0 < k and (iv) above applies.

B.1.4 Consumer surplus analysis

We give the complete characterization of Proposition 5 in the main text and its proof.

Proposition 8 The consumer surplus ranking is a function of the size of d as follows.

a) C(g(12, 12)) > C(g(12, 1)) > C(g(1, 2)) > C(g(12, 0)) ≥ C(g(1, 1)) > C(g(1, 0))

for 0 < d ≤ 0.1413,

b) C(g(12, 12)) > C(g(12, 1)) > C(g(1, 2)) > C(g(1, 1)) ≥ C(g(12, 0)) > C(g(1, 0))

for 0.1413 < d ≤ 0.2826,
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c) C(g(12, 12)) > C(g(12, 1)) > C(g(1, 1)) > C(g(1, 2)) ≥ C(g(12, 0)) > C(g(1, 0))

for 0.2826 < d ≤ 2
3 ,

d) C(g(12, 12)) > C(g(12, 1)) > C(g(1, 1)) > C(g(12, 0)) ≥ C(g(1, 2)) > C(g(1, 0))

for 2
3 < d ≤ 0.8597,

e) C(g(12, 12)) > C(g(12, 1)) > C(g(12, 0)) > C(g(1, 1)) > C(g(1, 2)) > C(g(1, 0))

for 0.8597 < d < 1.

Proof: All expressions of the consumer surplus corresponding to the different distribution

networks are multiplied by the factor (a− c)2. Then, the comparisons are independent of

this factor and we will ignore it throughout this proof.

(i) C(g(1, 1)) > C(g(1, 0)) if and only if 7
288b > 0 which always holds.

(ii) C(g(1, 2)) > C(g(1, 0)) if and only if 64 − 32d + 12d2 + 4d3 − d4 > 0, which always

holds since 1 > d.

(iii) C(g(12, 0)) > C(g(1, 0)) if and only if 4−4d+3d2+2d3−d4 > 0, which always holds

since 1 > d.

(iv) C(g(12, 1)) > C(g(1, 1)) if and only if 192−64d−80d2+360d3+191d4−104d5−57d6 >

0, which always holds because 1 > d.

(v) C(g(12, 1)) > C(g(12, 0)) if and only if 1792−768d−1472d2+928d3+418d4−302d5−

45d5 + 25d6 > 0, which always holds since 1 > d.

(vi) C(g(12, 1)) > C(g(1, 2)) if and only if 28672+22528d+23808d2+51200d3+15008d4−

16320d5−5692d6−364d7−747d8−20d9+25d10 > 0, which always holds given that

1 > d.

(vii) C(g(12, 12)) > C(g(12, 1)) if and only if 1792 − 1024d − 896d2 + 544d3 − 660d4 −

116d5 + 347d6 + 20d7 − 25d8 > 0, which always holds because 1 > d.

Using (i) to (vii) we have that C(g(1, 0)) is last in the ranking, and C(g(12, 12)) and

C(g(12, 1)) are first and second in the ranking, respectively. It remains to specify the rank-

ing among C(g(12, 0)), C(g(1, 1)) and C(g(1, 2)). It follows that C(g(1, 2)) > C(g(1, 1))

if and only if 1 − 32d + 12d2 + 4d3 − d4 > 0, that is for 0 < d < 0.2826. Similarly,

C(g(1, 2)) > C(g(12, 0)) if and only if 0 < d < 2
3 . Finally, C(g(12, 0)) > C(g(1, 1))

if and only if 1 − 8d + 6d2 + 4d3 − 2d4 > 0, that is for both 0 < d < 0.1413 and

0.8587 < d < 1. Combining the three conditions above yields the proposition. For in-

stance, for 0 < d ≤ 0.1413, it follows that C(g(1, 2)) > C(g(1, 1)), C(g(1, 2)) > C(g(12, 0))

39



and C(g(12, 0)) > C(g(1, 1)) yielding a) in the proposition.

B.1.5 Social welfare analysis

We give the complete characterization of Proposition 6 in the main text and its proof.

