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1) Introduction

Bertrand's [1883] critique of Cournot [1838] is probably one of the most famous story

in undergraduate Microeconomic textbooks. According to Bertrand, two firms are enough for

competitive outcomes to emerge, provided these firms set prices rather than quantities. The

paradox is so unplausible from an empirical point of view that it essentially raise questions,

first as to why exactly it occurs and second, about how firms manage to avoid it. Both

questions have generated a huge amount of research in recent years.

On the theoretical ground the result of Bertrand rests on very fragile assumptions,

namely constant returns to scale, product homogeneity and a static setting. Building on this

fragility, economic scholars who found their way out of the paradox very early by relaxing

one or several of these assumptions. In particular, Edgeworth [25] shows that decreasing

returns to scale ensure positive profits under price competition. Hotelling [29] puts forward

product differentiation in order to escape the paradox. More recently, collusive outcomes have

been shown to emerge from repetition of the pricing games. All in all, models of imperfect

competition avoid to fall into the Bertrand paradox by enlarging the pricing game in many

directions. As such, they study the different means through which firms relax price

competition.

As is widely understood nowadays, switching from a Bertrand model to a Cournot one

involves more than a simple change in the strategic variable. Building on the observation that

in most cases firms set prices and quantities, many papers tried to reconcile the two

approaches. Kreps & Scheinkman [83] (KS hereafter) offers the most spectacular result in this

respect. In their model, Cournot outcomes obtain as the unique subgame perfect equilibrium

outcome of a stage game involving capacity commitment and price competition. In other

words, the Cournot model can be viewed as the reduced form of an enlarged game in which

firms ultimately do set prices under an extreme form of decreasing returns to scale. The KS

result is at least as famous as it is fragile, in particular to the specification of the rationing rule

(see Davidson & Deneckere [86]). Still, it points in the right direction: introducing decreasing

returns to scale drives price competition towards cournotian outcomes in the sense that

equilibrium market outcomes are mainly dependent on firms' output possibilities . Even

though it is clear today that reconciling Bertrand and Cournot under general conditions is an

hopeless task, their qualitative implications have been made somewhat compatible.

Given these results, it is quite surprising that the study of capacity-constrained pricing

games remained confined to markets for homogeneous goods. After all, in almost all

industries products are differentiated. The fact that product differentiation by itself relaxes
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price competition (and thereby avoids the Bertrand paradox) may explain why the virtues of

capacity constraints have not been investigated in markets for differentiated products. Still,

very little is known about the nature of price competition under decreasing returns to scale in

such markets. This is clearly damaging since it means in fact that the relevance of the

literature on price competition in differentiated markets is formally confined to industries

exhibiting constant returns to scale.

Beyond the fact that product differentiation is not sufficient to restore the existence of

pure strategy equilibria in the presence of capacity constraints (see Benassy [89] or Friedman

[88]), very little is known on the nature of mixed strategy equilibria under product

differentiation. Secondly, given that quantitative constraints and product differentiation are,

separately, powerful in relaxing price competition, it is important to know to which extent

they are substitutes or complement in this respect. Our motivation in this paper reflects these

considerations. We pursue indeed two aims: first, we wish to provide a characterisation of

price equilibrium in differentiated markets under capacity constraints and, second, using this

result, we shall study the extent to which Cournot and Bertrand can be reconciled under

product differentiation.

Several recent papers have indeed tried to reconcile Cournot and Bertrand by

considering pricing games with capacity commitment while neglecting the rationing issues

which where the heart of Edgeworth's argument. For instance, Dastidar [95], [97] shows that

forbidding rationing is sufficient to restore pure strategy equilibria when products are

homogeneous. Maggi [96] adds product differentiation to the picture and not only restores

pure strategy equilibria but also ensures uniqueness. When rationing is forbidden and

products are differentiated, equilibrium outcomes of a pricing game involving capacity

constraints have a strong cournotian flavour.1 It seems therefore important to know to which

extent Maggi's convenient shortcut can be provided a more solid foundation than by simply

assuming rationing away. To this end, it is natural to start with a "true" capacity constrained

pricing game i.e., one that allows rationing.

We make two specific contributions. First, we clarify the nature of equilibria in

capacity-constrained pricing games (more generally pricing games with increasing marginal

costs) with product differentiation. We show that pure strategy equilibria are preserved only

to the extent that quantitative constraints are loose enough. When a pure strategy equilibrium

does not exist, firms use mixed strategies in equilibrium. Because of product differentiation,

the equilibrium in mixed strategies has a finite support, thus involves no densities.

Furthermore, there is a finite number of equilibria (in mixed strategies) and no uniqueness.

1 Firms are "forced" to name prices in the range that corresponds to the sales of both capacities-quantities.
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Thus these equilibria qualitatively differ from the ones prevailing for homogenous products

where, according to the existing literature, densities and uniqueness are the rule.

Second we relate the Cournot and Bertrand results through capacity commitment in

the standard Hotelling model of differentiated products. To this end, we replicate the KS

analysis within the standard Hotelling model. In a subgame perfect equilibrium (hereafter

SPE), capacity commitment softens price competition, as in KS, but more drastically: In most

of the SPE, the capacity choices exactly cover the market and there is no room for price

competition at all. Other SPE involve excess capacities and a limited price competition in the

second period. Then, we show that SPE involving exact market coverage are formally

equivalent to Cournot equilibria. This extends to horizontally differentiated industries the KS

result according to which capacity precommitment followed by price competition leads to

Cournot outcomes. It should be also mentioned that all the previously stated results are

independent of the costs for capacity installation; if the capacity cost is large enough, then

only SPE exhibiting Cournot outcomes exist.

The paper is organised as follows. We start in the next section by characterising the

nature of a price equilibrium in a duopoly market where products are differentiated and firms

face increasing marginal costs. Then we turn in section 3 to the analysis of the Hotelling

model under capacity pre-commitment. We apply there the results of section 2 to the

characterisation of price equilibria in the Hotelling model. In section 4 we characterise firms'

capacity choices before showing how our SPE can be related to Cournot equilibrium

outcomes. Section 5 concludes.

2) Equilibrium in Capacity-constrained
Pricing games with Differentiated products

In order to overcome the Bertrand paradox, Edgeworth [25] shows that capacity

constraints preclude the existence of pure strategy equilibria in pricing models. The argument

rests on a very simple idea: a firm may benefit from spillovers when its opponent is either not

willing or not able to serve full demand at prevailing prices. Indeed, the consumers who are

rationed by the "low price" firm may report their purchase to the "high price" firm. When

products are homogeneous, these spillovers are spectacular because a high price firm's sales

jump from zero to some strictly positive level. However, only the discontinuity of the

spillover is specific to the case of homogeneous goods. When raising its price against that of

an opponent which sells a differentiated product, a firm will, smoothly, increase the

opponent's demand up to a point where capacity becomes binding. Beyond that point,

spillovers accrue, smoothly, to the "high price" firm, as in the homogeneous products case.
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Therefore, the reason why an equilibrium fails to exist in the analysis of Edgeworth is still

present under product differentiation.

Note that Edgeworth himself does not restrict the possibility of "cycles" to the case of

homogeneous goods. In his own words, "It will be readily understood that the extent of

indeterminatness diminishes with the diminution of the degree of correlation between the

articles" (Edgeworth [25], p.121). On the other hand, Hotelling [29] thought that product

differentiation would solve the Edgeworth problem of cycles completely, as he wrote "The

assumption, implicit in their work [Cournot, Amoroso and Edgeworth] that all buyers deal

with the cheapest seller leads to a type of instability which disappears when the quantity sold

is considered as a continuous function of the differences in prices" (Hotelling [29] p 471,

bracket added). Although Hotelling was right in arguing that continuous demand would solve

the Bertrand paradox, he was wrong on the Edgeworth's front. Shapley & Shubik [69] and

McLeod [85] provide a formal treatment of the role of "correlation" in Edgeworth's intuition:

product differentiation is not sufficient to restore the existence of a pure strategy equilibrium

in a pricing game with increasing marginal costs because profits functions typically remain

non quasi-concave. However, it is of some help in the sense that product differentiation tends

to enlarge the set of capacity levels for which a pure strategy equilibrium is preserved.2

If the non-existence of pure strategy equilibria in the presence of capacity constraints,

even under product differentiation, is a (fairly) well-documented issue, very little is known

about the nature of a mixed strategy equilibrium in such settings. Noticeable exceptions are

Krishna (1989) and Furth and Kovenock (1992) who provide some partial characterisations.

Accordingly, our first task will consist in clarifying the nature of price equilibria when both

decreasing returns to scale and product differentiation are present.

To this end, we consider the market for a differentiated product. The demand

addressed to firm 1 is D(p1,p2) while that of firm 2 is the symmetric D(p2,p1). The function

D(p1,p2) is assumed continuously differentiable of order 2 and satisfies the following

assumptions:

A1)  D(0,.) > 0

A2) − ≥ >∂
∂

∂
∂

D p p
p

D p p
p

( , ) ( , )1 2

1

1 2

2
0

A1) assumes that a firm's demand is positive when its price is zero whereas A2) means

that own price effect on a firm's demand dominate crossed ones. Consider a complete

information stage game Γ. At stage one, firms invests into technologies yielding increasing

2This point is studied by Friedman [88], Benassy [89], Canoy [96] and Wauthy [96]. These papers share the idea
that the more differentiated the products, the more likely a pure strategy equilibrium will exist.
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and convex cost functions C1 and C2. At stage two, they set prices. Lastly in stage three, firms

perform rationing whenever they wish to and some of the rationed consumers turn to the other

firm.

Before considering this last stage it is useful to describe the case where rationing is

forbidden i.e. ,  Bertrand competition.3 The profi t  function is  then

Π i
B

i j i i j i i jp p p D p p C D p p( , ) ( , ) ( , )≡ − ( ) . In order to guarantee uniqueness of the Bertrand

equilibrium irrespective of the cost functions chosen at stage one we assume the following

contraction property:

A3)  0 2
2 2

2≤ + ≤ − −∂
∂ ∂

∂
∂

∂
∂

∂
∂

D
p p i

D
p

D
p

D
p i

i j j i i
p p

Let then ϕ i i
q

i ip qp C q( ) argmax ( )≡ −{ }
≥0

 be the competitive supply of firm i (it is equal

to C pi i
−1( )  if Ci is strictly convex) and Π i

C
i i i i i i ip p p C p( ) ( ) ( )≡ − ( )ϕ ϕ  be the competitive

profit. It is increasing convex since ˙ ( ) ( )Π i
C

i i ip p= ϕ  and ϕ i ip( ) is itself weakly increasing.

Let us then allow firms to ration consumers whenever it is profitable for them to do so. If
(pi,pj) is such that D p p pj i j j( , ) ( )> ϕ then in stage three, firm j rations some consumers and

firm i obtains a fraction λ(pj,pi) of the residual demand, this is the spillover effect. The

importance of the spillover depends on the degree of differentiation of the products, the

preferences of the consumers and the rationing rule used by firms; we assume that it is

continuously differentiable and satisfies:

A4) Positive spillovers decreasing with respect to own price: λ(pi,pj) > 0, ∂λ
∂pi

≤ 0 and

2 0
2

2
∂λ
∂

∂ λ
∂p i pi i

p+ ≤

Given these four assumptions we analyse a price subgame Γ(C1,C2) and look for

subgame perfect equilibria (SPE). Note that when rationing is forbidden (no third stage in Γ)

the Bertrand payoff applies over the whole range of prices. If rationing is permitted, a

Bertrand-Edgeworth analysis is called for because firms' sales may differ from demands. It is

well-known that in such circumstances a pure strategy equilibrium often fails to exist (see for

instance Benassy [89]). The following theorem provides a general result about the nature of

the equilibrium mixed strategies for such games.

3 Maggi (1996) provides a recent case where such a view of price competition under capacity constraints is
endorsed.
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THEOREM 1

Consider any price subgame Γ(C1,C2) that satisfies A1-A4. Under Bertrand

competition, there exists a unique pure strategy SPE. Under Bertrand-Edgeworth

competition, a SPE always exists, the support of a mixed strategy price SPE is finite and

prices are larger than those of the Bertrand equilibrium.

The detailed proof has been relegated to the appendix, however the intuitive argument

is relatively easy to summarise. When rationing is not allowed, A1 and A2 ensure that a firm's

payoff is concave. Assumption A3 enables to derive the Bertrand equilibrium as the unique

fixed point of the best reply operator. To show that this Bertrand equilibrium is also a lower

bound to prices played in equilibrium of the Bertrand-Edgeworth competition we use the fact

that Π i
B and Π i

C  are both increasing over the domain where firm i wishes to ration. Then, in

order to prove that firms do not use densities in equilibrium, one shows that, if firm i uses a

density around some price pi, then firm j must using a density around the price pj that makes it
willing to ration i.e., such that D p p pj i j j( , ) ( )= ϕ . Symmetry then implies that firm i uses a

density around p̂i  such that D p p pi j i i( ˆ , ) ( ˆ )= ϕ . This process leads to lower and lower prices

precisely because goods are differentiated. We reach a contradiction because firms do not put

mass below the Bertrand prices in equilibrium. If firms do not use densities then support of

equilibrium distributions must be finite. The equilibria characterised in Theorem 1 are quite

different from those prevailing in market for homogeneous goods where firms use densities

under standard assumptions on demand. Note also that the argument developed above does

not help to prove uniqueness and indeed multiplicity of equilibria often obtains. This will in

particular be the case for the model of capacity pre-commitment in the Hotelling market we

consider hereafter.

3) Price equilibrium in the Hotelling model
with capacity commitment.

In what follows, we adapt the stage-game proposed in Kreps & Scheinkman [83] to the

Hotelling model of differentiation: Firms choose capacity levels and then compete in price in

a horizontally differentiated market. After presenting a simplified version of the Hotelling

model, we define the full game as well as the assumptions under which our analysis is

conducted. Then we characterise equilibria in the pricing games. The analysis of pricing

games is rather long and involved. We have chosen to concentrate on intuitive arguments in

the core of the paper. Almost all technical proofs have been relegated to the appendix.
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3 . 1 )  TH E S ET U P

Two shops are located at the boundaries4 of the [0;1] segment along which consumers

are uniformly distributed. Each consumer is identified by its address x in [0;1] and has a

common reservation price S. An agent buys at most one unit of the good and bears a

transportation cost, which is linear in the distance to the shop. Without loss of generality, we

set the transportation cost between the two shops to 1. Therefore, the utility derived by a

consumer located at x is thus S − x − p1 if he buys the product at firm 1 (located in 0) and S −
(1 − x) − p2 if he buys at firm 2 (located in 1). Refraining from consuming any of the two

products yields a nil level of utility5. Firms name prices non-cooperatively.

The essence of the Hotelling model is best summarised as follows. When firms name

low prices, the market is covered (i.e. all consumers purchase one of the good ). Firms' market

shares are defined by the address of the indifferent consumer denoted by x̃(.) . By definition,

it is the solution of S x p S x p− − = − − −1 21( )  i.e., ˜ ( , )x p p p p
1 2

1
2
1 2≡ − + . Consumers in

0, x̃( p1, p2 )[ ]  buy at firm 1 whose demand is ˜ ( , )x p p1 2  as consumers are uniformly distributed

on [0;1]. Demand addressed to firm 2 is 1 1 2− ˜ ( , )x p p . If prices are too large the market is not

covered. In such cases, firm6 i is a local monopoly; its demand is min ,1 S pi−{ } . This happens

if S x p p pi j i− − <˜ ( , ) 0 ⇔ > − −p S pi j2 1 . The demand function of firm i is thus defined by

equation

D p p
p S p

S p p S p
i i j

p p
i j

i i j

( , )
min ,

=
≤ − −

−{ } > − −







− +1
2
1 2 2 1

1 2 1

if 

if 
.

Plugging this demand in the profit function, we may identify the respective argument

maximisers H pj
p j( ) ≡

+1
2  for the first branch and the monopoly price p in S 1,m S

2≡ −{ }m  for

the second. Against a low pj firm i plays H(pj) while against a large pj it plays pm; for prices

in the middle range, the optimal response is to cover the market with 2S − 1 − pj.

Since Di(pi,pj) is piecewise linear and decreasing in pj, profit is concave in pj, thus the

best reply to a mixed strategy is the best reply to its expectation i.e., a pure strategy.

Therefore, a Nash equilibrium of this pricing game is pure. The best reply intersect at the unit

price for both firms whenever S > 3/2. In this case, firms face no capacity constraints the

unique Nash equilibrium of the pricing game is (1,1) and the market is covered. Otherwise

4 We choose maximum differentiation to relax price competition as much as possible. If firms find it profitable
to further relax  price competition through capacity precommitment, it is likely that they would face even greater
incentives if they were less differentiated on the horizontal dimension.
5 In Hotelling's original model, this possibility is not considered, formally, this correspond to an infinite S.
6 In the remainder of the text, i stands for either of the firms and j for its competitor.
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when S < 3/2, there is a continuum of equilibria on the frontier (pi + pj = 2S + 1) which entail

no "real" price competition.

In order to introduce capacity commitment, we now add a preliminary step where

firms choose simultaneously sales capacity k1 and k2 before they simultaneously choose

prices p1 and p2 knowing the chosen capacity of their competitor. The unit cost of capacity is

assumed equal to ε >0. This two stage-game of complete information is denoted G. The

subgame after the choices of k1 and k2 is denoted G(k1,k2) and called the pricing game.

Formally, G is thus identical to the game considered by KS.

Given that firms may act as local monopolists provided prices are high enough,  game

G is really interesting if only firms are lead to choose capacities whose sum exceeds the

market size. Only in this case will they enter into a price competition at the second stage.

Obviously this cannot happen for very large capacity costs. Proposition 1 clarifies this point.

PROPOSITION 1

If the unit cost of capacity installation ε is larger than S − 1, the unique SPE entails

monopoly pricing by both firms. If ε < S − 1, the market must be covered in a SPE.

Proof Suppose that firm i is a monopoly over the market and has installed a capacity ki, its
demand is f k S pi i i≡ −{ }min , . The second period profit p S pi i( )−  is maximum for pi =

m i
Sin S k ,−{ }2 , thus the first period profit is k S ki i− −( )ε  if ki

S< 2  and S
ik

2

4 − ε  if ki
S≥ 2 .