Proposition 9 The distribution network that maximizes social welfare is

a) g(12, 12) when either

a.1) 0 < d ≤ 0.032569 and 0 ≤ k < k, or

a.2) 0.032569 < d ≤ 0.184824 and 0 ≤ k < ksw(12,12)−(1,2), or

a.3) 0.184824 < d ≤ 0.9535 and 0 ≤ k < ksw(12,12)−(12,1).

b) g(12, 1) when either

b.1) 0.184824 < d ≤ 2
3 and ksw(12,12)−(12,1) ≤ k < ksw(12,1)−(1,2), or

b.2) 2
3 < d ≤ 0.87953 and ksw(12,12)−(12,1) ≤ k < ksw(12,1)−(12,0), or

b.3) 0.87953 < d < 0.9535 and ksw(12,12)−(12,1) ≤ k < k, or

b.4) 0.9535 < d < 1 and 0 ≤ k < k.

c) g(1, 2) when either

c.1) 0.032569 < d ≤ 0.184824 and ksw(12,12)−(1,2) ≤ k < k, or

c.2) 0.184824 < d ≤ 2
3 and ksw(12,1)−(1,2) ≤ k < k.

d) g(12, 0) when 2
3 < d ≤ 0.87953 and ksw(12,1)−(12,0) ≤ k < k.

Proof: We first show that the distribution networks g(1, 0) and g(1, 1) are always dom-

inated in social welfare terms by some other distribution network. First note that the

difference W (g(1, 1)) − W (g(1, 0)) = 17(a−c)2

288 − 2k is positive for all k ∈ [0, k) since
17(a−c)2

576 > k, and therefore g(1, 0) does not attain the highest social welfare. Second,

W (g(1, 2)) −W (g(1, 1)) = (184−160d−12d2+20d3−5d4)(a−c)2

18(4−d)2(2+d)2
> 0 since 1 > d > 0, and there-

fore the distribution network g(1, 1) does not maximize social welfare.

Next, the difference W (g(1, 2)) −W (g(12, 0)) = d(2−3d)(48+10d−39d2−2d3−4d4)(a−c)2

4(4−d)2(2−d)2(2+d)2(1+d)2
is

also independent of k and positive as long as 0 < d < 2
3 . Then, W (g(1, 2)) > W (g(12, 0))

for 0 < d < 2
3 ; and the opposite otherwise. Thus, we will consider two cases: (a) for

0 < d < 2
3 where only g(1, 2), g(12, 1) and g(12, 12) have to be considered, and (b)

for 2
3 < d < 1 where the distribution networks to be analyzed are g(12, 0), g(12, 1) and

g(12, 12).
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(a) 0 < d < 2
3 .

We first define the thresholds on k that indicate which one of the three distribution

networks g(1, 2), g(12, 1) and g(12, 12) is the one that achieves the greatest social

welfare.

- The difference W (g(12, 1)) − W (g(1, 2)) is positive if k < (69632 + 26624d +

25344d2 + 130048d3 − 29984d4 − 141504d5 − 30548d6 + 18460d7 + 2967d8 + 68d9 +

335d10) (a−c)2

144(4−d)2(2+d)2(1+d)2(16−7d2)2 . Denote by k
sw
(12,1)−(1,2) the later expression, which

is a function of d, is always positive and intersects k in the interval 0 < d < 2
3 at

d = 0.0296709, being ksw(12,1)−(1,2) > k for 0 < d < 0.0296709 and the opposite for

0.0296709 < d < 2
3 .

- The difference W (g(12, 12))−W (g(1, 2)) is positive if k < (34 + 3d− 30d2 − d3 +

3d4) (2−d+d2)(a−c)2

9(4−d)2(2−d)2(2+d)2(1+d)2 . We denote by ksw(12,12)−(1,2) the later expression, which

is always positive and intersects k at d = 0.0325694 in the interval 0 < d < 2
3 , being

ksw(12,12)−(1,2) > k for 0 < d < 0.0325694 and the opposite for 0.0325694 < d < 2
3 .

- The difference W (g(12, 12))−W (g(12, 1)) is positive if k < (a−c)2

144(2−d)2(1+d)2(16−7d2)2

(4352 − 3072d − 5632d2 + 3040d3 + 1096d4 − 476d5 + 1081d6 − 68d7 − 335d8). We

denote by ksw(12,12)−(12,1) the later expression, which is positive for 0 < d < 0.953503

and intersects k at d = 0.0359544, being ksw(12,12)−(12,1) > k for 0 < d < 0.0359544

and the opposite for 0.0359544 < d < 2
3 . Further note that at d = 0 and at

d = 184824 the three thresholds coincide; for 0 < d < 0.184824 they are ranked as

ksw(12,1)−(1,2) < ksw(12,12)−(1,2) < ksw(12,12)−(12,1), while for 0.184824 < d < 2
3 the ranking

is ksw(12,12)−(12,1) < ksw(12,12)−(1,2) < ksw(12,1)−(1,2). Then, the following subcases can be

distinguished:

(a.i) For 0 < d < 0.0296709, it follows that k < ksw(12,1)−(1,2) < ksw(12,12)−(1,2) < ksw(12,12)−(12,1).

Then, for all k belonging to [0, k] the three differences defined above are positive and

then g(12, 12) maximizes the social welfare.

(a.ii) For 0.0296709 < d < 0.032569, it follows that 0 < ksw(12,1)−(1,2) < k < ksw(12,12)−(1,2) <

ksw(12,12)−(12,1). Then for all k belonging to [0, k] we have that both W (g(12, 12)) −

W (g(1, 2)) andW (g(12, 12))−W (g(12, 1)) are positive and thenW (g(12, 12)) is the

greatest. Items (a.i) and (a.ii) together prove part a.1) of the proposition.

(a.iii) For 0.032569 < d < 0.035954, it follows that 0 < ksw(12,1)−(1,2) < ksw(12,12)−(1,2) < k <

ksw(12,12)−(12,1). Then, for 0 ≤ k < ksw(12,1)−(1,2) < ksw(12,12)−(1,2) < k < ksw(12,12)−(12,1), or

0 < ksw(12,1)−(1,2) < k < ksw(12,12)−(1,2) < k < ksw(12,12)−(12,1), the following inequalities

W (g(12, 12)) >W (g(1, 2)) and W (g(12, 12)) > W (g(12, 1)) are satisfied. Then part

a.2) in the proposition is proved. But for 0 < ksw(12,1)−(1,2) < ksw(12,12)−(1,2) < k <
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k < ksw(12,12)−(12,1), it follows that W (g(12, 12)) < W (g(1, 2)) and W (g(12, 1)) <

W (g(1, 2)). Then W (g(1, 2)) gives the highest social welfare.

(a.iv) For 0.035954 < d < 0.184824, it follows that 0 < ksw(12,1)−(1,2) < ksw(12,12)−(1,2) <

ksw(12,12)−(12,1) < k. Then, for 0 ≤ k < ksw(12,1)−(1,2) < ksw(12,12)−(1,2) < ksw(12,12)−(12,1) < k,

or 0 < ksw(12,1)−(1,2) < k < ksw(12,12)−(1,2) < ksw(12,12)−(12,1) < k the greatest social

welfare is achieved by g(12, 12); while for 0 < ksw(12,1)−(1,2) < ksw(12,12)−(1,2) < k <

ksw(12,12)−(12,1) < k or 0 < ksw(12,1)−(1,2) < ksw(12,12)−(1,2) < ksw(12,12)−(12,1) < k < k, g(1, 2)

gives the highest social welfare. Items (a.iii) and (a.iv) prove part c.1) of the

proposition.

(a.v) For 0.184824 < d < 2
3 , we have 0 < ksw(12,12)−(12,1) < ksw(12,12)−(1,2) < ksw(12,1)−(1,2) < k.

Then, for 0 ≤ k < ksw(12,12)−(12,1) < ksw(12,12)−(1,2) < ksw(12,1)−(1,2) < k the greatest social

welfare is attained with g(12, 12). For either 0 < ksw(12,12)−(12,1) < k < ksw(12,12)−(1,2) <

ksw(12,1)−(1,2) < k or 0 < ksw(12,12)−(12,1) < ksw(12,12)−(1,2) < k < ksw(12,1)−(1,2) < k, g(12, 1)

gives the highest social welfare. Finally, for 0 < ksw(12,12)−(12,1) < ksw(12,12)−(1,2) <

ksw(12,1)−(1,2) < k < k the greatest social welfare is W (g(1, 2)). This proves parts b.1)

and c.2) of the proposition.