Since the latter is decreasing with ki, only the first matters for the optimal capacity choice

which is km ≡ min ,1 2
S−{ }ε . Now, it clear that ε > S − 1 implies km < 1/2 ; Being located

respectively at 0 and 1, both firms are able to achieve their equilibrium monopoly profit

without interacting which means that km is a dominant strategy and thus characterise the

unique SPE allocation. It is clear that when ε < S − 1, capacity choices such that k1 + k2 < 1

are not stable since one of the firm (may be both) has an incentive to choose at least a capacity

complementary to its competitor. Yet, exact market coverage capacities (k1 + k2 =1) subject

to the constraint max ,k k km
1 2{ } ≤  are candidates SPE of the whole game. ♦♦♦♦

In the sequel of the paper, we concentrate on cases where unit capacity costs are

negligible relative to S. The presence of limited capacities affects firms' incentives in the

pricing game in two ways. First, a limited capacity may decrease the incentive of a firm to

reply to the other's price with a low price since the market share a firm is willing to serve

cannot exceed its installed capacity. A second observation induced by limited capacities is

that some consumers might be rationed at the prevailing prices. This possibility is the

cornerstone of the price competition analysis as it may reverse firms' incentives in the price
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game. More precisely, one firm could find it profitable to quote a high price, anticipating the

fact that some consumers will be rationed by the other firm and could therefore be willing to

report their purchase to it. This was the original intuition of Edgeworth. The incentives for

that behaviour basically depend on the willingness of consumers to switch to the high price

firm in case of rationing. In a model with unit demand and heterogeneous consumers the

extent to which rationed consumers will be recovered by this firm directly depends on who

the rationed consumers are.

We follow KS in assuming that the efficient rationing rule is at work in the market.

Under this rule, rationed consumers are those exhibiting the lowest reservation price for the

good. Consider the example depicted on Figure 1 below.

x

0 1x̃(p1,p2)k1

Figure 1

All consumers located in 0 1 2; ˜ ( , )x p p[ ]  want to buy at firm 1 but some will be rationed.

Under efficient rationing, those are located in k x p p1 1 2; ˜ ( , )[ ]  and are precisely the most

inclined to switch to firm 2. Despite a potentially low demand for firm 2, the fact that firm 1

is constrained by its capacity k1, can give firm 2 an effective demand of 1 − k1. It is the case if

p S k2 1≤ −1+  which is the net reservation price of the consumer located in k1. This feature

of the market allocation rule also lowers firm 2's incentives to enter a price competition "à la

Bertrand" since its demand is locally independent of its own price. Note finally that in the

Hotelling model with maximal differentiation, efficient rationing defines the largest residual

demand for firm 2, so that, contrarily to KS, the incentives to use rationing strategically are

maximised. This phenomenon will have a strong feedback on the choices of capacities. The

next section studies the pricing game when the choice of capacities exceed the market size.

3 . 2 )  EQU I L I B R I A  I N  P R I CE S U B GA M ES

As a first step we derive the effective sales of the firms in the pricing game using

consumer demands and the rationing rule. Then, we characterise the best reply functions and

identify the support of the equilibrium mixed strategies. Three types of equilibria are

characterised: the pure strategy equilibrium that prevails under standard Hotelling

competition, equilibria in which one firm mixes over two prices whereas the other plays a

pure strategy (we refer to these as semi-mixed equilibria) and last, equilibria where both firms

use non-degenerated mixed strategies. In all of the possible pricing games G(k1,k2), at least

one of these equilibria prevails but multiple equilibria often prevail. In the mixed strategy

equilibria, firms use only atoms.
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The shape of firms' sales can be informally captured by referring to Figure 2.

a

c

b

p2

p1

δ(k2)

ρ(k2)

ρ(k1)

δ(k1)

D1 = 1− k2

D2 = k2

D1 = S −p1

D2 = k2

D1 = k1

D2 =1− x̃(p1, p2 )

D1 = x̃(p1 , p2)
D1 = k1

D2 =1− k1

D1 = S −p1

D2 = S −p2

D2 = S −p2

Figure 2

Assume firms quote similar (low) prices corresponding to a point in the area delimited

by lines a, b and c. In this region, the classical Hotelling demands prevail. Now, if p1

increases, firm 1 looses sales until firm 2 is constrained by her capacity i.e., we reach the

upper triangle. From that point on, if p1 increases further, D1 remains constant at 1 − k2 until

p1 is so large that the market is not covered anymore. From then on, firm 1 moves along its

monopoly demand function. When both prices are high, the market is not covered and,

obviously, no firm is capacity constrained.

We derive now each firm's sales function formally. Since the rationing rule that we use

is the efficient one, if demand addressed to firm i exceeds ki, it serves the segment [0;ki].

Thus, if we let Di be the sales of firm i, the demand addressed to firm j is bounded by 1 − Di.

On the other hand, Di is bounded by the capacity ki and by the monopoly sales S pi− . Letting

f k S pi i i≡ −{ }min , , we thus have

D S p k Di i i j≡ − −{ }min , ,1  = min ,f Di j1 −{ }
Observe that there is an equivalence between ˜ ( , ) , ˜ ( , )x p p f x p p f1 2 1 1 2 21< − <{ }  and

D x p p D x p p1 1 2 2 1 21= = −{ }˜ ( , ), ˜ ( , )  because demands addressed to firms can be served by

both while the reverse implication is true as one can see from the definition of Di. Let us

denote by (E1) the equation ˜ ( , )x p p f1 2 1<  and by (E2) the equation 1 1 2 2− <˜ ( , )x p p f . We

investigate when they hold:

- p S k   ecome   k1 1 1≤ − ⇒ = = ≤ ⇒ ≥ ≡ + −− +f k and E b s x p a k p p kp p
1 1

1
2 1 1 2 2 11 1 21 2( ) ˜ ( , )
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- p S k   ead   1 1> − ⇒ = − = ≤ − ⇒ ≤ ≡ − −− +f S p and E r s x S p p c p S pp p
1 1

1
2 1 1 2 21 2 11 2( ) ˜ ( )

- p S k  and (E2) reads k2 2 2≤ − ⇒ = − = ≤ ⇒ ≤ ≡ − +− +f k x p b k p p kp p
2 2

1
2 1 2 2 2 21 1 22 1˜ ( , )

- p S k  and (E2) becomes 2 2> − ⇒ = − − = ≤ − ⇒ ≤− +f S p x S p p c pp p
2 2

1
2 2 1 21 2 1˜ ( )

Thus, the classical Hotelling demands D x p p1 1 2= ˜ ( , )  and D x p p2 1 21= − ˜ ( , ) prevail if

a k p p b k p c p( , ) min ( , ), ( )1 2 1 2 2 2≤ ≤ { } . The maximum price compatible with sales of ki is

δ( )k S ki i≡ −  while the price guaranteeing firm i a demand of 1 − kj is ρ( )k S kj j≡ − +1 . We

call this price the "security" price of firm i.

We choose k1 > k2 without loss of generality so that k >1
1
2 . As shown on Figure 2

above, k1 + k2 > 1 implies a(k1,.) < b(k2,.) and δ(kj) < ρ(ki). Lastly, a(k1,.) = c(.) = δ(k1) for

p2 = ρ(k1) and b(k2,.) = c(.) = ρ(k2) for p2 = δ(k2). The area delimited by the functions a, b
and c will be called “the band“. Observe that k >1

1
2  implies a(k1,0) < 0 while b(k2,0) can be

positive (as on Figure 2) or negative.

We now derive the best reply of firm 1 to a price charged by firm 2. We already noted

that S > 1+ ε was a necessary condition for firm to engage into a meaningful competition. We

go a step further7 by assuming S > 2 to create a fierce price competition between the

duopolists. Under this assumption a monopolist located at one end of the market would
choose to cover the market. Technically, it implies S

2  < δ(ki) and S
2  < ρ(ki) for i = 1,2.

LEMMA 1

Firm i =1,2 never charge prices above ρ( )k j ; the best replies are discontinuous and

defined by BR p

k if p k k

if k k p k

p k if k k k p
i j

j j i j
p

i j j i

j i i i j j

j( )

( ) ( , )

( , ) ( )

max ( ), ( , )

=

≤

< <
+ − { } <










+
ρ γ

γ α
α γ

1
2

1 2

Proof Let F1 be the cumulative distribution function of the mixed strategy used by firm 1 in

equilibrium. Recall that ∀ ∀ ≥ = −p p k D p p S p2 1 2 1 1 2 1, ( ), ( , )ρ . Since the monopoly price S
2  is

less than ρ(k2), Π 1(p2,.) must be decreasing over [ρ(k2);+∞[ and the same is true for

Π Π1 2 1 2 2 2( ,.) ( ,.) ( )F p dF p= ∫ . Therefore F1 ,being a best reply to F2, has no mass above ρ(k2)

and symmetrically the support of F2 is included in 0 1; ( )ρ k[ ] .

7 A close look at the proofs shows that it is unnecessary but it simplifies the exposition by removing subcases.
Notice that in the standard analysis of the Hotelling model, it is generally assumed that S large enough to ensure
market-covering in equilibrium.
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We can now restrict the study of the best reply of firm 1 to a price p2 lesser than ρ(k1).

Firm 1 can act in a classical fashion "à la Hotelling" with an aggressive price in order to gain

market shares. It can also hide behind firm 2's capacity by serving that part of market that is

out of reach for firm 2 i.e., the [0;1 − k2] interval. Over this residual market, firm 1's payoff is

given by its monopoly payoff function (this is the key feature of the Hotelling framework)

and the optimal price is ρ(k2) ; we call it the security strategy.

Then, we distinguish four areas on Figure 2 above: the band, the lower triangle, the

upper triangle and the domain of monopoly demand above ρ(k2) and c. For the latter we have

just shown that the best choice is the lower frontier of the domain i.e., ρ(k2) for p2 < δ(k2) and

c(p2) beyond. Observe that c(p2) is itself dominated by the best reply within the band. In the

upper and lower triangles demand is constant so that profit is increasing and the best choices

are respectively ρ(k2) and a(k1,p2). This latter value is dominated by the optimum within the

band. In the band the best reply is either H(.) or one of the frontiers a(k1,.) and b(k2,.). Solving

for b(k2,p2) > H(p2) > a(k1,p2), the first inequality leads to p2 > β(k2) ≡ 3 − 4k2 (it is always

satisfied if k2 > 3/4) while the second leads to p2 < α (k1) ≡ 4k1 − 1. Since b(k2,p2) also

belongs to the upper triangle, it is dominated by ρ(k2). This observation enables without loss

of generality to take Max H a k(.), ( ,.)1{ }  as be the best choice in the band because we will then

choose between this candidate and the security strategy ρ(k2).

Summing up, the best reply is either ϕ
α

α1 2
2 2 1

2 1 1 21 2
( )

( )

( )
p

if p k

p k if k p

S

=
<

+ − <




 or the

security price ρ(k2).

Comparing the associated profits, we derive a cut-off price γ(k1,k2) such that when the

price p2 is low, firm 1 replies with a high price to benefit from the resulting rationing at firm
2. Against a high price p2, firm 1 fights for market shares. The derivation of γ(k1,k2) can be

found in Lemma A.1 of the appendix. Formally, we obtain:

BR p
k if p k k

p if p k k1 2
2 2 1 2

1 2 2 1 2
( )

( ) ( , )

( ) ( , )
=

≤
>





ρ γ
ϕ γ

. ♦♦♦♦

The previous analysis enables us to define the support of an equilibrium mixed

strategy.

PROPOSITION 2

In equilibrium, the support of the mixed strategy Fi is included in

max , ; )
( )( )

1
1 1− − +


(





k S k
k j

j j

i
kρ
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Proof As a corollary of Theorem 1 each firm names prices larger than the Hotelling unit price.

Now observe that Firm 1 can guarantee itself the demand 1 − k2 by playing ρ(k2), thus its

equilibrium profit is larger than Π1 2 21 1s k S k≡ − − +( )( ). Now, as sales are bounded by the

capacity k1, firm 1 must name a price above p
k

s

1
1

1
≡

Π
 in equilibrium. A symmetrical result

holds for firm 2. The statement on the upper bound was proved in lemma 1. ♦♦♦♦

We now characterise the equilibria of the price subgame in proposition 3 and provide a

sketch of the proofs. Analytical developments have been relegated to the appendix.

PROPOSITION 3

Three non exclusive types of price equilibria exist:

- A) both firms quote the pure strategy Hotelling price;

- B) one firm plays a pure strategy and the other mixes over two atoms;

- C) both firms use a mixed strategy involving the same number of atoms.

Sketch of the Proof:

A) Equilibria involving only pure strategies

If both capacities are arbitrarily close to 1, the standard Hotelling equilibrium of

proposition 1 is preserved. Indeed if γ(k1,k2) < 1 and γ(k2,k1) < 1, then the best reply curves

intersects at (1,1) meaning that the pure strategy price equilibrium (1,1) exists. Those

inequalities define two sets A1 and A2 in the capacity space which are symmetric with respect

to k2=k1. Their intersection is a square area Φ Φ; ;1 1[ ] × [ ]  where Φ ≡ − + −( )1
2

22 2S S .

B) Equilibria involving a pure strategy and a mixed one

 The set A2\A1 corresponds to a "large" k1 and a "smaller" k2; the pure strategy

equilibrium ceases to exists in this set because γ( , )k k1 2 1> . To understand the

characterisation of type B equilibrium, it is useful to give the intuition of this result by

presenting the Edgeworth cycle in a market for differentiated products. To this end, we use

the Figure 3 below.
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Starting with p2 = 1, firm 1 uses the fact

that k2 is not very large to enjoy the market

share 1 − k2 at the security price ρ(k2) rather

than fighting against p2 = 1 with its "Hotelling"

best reply H(1) = 1. If firm 1 sets p1 = ρ(k2),

there is no competition and the best reaction of

firm 2 is to increase its price to δ(k2), the

maximum price compatible with sales of k2.

Now, both prices are at their peak and the only

way to increase profit is to capture new market

shares by undercutting one's opponent price. α(k1)

p1

p2

ρ(k1)

δ(k1)

γ(k1,k2)

ρ(k2)

q2

q1

γ(k2,k1)

1 2

1 2

δ(k2)

Figure 3

The next best move of firm 1 is p1 = H(p2) (above q1), followed by a low value p2 =

H(p1) (slightly above q2); at this moment we are back to the beginning of the story: it is better

for firm 1 to retreat over its protected share 1 − k2 with a high price.

According to the Nash definition in this context, the equilibrium sees firm 2 playing

the pure strategy γ(k1,k2) while firm 1 mixes between ρ(k2) and the lower price q1 as

described on Figure 3 above. This kind of equilibrium was identified first by Krishna [89].

Note that the symmetric vector of strategies is not an equilibrium. Indeed to make firm 2

indifferent between ρ(k1) and q2, firm 1 would have to play the pure strategy γ(k2,k1) which

is strictly less than 1. This contradicts the fact that equilibrium prices are larger than 1 as

established in lemma 1. As k1 is "large", the default option appears to be never relevant for

firm 2 because it involves an almost zero residual demand and thus zero profits.

The analysis of area A1\A2 is entirely symmetric. In the complement of A1 ∪ A2, both

γ(k1,k2) and γ(k2,k1) are greater than unity so that both type B equilibrium can coexist.

C) Equilibria involving completely mixed strategies

All A and B type equilibria previously mentioned exist in areas that shrinks as S gets

larger. When these equilibria do not exist, completely mixed strategy equilibria must exist.

The piecewise linearity of the demand functions implies that firms do not use densities in

equilibrium (cf. theorem 1). In lemma A.2 of the appendix we show that when S increases, the

number of atoms necessary to build an equilibrium increases and is the same for each firm.

In order to characterise a n-atom equilibrium we proceed as follows. When a firm uses

n atoms, it has to solve n conditions of local optimality and n profit equalities using the n

prices of his own support and the m probabilities over his opponent's prices. If m < n then this
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problem has generically no solution while if m > n it has an infinity. It is therefore natural to

obtain m = n in order to be able to derive each player's best replies in prices pi
k

k

n( ) =1
 as a

function of the vector of prices played by the other p j
k

k

n( ) =1
. The operator thus obtained may

then have a fixed point which will be an equilibrium candidate. An n atom equilibrium is a

quadruple p pm m m m
1 2 1 2, , ,µ µ( ) ≤m n

 where µi
m  is the weight put by firm i on her mth atom pi

m

(prices are ranked by increasing order). To derive an n atom equilibrium of the pricing game

G(k1,k2), we consider a grid of capacity couples over the [0,1]x[0,1] area and solve

numerically8 a system of 2n − 2 polynomial equations in 2n − 2 variables. Then we check two

conditions on the vector of prices derived from the system in relation to k1, k2 and S i.e., we

eliminate some capacity points whose associated candidate equilibria violate one of those

conditions.

The symmetry enables us to limit ourselves to the case where k1 > k2. The first

necessary condition (cf. lemma A.2 in the appendix) states that 2k1 − 1 > p pm m
1 2−  > 2k2 − 1

for every atom m ; it disqualifies capacity points (k1,k2) exhibiting a too large differential.

The reduced form of the condition reads k2 > gn(k1) where each gn is an increasing and

convex function. As n increases, more inequalities have to be satisfied, more capacity points

are eliminated and the area where atomic equilibrium exist shrinks ; hence those functions

satisfy g2 < g3 < g4 < g5 ...

The second necessary condition is related to the upper bound on prices ; it links the

upper prices of the distributions to the reservation price by p pn n
1 2+  < 2S − 1. Since the

equilibrium prices do not critically depend on the capacity differential but on the total

capacity, we study this condition on the diagonal. For a given symmetric capacity choice

(k,k), we compute the symmetric candidate equilibrium p km m n
( )( ) ≤

 and the minimal

reservation price for which the condition is satisfied i.e., S k
p kn

n

min ( )
( )

≡
+2 1

2
. The inverse of

this function gives us the maximal capacity K Sn
max( ) such that points (k1,k2) with k1+k2 ≤

2. K Sn
max( ) have an n atoms price equilibrium at the given S. Those functions will be useful in

the subsequent section.