(b) 2
3 < d < 1.

We now define the thresholds on k that indicate which one of g(12, 0), g(12, 1) and

g(12, 12) is the one that achieves the greatest social welfare.

- The differenceW (g(12, 1))−W (g(12, 0)) is positive if k < (4352−2304d−5824d2+

3680d3+2270d4−1990d5−267d6+335d7) (a−c)2

144(2−d)2(1+d)(16−7d2)2
. Denote by ksw(12,1)−(12,0)

the later expression, which is a function of d, is always positive and intersects k in

the interval 2
3 < d < 1 at d

b
= 0.87953. Then, for 2

3 < d < 0.87953 it follows that

ksw(12,1)−(12,0) < k, the opposite follows for d > 0.87953.

- The difference W (g(12, 12))−W (g(12, 0)) is positive if k < (17−2d+12d2)(a−c)2

144(2−d)2(1+d)2
. We

denote by ksw(12,12)−(12,0) the later expression, which is always positive and intersects

k at d = 0.956154 in the interval 2
3 < d < 1. Then, for 2

3 < d < 0.956154 it follows

that ksw(12,12)−(12,0) < k, the opposite follows for d > 0.956154.

- The threshold for the difference W (g(12, 12))−W (g(12, 1)) is the same as in case

(a), ksw(12,12)−(12,1). The following ranking for the thresholds applies in the interval
2
3 < d < 1 : ksw(12,12)−(12,1) < ksw(12,12)−(12,0) < ksw(12,1)−(12,0). The following subcases are

analyzed:

(b.i) For 2
3 < d < 0.87953, we have 0 < ksw(12,12)−(12,1) < ksw(12,12)−(12,0) < ksw(12,1)−(12,0) < k.

Then, for 0 ≤ k < ksw(12,12)−(12,1) < ksw(12,12)−(12,0) < ksw(12,1)−(12,0) < k the great-

est social welfare is obtained with g(12, 12). For either 0 < ksw(12,12)−(12,1) < k <
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ksw(12,12)−(12,0) < ksw(12,1)−(12,0) < k or 0 < ksw(12,12)−(12,1) < ksw(12,12)−(12,0) < k <

ksw(12,1)−(12,0) < k, g(12, 1) gives the highest social welfare, and part b.2) of the propo-

sition is proved. Finally, for 0 < ksw(12,12)−(12,1) < ksw(12,12)−(12,0) < ksw(12,1)−(12,0) < k <

k the greatest social welfare is W (g(12, 0)), and part d) of the proposition is proved.

(b.ii) For 0.87953 < d < 0.9535, it follows that 0 < ksw(12,12)−(12,1) < ksw(12,12)−(12,0) < k <

ksw(12,1)−(12,0). Then, for 0 ≤ k < ksw(12,12)−(12,1) < ksw(12,12)−(12,0) < k < ksw(12,1)−(12,0)

the greatest social welfare is obtained with g(12, 12). Considering items (a.v), (b.i)

and (b.ii), part a.3) of the proposition is proved. For either 0 < ksw(12,12)−(12,1) <

k < ksw(12,12)−(12,0) < k < ksw(12,1)−(12,0) or 0 < ksw(12,12)−(12,1) < ksw(12,12)−(12,0) < k < k <

ksw(12,1)−(12,0), g(12, 1) gives the highest social welfare. This proves part b.3) of the

proposition.

(b.iii) For 0.9535 < d < 0.956154, it follows that ksw(12,12)−(12,1) < 0 < ksw(12,12)−(12,0) <

k < ksw(12,1)−(12,0). Then, for either ksw(12,12)−(12,1) < 0 ≤ k < ksw(12,12)−(12,0) < k <

ksw(12,1)−(12,0) or k
sw
(12,12)−(12,1) < 0 < ksw(12,12)−(12,0) < k < k < ksw(12,1)−(12,0) the greatest

social welfare is obtained with g(12, 1).

(b.iv) For 0.956154 < d < 1, it follows that ksw(12,12)−(12,1) < 0 < k < ksw(12,12)−(12,0) <

ksw(12,1)−(12,0). Then, for all 0 ≤ k < k the greatest social welfare is obtained with

g(12, 1).
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