As one could expect, the larger the capacities, the larger the prices in a candidate

equilibrium. In fact, our computations show that the upper prices of a candidate equilibrium

tend to infinity as capacities tend to (1,1). Now, as Proposition 2 showed that prices are

8 It is indeed necessary as for a 5 atoms equilibrium, a system of 8 equations involving polynomials of degree 7
with more than 1500 monomials has to be solved with the Mathematica™ software.
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bounded by ρ( )k S kj j≡ − +1 , capacity choices around (1,1) have no atomic price equilibria ;

for that reason our numeric computations can safely stop at k1 = 0.99. ♦♦♦♦

It is important at this step to note the reason why type B equilibrium may fail exist.

The pure strategy γ(k1,k2) is optimal for firm 2 only if the point (γ(k1,k2),q1) of Figure 3

above lies strictly in the "band" because otherwise the demand addressed to firm 2 at γ(k1,k2)

is k2 when facing ρ(k2) and 1− k1 when facing q1. This means that firm 2 has a strict incentive

to raise its price until δ(k2). So our semi-mixed candidate equilibrium is not a valid candidate.

In fact, when γ(k1,k2) > α(k1) (which happens when capacities are similar) there exists a

completely mixed equilibrium (called type B') where both firms play two prices and where

firm 1 who has the largest capacity plays the security price ρ(k2). This equilibrium shares

with the semi-mixed one a very nice property: that of yielding a payoff which is independent

of capacity. Indeed, in both cases firm 1 plays the security price with a strictly positive

probability. Evaluating the payoff at this atom yields Π1 2 21 1s k S k≡ − − +( )( ). This

equilibrium is formally derived in lemma A.4 of the appendix.

Note that the description of an Edgeworth cycle in part B) of the preceding argument

should not be criticised for its dynamic presentation of the static concept of Nash equilibrium.

Beyond showing why there is no equilibrium in pure strategies, it helps to understand the

nature of the new equilibrium. In this equilibrium where firm 1 is playing the pure strategy

γ(k2,k1), if firm 2 perceives a slightly larger price, it replies aggressively for sure while if it

perceives a slightly lower price, it plays the security price for sure. We follow here the

purification argument of Harsanyi [73]. According to this interpretation our mixed strategy

equilibrium satisfies the no-regret property for the firm and therefore escape the standard

criticism of this equilibrium concept. Moreover, the experimental study of Brown-Kruse & al.

[94] suggest that disequilibrium adjustment process (called Edgeworth cycle in their paper) or

mixed strategy equilibria are the most robust theoretical explanation of the observed pricing

pattern in a Bertrand-Edgeworth oligopoly game.

Building on our characterisation of price equilibria we may state Corollary 1 which is

instrumental for the resolution of the capacity game. By deriving an explicit formula for the

second period profit of one firm, we will be able to construct our focal SPE. It is an equivalent

to Proposition 1 in KS which states that the high capacity firm is paid according to its

Stackelberg follower payoff i.e., as a function of the small capacity firm.

COROLLARY 1

When pure strategy equilibria do not exist, there always exists a mixed strategy
equilibrium in which firm i, the large capacity firm, is paid Πi = (1− kj )(S − 1+ kj ).
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Proof Assume firm 2 is the large capacity firm and consider first firm 2's profit in a type B

equilibrium. It is computed from either price in the support of its equilibrium strategy. At the

atom ρ( )k S k1 11≡ − + , firm 2's demand is 1 − k1 so that Π2 = − − +(1 k )(S 1 k )1 1 . In pricing

games where type B equilibria do not exist, we can build a completely mixed strategy

equilibrium where firm 2 plays its security strategy with a positive probability. Lemma A.4

provides an explicit derivation of the two atom equilibrium. Using Lemma A.3 and the

procedure described in Lemma A.4, equilibrium involving more than two atoms and one firm

naming its security price can be build as well . ♦

4) Capacity commitment and Cournot outcomes

Going backward is difficult in the game G because G(k1,k2) has often several price

equilibria as shown in proposition 3. The focal SPE of our model involves symmetric choices

by the firms. The corresponding equilibrium outcomes replicate those of a monopoly owning

the two firms: the market is shared evenly, there is no excess of capacity, global surplus and

firms' joint profits are maximised, and consumer surplus is minimised.

PROPOSITION 4

Committing to the Hotelling equilibrium quantities 1/2 and naming the monopoly price

S − 1/2 is a Subgame Perfect Equilibrium.

Proof A downward deviation cannot be profitable since we assumed that the monopoly profit
of a constrained firm ( )S k k− −ε  is increasing up to S− >ε

2
1
2 . To deter an upward deviation,

we define the continuation price equilibrium of G(k,1/2) to be of type B or B' (cf. proposition

3). It yields a profit of ( )S k− −1
2

1
2 ε  for the deviant. This is not profitable because of the

supplementary capacity cost. ♦♦♦♦

Theorem 2 confirms the intuition according to which prices are in a sense "too low" in

the standard Hotelling equilibrium, i.e. there is room for relaxing competition. Capacity

precommitment allows firms to sell exactly their Hotelling demands, but at a much higher

price. At this equilibrium, firms are on their local monopoly profit curve so that, contrary to

the standard equilibrium result, prices directly depend on S. Notice that this price is the

highest one that ensures full market coverage since it leaves the marginal consumer located in

1/2 with zero surplus. Since a monopoly owner of both firms would implement precisely this

outcome, the issue of this non-cooperative competition seems to be collusive. However, this

subgame perfect equilibrium is not unique as the following proposition shows.
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PROPOSITION 5

When the capacity cost is negligible, two kinds of SPE coexist

i) Complementary capacities equilibria (CCE) where the total capacity exactly covers

the market and each firm enjoys a minimum share; furthermore, the price equilibrium is

in pure strategies.

ii) Overlapping capacities equilibria (OCE) where the total capacity exceed the market

size (overlapping capacities), the difference in the capacity choices is limited and the

price equilibrium is in mixed strategies.

Proof i) Complementary capacities equilibria

Without loss of generality, consider capacities choices (m,1−m) with m ≥ 1/2. The

profit function of firm 1 and 2 on the intervals 0;m[ ]  and 0 1; −[ ]m  respectively is (S − ε −
k)k. We have shown when proving proposition 1 that this function is increasing up to S−ε

2 ,

which is therefore an upper limit to m in order to deter downward deviations (for a large S,

this limit is not binding).

An upward deviation k1 > m by firm 1 can only lead to a price equilibrium of type B

or C. There is no possibility for a type A equilibrium because it requires both capacities to be

large and since m ≥  1/2, the capacity choice of firm 2 is smaller than the required limit

Φ( , / )S 1 2  (as derived in Lemma A.1 in appendix). To deter an upward deviation of firm 1, we

define the continuation price equilibrium of G(k1,1 − m) to be of type B or B' which yields a

net profit for firm 1 of (S −m)m − εk1 ; this is a non profitable deviation because of the

supplementary cost of capacity.9

If m < Φ( , / )S 1 2 , an upward deviation k2 > 1 − m by firm 2 can only be followed by a

type B or C equilibrium and we apply the same trick as for firm 1 to deter this upward

deviation. Whenever m S≥ Φ( , / )1 2  firm 2's payoff is almost nil, hence it has an incentive to

deviate to the large capacity Φ( , / )S 1 2  in order to play the Hotelling price equilibrium and

earn a net profit of 1/2 − ε Φ( , / )S 1 2 . Whenever ε is less than half (the relevant condition for

the  or ig inal  Hote l l ing  model) ,  the  solut ion  of  the  equat ion

1 2 1 2 1 1/ ( , / ) ( )− = − − +[ ] −ε εΦ S S m m  give us a bound on m which is obviously less than

one. We may conclude that any pair (k1,k2) such that k1,+k2=1 can be sustained as part of a

SPE as long as each firm obtains at least its "Hotelling profit".

ii)  Overlapping Capacities Equilibria

9 As mixed strategies enable large prices, type C equilibria provide too large payoffs and cannot be used to
sustain our candidate SPE.
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Consider now a candidate SPE outcome (m1,m2) such that m1+m2>1. To prove that it

is not a SPE, we must consider deviation to (m1,k2) or (k1,m2) and look at the worst price

equilibrium for the deviant ; if the deviation is still profitable then (m1,m2) cannot be

sustained as a SPE.

Claim If (m1,m2) is such that no type C equilibria exists in G(m1,m2), then this choice is not

part of a SPE.

If the price equilibrium in G(m1,m2) is of type A, firms earn a profit independent of

their capacity choices. Therefore, each has an incentive to reduce capacity since the cost ε is
positive (almost nil is exactly what is needed). If the price equilibrium is of type B or B', the

payoff of one firm, say i, in the pricing game is Πd
jm( )  ; by choosing ki = 1 − mj, firm i sets

itself in a non overlapping situation and achieves (S −1+ mj)(1 − mj) = Πd
jm( )  with a lower

cost of capacity installation, thus it will deviate.

This artefact is our main instrument to rule out "unwanted" equilibria ; we also obtain

a first result: overlapping capacities are sustainable as SPE choices only if capacities are not

too dissimilar. The point (m1,m2) must satisfy m1 > gn(m2), i.e. there exists type C price

equilibria.

We now build a SPE with capacity choices (m1,m2) such that the equilibrium of

G(m1,m2) is an n atom one. This couple must satisfy m2 > gn(m1) (by symmetry of G, we can

always assume m1 < m2) and m1 + m2 < 2 K Sn
max( ) ; those conditions taken together define an

upper bound on capacities. We now define the strategies out of the equilibrium path: at

(ki,mj), we define pricing strategies to be the pure strategy γ(ki,mj) for firm j while firm i

mixes between ρ(mj) and the lower price 
1

2
+γ( , )k mi j  (type B equilibrium). Firm i obtains

Πd(mj) and to deter the deviation ki, it must be less than Π n(m1,m2), the profit accruing to

firm i at the n atom equilibrium.

This latter function mostly depends on the total capacity, therefore we may study the

previous condition on the diagonal. We thus solve Πn k k k S k k( , ) ( ) ( )− ≥ − − −[ ] −ε ε1 1  in

the variable S to get S S k
k k k

k
kn

n

≤ ≡
−

−
+ − +max( , )

( , )
ε

ε
ε

Π
1

1 . The numerical computation is

performed for ε = 0 as we are studying the case of almost nil capacity cost. Then, we can

invert S kn
max( , )0  to obtain a lower bound K Sn

min ( ) on capacities which is compatible with the

upper bound K Sn
max( ) derived in proposition 3 (the above simplification is therefore valid up

to small numerical errors).

Contrarily to type i) SPE, the capacity combinations that appear as SPE of type ii) are

functions of S. Figure 4 below summarises our result: the various K Sn
min ( ) and K Sn

max( )

functions are plotted for n = 2, 3, 4 and 5. Consider for example S = 4. There exists a
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symmetrical10 SPE with a 2 atoms price equilibrium if the capacity is between .81 and .85 and

SPE with a 3 atoms price equilibrium if the common capacity is between .6 and .61. For S =

6, there exists SPE with 2, 3, 4 or 5 atoms price continuation equilibria. The larger S, the

larger the number of mixed strategy equilibria in the pricing games and therefore the larger

the number of possible capacity overlapping SPE equilibria. ♦♦♦♦

S

k

K min
5 (S)

K max
5 (S)

Figure 4

Obviously, the existence of our overlapping capacity SPE is eased by the fact the

capacity cost is negligible. The following theorem studies the robustness of our equilibria to

the level of the capacity cost.

PROPOSITION 6

If the capacity cost is larger than 1/4 only CCE subgame perfect equilibria exist.

Proof We have shown that a type ii) SPE exists for the symmetric capacity k only if

S k S S kn n
min max( ) ( , )≤ ≤ ε . As the latter function is decreasing in ε, S k S kn n

min max( ) ( , )= ε  has a

solution εn(k) and for any ε > εn(k), the candidate SPE is removed. The equation to solve is

S k
k k k

k
kn

n

min ( )
( , )

=
−

−
+ − +

Π ε
ε

1
1  ⇒  εn

n n

k
k k S k k k

k
( )

( , ) ( ) ( ) ( )min≡
− − −[ ] −

−

Π 1 1

2 1
.

10 Whenever a symmetrical  n-atom equilibrium exists, there also exists asymmetrical  ones for all capacity

choices with the same mean and satisfying mi > gn(mj).
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The εn functions satisfy ε2 > ε3 > ε4 > ε5 and are concave, decreasing, reaching zero at
1
4 . It is clear that for every ε > 1/4, no type ii) equilibria remains. ♦♦♦♦

The following comments are in order. First, note that in the SPE's involving exact

market coverage, both firms are on their monopolist's profit curve. This perfectly illustrates

why firms may benefit from capacity precommitment. Indeed, the main feature of the

Hotelling model is that firms may enjoy local monopolies around their locations. However, in

the absence of capacity constraints, they cannot prevent price competition to take place

because their monopolist's natural markets overlap. Although positive mark-ups are preserved

in equilibrium, price competition is damaging to the firms. This is clearly seen by observing

that in the Hotelling equilibrium, prices do not depend on S. In other words, firms fail to

capture a large part of the consumers' surplus. The main virtue of capacity precommitment is

precisely to avoid this failure. Indeed, through capacity precommitment, firms are now able to

capture the greatest part of the consumers' surplus. In particular, their equilibrium payoffs

depend positively on S.

Second, the existence of equilibria involving excess capacities is mainly due to the

existence of multiple equilibria in the price subgame where firms fight for market shares.

However, it remains true that in these equilibria, prices are always above the Hotelling prices

and are positively related to S. The corresponding payoffs are also positively linked to the

reservation price. Thus, the qualitative conclusion remains: through capacity commitment,

firms systematically sustain higher prices.

Summing up, whatever the subgame perfect equilibrium considered, we are led to

conclude that capacity precommitment enables firms to take full advantage of the local

monopoly structure which is inherent to the Hotelling model.

In the case of an homogenous product, KS show that firms tend to avoid destructive

price competition through capacity commitment. In Proposition 5 and 6, we have extended

their result to the case of horizontal differentiation. The nicest feature of the KS result is that

it provides a theoretical foundation for Cournot competition that allows for an explicit price

mechanism. We now show that a similar result obtains in our model of horizontal

differentiation.

PROPOSITION 7

The equilibrium quantities of a Cournot game in the Hotelling model correspond to the

Complementary Capacities SPE of the capacity precommitment game.
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Proof In the Cournot game, firms supply quantities q1 and q2 to an otherwise competitive

market: i.e. prices must clear the market (see Grilo & Mertens [99] for a foundation). If the

proposed quantities q1 and q2 do not cover the market, there is excess demand and the prices

increase until supply equals demand on each side of the market i.e., qi = S − pi for i = 1,2.

This situation is unstable for S> 2, since at least one firm has an incentive to increase its

quantity above the complement of the other. If now the proposed quantities q1 and q2 exceed

the market size, there is excess aggregate supply and at least one of the price, say p1, must be

nil on this competitive market. Therefore firm 1 has a profitable deviation by offering a

quantity slightly less than 1 − q2 to be on its monopoly profit curve. The candidates for a

Cournot equilibrium are (q, 1 − q) with q ≤ 1/2. As a firm can supply q − ε to guarantee the

price S − q + ε, the market-clearing prices have to be S − q and S − 1 + q in a SPE. Without

loss of generality, we assume that firm 1 offers q, thus sells less than 1/2 in equilibrium.

Hence, p1 cannot be nil because it would attract at least one half of the consumers, thereby

implying an excess demand. Firm 2 cannot profitably deviate to a larger quantity than 1 − q

because it would face a zero price (one price is nil and by the preceding argument, it must be

its price). Firm 1 may profitably deviate to some Q larger than q but still less than 1/2. Since

there is excess supply, p2 is nil, thus firm 1 sells all of Q and the consumer located at x = Q

must be indifferent in equilibrium so that p1 = 1 − 2Q. The profit Q(1 − 2Q − ε) reaches a

maximum of ( )1
8

2−ε  at 1
4
−ε  to be compared with q(S − q − ε). Since q ≤ 1/2, the only relevant

root is q* ≡ 2 2 2 1
4

2 2S S− − − − −ε ε ε( ) ( )  > 0.

Thus, the Cournot equilibria must feature exact market coverage (q, 1 − q) with q

larger than this lower bound11 q*.♦♦♦♦

5) Comments and Conclusion

In this paper, we made a first step toward reconciling the two lines of research initiated

by the Bertrand paradox i.e., models of capacity commitment and product differentiation. We

have shown that the nature of equilibria in capacity-constrained pricing games with product

differentiation significantly differ from the case of homogeneous products. Multiple equilibria

prevail and firms never use densities on the support of a mixed strategy equilibrium. Using

the Hotelling model, we have shown that product differentiation does not preclude the use of

capacity commitment as a device to relax price competition. On the contrary, firms always

limit production capacities in equilibrium. The main interest of such strategies is to sustain

11 This lower bound is different from that derived in theorem 3 but both are small so that our equivalence applies
for the most likely sharing of the market.
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higher prices in order to appropriate a larger part of the consumer surplus. The mechanism at

work replicates that of the market for an homogeneous product. However, the specificity of

differentiated markets is to allow for many equilibria in the pricing game. Therefore, beside

Cournot-like outcomes, there exist equilibria exhibiting excess capacities and completely

mixed pricing equilibria.

These result has been established in a particular framework that calls for discussion.

For instance, it is well known that the nature of the rationing rule plays a central role in

pricing models with capacity constraints. Davidson & Deneckere [86] show that the KS result

entirely rests upon their assumption of efficient rationing. In the present analysis also, the

particular rule of rationing is instrumental in achieving clear-cut results. Any alternative to the

efficient rule would result in a lower residual demand addressed to the "high" price firm.

However, the local monopoly structure of the model does not crucially depend on the

rationing rule. Therefore, it is intuitive that equilibria would have the same qualitative

features, it would only take a capacity cost larger than 1/4 to eliminate Overlapping capacities

SPE. Moreover, in our setting, the efficient rationing rule may be viewed as a rather natural

one when interpreting the Hotelling model as a spatial model. In this case indeed, the rule

basically organises rationing on a "first arrived-first served" basis.

We consider a market in which the location of firms are exogeneously fixed at the

extremities of the market. As mentioned in the introduction this assumption is motivated by

its implications for price competition: as product differentiation is maximised, this is the case

where the firms have the lowest incentives to further relax price competition. Having proven

the strength of the incentives to use capacity precommitment, we can expect that the same

forces would apply when firms are located inside the market. If firms are not located inside

the first and third quartiles (see next point), then each has a protected market so that the

incentives to play the pricing game as a local monopolist are reinforced. All demands

functions characterised in sub-section 3.1 have an added elastic monopolist demand term of

the form min{d1,S-p1} where d1 is the location of firm 1 inside the market.

More generally though, the robustness of our result to alternative location patterns is

not easy to trace. Indeed, even without capacity constraints, pure strategy equilibrium may fail

to exist in the linear Hotelling model when firms are located inside the first and third quartiles

(see Osborne & Pitchick [87] for a characterisation of mixed strategies equilibria). No doubt

this possibility severely complicates the characterisation of equilibria in pricing subgames.

Two remarks are in order in this respect.

First, it should be noted that the presence of capacity constraints may help to restore

the Hotelling equilibrium for locations inside the first and third quartiles (see Wauthy [96]).

At the same time, inside locations will tend to make upward deviations less profitable,
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because they could imply less favourable residual demands. We may therefore suspect that

with inside locations, there is less scope for excess capacity choices whereas exact market

coverage remains most attractive.

Second, under quadratic transportation costs, there always exists a pure strategy

equilibrium in pricing games without capacity constraints. In a related paper (Boccard and

Wauthy [2000]), we consider Hotelling pricing games with quadratic transportation costs

where only one firm is capacity constrained. We study location patterns in this particular case

and are able to show that the classical maximal differentiation does not hold in the presence of

the capacity constraint. Instead firms tend to move to the centre of the market, because the

constrained firm wishes to maximises the surplus (i.e. minimise transportation costs) over the

restricted market area delimited by its capacity. This is exactly the strategy that would follow

a monopolist.

Last, the present paper combines two means by which firms may relax price

competition: exogenous product differentiation and endogenous capacity precommitment. A

natural step forward is to endogenize the first device by dealing simultaneously with product

differentiation issues as well as some form of capacity constraints. The question will then

become: should firms use both devices simultaneously or prefer one against the other ? The

answer will obviouslydepend on the specificity of industries. However, our conjecture is that

if product differentiation increases aggregate welfare, firms will tend to differentiate while

relying on capacity constraints to appropriate the largest possible part of that surplus. For

instance in the Hotelling model, we conjecture that firms located at the quartiles of the line

segment, each with a production capacity of one half would be sustained as a SPE of a

location-capacity-price game. Although being quite specific, Boccard and Wauthy [2000]

points in this direction. In contrast, Boccard and Wauthy [99] shows for the case of vertical

differentiation that the presence of a capacity constraint drastically weakens incentives to

differentiate by quality. In this case indeed, there is nothing to gain in terms of total surplus

by choosing to differentiate: i.e. by choosing a lower quality.
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Appendix

PROOF OF THEOREM 1

Consider any price subgame Γ(C1,C2). Under Bertrand competition, there exists a

unique pure strategy SPE. Under Bertrand-Edgeworth competition, an SPE exists, the

support of a mixed strategy price SPE is finite and prices are larger than those of the

Bertrand equilibrium.

Proof We shall show that payoffs' are continuous which then guarantees the existence of an

equilibrium, possibly in mixed strategies. Let F1, F2 be the cumulative functions of the mixed

strategy used by firm 1 and 2 in a Nash equilibrium following the choices of C1 and C2. The

well known result according to which an increasing convex function is unbounded can be

applied to the decreasing concave function D to show that there exists a price p beyond which

demand is nil. Hence the supports of the strategies F1 and F2 are included in [0; p]. For i = 1,

2 let fi be the derivative of Fi if it exists while pi
k

k Ni
( ) ≤

 denotes the set of discontinuity points

of Fi and α i
k

i i
k

x p
iF p F x

i
k

≡ −
→ −

( ) lim ( )  are their associated mass. Lastly p pi i
 and  denote the

supremum and infimum of the support of Fi.

Step 1 Delimitation of the support of equilibrium strategies

If D( , ) ( )0 0 01> ϕ  as on Figure A1 below (large Ċ1) then the equation

ϕ1 1 1 2( ) ( , )p D p p=  has a unique solution p1 = φ1 2( )p  > 0 since ∂
∂

D p p
p

( , )1 2

1
0<  and ϕ1 is non

decreasing. Now ∂
∂

D p p
p

( , )1 2

2
0>  implies that φ1 is increasing thus D pφ ϕ φ1 2 1 10 0( ), ( )( ) > ( )  for

all p2. For any distribution F2, the profit to firm 1 on 0 01; ( )φ[ ]  is the increasing function

Π1
C(.) which means that in a Nash equilibrium of Γ(C1,C2) firm 1 puts no mass below φ1 0( ).

The same holds true for firm 2 with φ2 0( ) by symmetry. To reach the same conclusion in the

analysis of pure Bertrand competition simply observe that Π i
B is increasing over the domain

D p p pi j i i( , ) ( )> ϕ ; thus in a Bertrand equilibrium no firm puts mass below φi ( )0  for i = 1,2.
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p1

p2

φ1(p2)
ψ1(p1)

D(p1,p2) > ϕ1(p1)

D(p1,p2) < ϕ1(p1)

p1

p2

ψ2(p2)

φ1(0)

φ2(0)0
0

G B C

Figure A1 Figure A2

 By translating the origin we can consider w.l.o.g. to the case depicted on Figure A2

where D( , ) ( )0 0 01≤ ϕ . Let p2 = ψ1 1( )p  be the solution to ϕ1 1 1 2( ) ( , )p D p p= . We derive

˙ ˙ϕ
∂
∂

∂
∂

ψ1
1 2

1= +
D

p

D

p
 thus ˙

˙
ψ

ϕ ∂
∂

∂
∂

∂
∂

∂
∂

1
1

1

2

1

2

1=
−

≥
−

≥
D
p

D
p

D
p

D
p

. By symmetry we can assume w.l.o.g. that

ψ2(.)  is a positive and increasing function with slope larger than 1. Hence, as shown on

Figure A2, ψ1(.) and ψ2(.)  never cross but they may be parallel (as will be the case in the

Hotelling model with capacity commitment analysed in sections 3 to 7). Area G, B and C are

delimited by the graphs of ψ1(.) and ψ2(.)  as shown on Figure A2.

Whenever p p1 2 2> ψ ( ) (area G on Figure A2), firm 2 rations consumers letting firm 1

recover a fraction λ( , )p p1 2  of the residual demand D p p p( , ) ( )2 1 2 2− ϕ . The demand

addressed to firm 1 is thus G p p D p p p p D p p p( , ) ( , ) ( , ) ( , ) ( )1 2 1 2 1 2 2 1 2 2≡ + −( )λ ϕ . Using A4)
∂λ
∂p1

0≤  ( d e c r e a s i n g  s p i l l o v e r  e f f e c t ) ,  w e  o b t a i n

∂
∂

∂
∂

∂
∂

∂λ
∂

∂
∂

∂
∂λ ϕG

p
D
p

D
p p

D
p

D
pp p D p p p

1 1 2 1 1 2
1 2 2 1 2 2 0= + + −( ) ≤ + ≤( , ) ( , ) ( ) . Since spillovers areas do

n o t  o v e r l a p  w e  a l s o  h a v e  D p p G p p p( , ) ( , ) ( )1 2 1 2 1 1< < ϕ .  H e n c e

Π i
G

i j i i j i i jp p p G p p C G p p( , ) ( , ) ( , )≡ − ( )  is the profit function over area G  and satisfies

∂
∂

∂
∂

Π Π1

1

1

1

G B

p p> .

Step 2 Properties of the various payoff functions

Π i
B is increasing over area C  as p C D p pi i i j< ( )˙ ( , ) . Over areas B  and G where

p C D p pi i i j≥ ( )˙ ( , )  assumption A 3 ):  0
2

≤ +∂
∂ ∂

∂
∂

D
p p i

D
pi j j

p  guaran tees  tha t

∂
∂ ∂

∂
∂

∂
∂

∂
∂ ∂

2 2
1Π i

B

i j j i i jp p
D
p

D
p i

D
p p i iC D p C D= −( ) + −( )˙̇ ( ) ˙ ( )  > 0 since taking Ċi  constant is the worst case.

We need concavity of Π i
B and Π i

G. To prove the first we only need to apply condition A3):

2 0
2

2
∂
∂

∂
∂

D
p

D
p i

i i
p+ ≤  to ∂

∂
∂
∂

∂
∂

∂
∂

2

2

2

22Π i
B

i i i ip
D
p

D
p i

D
p i iC D p C D= −( ) + −( )˙̇ ( ) ˙ ( )  because taking Ċi  constant
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is the worst case. To prove that Π i
G is concave we study  M = 2

2

2
∂
∂

∂
∂

G
p

G
p i

i i
p+   = 

2
2

2

2

2

2

2
∂
∂

∂
∂

∂λ
∂

∂
∂

∂λ
∂

∂
∂

∂
∂

∂ λ
∂

∂λ
∂ ∂λ ϕ λ ϕD

p i j
D
p p j i j j i

D
p p

D
p

D
p p j i j j pi j i i i j i i i

p p D p p p p D p p p+ + −( )



 + + + + −( ) +

( , ) ( , ) ( ) ( , ) ( )

Using A3) : ∂
∂ ∂

∂
∂

∂
∂

∂
∂

2 2

22D
p p i

D
p

D
p

D
p i

i j j i i
p p+ ≤ − −  yields

M ≤ +



 − + +



 −( ) + +



2 1 2

2

2

2

2
∂
∂

∂
∂

∂λ
∂

∂ λ
∂

∂λ
∂

∂
∂

∂
∂λ ϕD

p i
D

p p i p j i j j p i
D
p

D
pi i i i i j j

p p D p p p p( ) ( , ) ( )  < 0 since

A3) also yields 2 0
2

2
∂
∂

∂
∂

D
p

D
p i

i i
p+ ≤  and A4) gives 2 0

2

2
∂λ
∂

∂ λ
∂p i pi i

p+ ≤ .

By construction firms sales vary continuously from areas G to B and from B to C. The

integral with respect to an increasing distribution function is also continuous thus payoffs are

continuous which guarantees existence of an equilibrium by a standard fixed point theorem.

Notice also that whenever cost is continuously differentiable then

˙ ( ) ( ) ( , ( ))Π Π
i
C

i i i
p p

pp p i
B

i i i

i
= =ϕ ∂ ψ

∂  as p C D p pi i i i i= ( )˙ ( , ( ))ψ  i.e., payoff is continuously

differentiable at the frontier between areas B  an d C . Yet payoffs are not continuously

differentiable as soon as firms use atoms since 
∂

∂
Π i i j

i

p F

p

( , )
 jumps upward at p pi i j

k= ( )ψ  when

atom pj
k  passes from area B to area G . As a consequence p pi i j

k= ( )ψ  cannot be part of a

Nash equilibrium Fi if Fj has an atom at p j
k .

Step 3 The Bertrand equilibrium is unique and is a lower bound to the price distributions in a

Bertrand-Edgeworth equilibrium.

L e t  p r pi i
B

j= ( )  b e  t h e  u n i q u e  s o l u t i o n  o f

0 = = + − ( )( )∂
∂

∂
∂

Π i
B

i j

i

i j

i

p p

p i j i i i j
D p p

pD p p p C D p p
( , ) ( , )

( , ) ˙ ( , ) . It is indeed unique as Π i
B is concave.

As we showed that ∂
∂ ∂

2

0Π i
B

i jp p >  over the domain p C D p pi i i j≥ ( )˙ ( , ) , ri
B  is increasing. Using

A3): ∂
∂ ∂

∂
∂

∂
∂

∂
∂

2 2

22D
p p i

D
p

D
p

D
p i

i j j i i
p p+ ≤ − −  we obtain ṙi

B ≤ 1 (taking Ċi  constant is the worst case).

Hence the solution p pi
B

j
B,( )  of p r p p r pi

B
i
B

j
B

j
B

j
B

i
B= ={ }( ), ( )  is the unique Bertrand

equilibrium in pure strategies.

We now prove that this pair is the unique equilibrium of the price game. Observe on

Figure A2 that over [ ; ( )]0 01φ , Π1(p1,F2) is the average of Π1
B satisfying ∂

∂ ∂

2
1

1 2
0Π B

p p >  and of the

increasing function Π1
C  over C and that Π Π1 1 1 1 1 1

B Cp p p( , ( )) ( )ψ =  (demand continuity) thus
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∂
∂

∂
∂

ψ
∂

∂ψ ψ ψ ψΠ Π Π Π Π1 1 2

1

1

1

1 1
1 1

1
2 2

0
2 1 1 2 1 1 1 1 1 1 1 1 1 11

( , )
( )

( )( ) ( ) ( ) ˙ ( ) ( , ( )) ( )
p F
p p

p
p

p
B C

B C

dF p F p f p p p p p= + − ( )( ) + ( ) −( )∫

 ≥ ≥∫ ∂
∂

ψ
∂

∂
Π Π1 1 2

1

1 1
1 1

1
2 2

0

0B Bp p
p

p
p

pdF p( , )
( )

( , )( )

Hence Π1(p1,F2) is increasing up to β φ1
1

1 10 0≡ { }min ( ); ( )rB  meaning that F1 puts no

mass below β1
1. The same result holds in the Bertrand case since Π1

B is increasing over area

C. By symmetry for firm 2, F2 puts no mass below β φ2
1

2 20 0≡ { }min ( ); ( )rB  (and likewise in

the Bertrand equilibrium). Observe now on Figure A2 that over β ψ β1
1

2 2
1; ( )[ ] , Π1(p1,F2) is the

average of Π1
B over B and the increasing Π1

C  over C thus Π1(p1,F2) is increasing up to

β φ β β1
2

2 2
1

1 2
1≡ { }min ( ); ( )rB . This process of symmetrical adjustments leads to p p

i i
B≥  and

p p
j j

B≥ .

In the Bertrand case we can start from above using 
∂

∂
∂
∂

Π i
B

j

i i

p F

p i
D
pp C

( , ) ˙ ( )= + −( ) <0 0 0

and prove in a similar fashion that p r p pi i
B≤ <( ) . In the Bertrand-Edgeworth competition

Π1
G applies over area G and since ∂

∂
∂
∂

Π Π1

1

1

1

G B

p p>  we cannot say that 
∂

∂
∂

∂
Π Π1 1 2

1

1 1

1

( , ) ( , )p F
p

p p
p

B

≤  to

reach the same conclusion. It is only for Bertrand competition that we reach the Bertrand pair

p pi
B

j
B,( )  from above to conclude that the equilibrium must be in pure strategies.

Step 4 Equilibrium distributions have a finite support in the Bertrand-Edgeworth competition

Π Π Π Π1 1 2 1 1 2 2 2
0

1 1 2 2 2 1 1 2 1 1

2
1

1

2
1

1

1 1

1( , ) ( , ) ( ) ( , ) ( ) ( ) ( ( ))
( )

( )

( )

p F p p dF p p p dF p p F pG
p

B

p

p
C= + + −( )

−

−
∫ ∫

ψ

ψ

ψ
ψ

∂
∂

ψ∂
∂

ψ
∂

∂
ψ

ψΠ
ΠΠ Π1 1 2

1
2 2

0
2 2 1 1 2 1 1

1 1 2

1

2
1

1
1 1 2

1

2
1

1

1 1

1
( , )

( ) ( ) ˙ ( ) ( ( ))( , )
( )

( , )

( )

( )p F

p
dF p dF p p F p

G Bp p
p

p
p p
p

p

p
C= + + −( )

−

−
∫ ∫

because demands are continuous from one area to the other.

∂
∂

ψ∂
∂

ψ
∂

∂
ψ

ψ2
1 1 2

1
2 2 2

0
2 2 1 1 2 1 1

2
1 1 2

1
2

2
1

1 2
1 1 2

1
2

2
1

1

1 1

1
Π

ΠΠ Π( , )
( ) ( ) ˙̇ ( ) ( ( ))( , )

( )
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( )p F

p
dF p dF p p F p

G Bp p

p

p
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p
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p
C= + + −( )

−

−
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+ −



 ( ) + −



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− −∂
∂

∂
∂

∂
∂ψ ψ ψ ψΠ Π Π Π1

1

1
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1
2 2

1
1 2
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G B B

p p p
Cf p p p f p p( ) ˙ ( ) ˙ ( ) ( ( )) ˙ ( )

where the last two terms are respectively weakly positive (spillover effect at p p2 2
1

1= −ψ ( ))

and weakly negative (exactly zero if cost is strictly convex i.e., when ϕ1 1
1= −Ċ ).
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In order that firm 1 plays according to a density around a price p1, ∂
∂

Π1 1 2

1
0( , )p F

p =  must

hold locally thus ∂
∂

2
1 1 2

1
2 0Π ( , )p F

p
=  must likewise hold locally. We have already shown that Π1

B

and Π1
G were concave, thus f p2 2

1
1 0ψ−( ) >( )  must hold whenever ˙̇ ( )Π1 1 0C p = . This will

happen if Ċ1  is a step function with finitely many jumps because the point p1 can always be

chosen between the jumps. As a consequence firm 2 must use a density around ψ 2
1

1
− ( )p .

Starting from the upper bound p1
* of the density played by firm 1 we deduce that firm 2 plays

a density at ψ 2
1

1
− ( )*p . By symmetry (if Ċ2  is also a step function) firm 1 must be playing a

density around ψ ψ1
1

2
1

1
− −( )( )*p . As seen on figure A2 above this process leads to prices below

the Bertrand ones, a contradiction.

If firm 1 uses an infinite number of atoms in equilibrium there must exist a price p1

such that a neighbourhood of p1 contains infinitely many atoms thus ∂
∂

2
1 1 2

1
2 0Π ( , )p F

p
=  must hold

for otherwise the continuous payoff function could have infinitely many maximum in that

neighbourhood. This implies that firm 2 must be playing infinitely many atoms around

ψ 2
1

1
− ( )p . The previous reasoning therefore carry on to this case. The support of a Nash

equilibrium distribution is thus finite when marginal cost functions are stepwise. What is at

the heart of this proof is the existence of the Bertrand area characteristic of differentiated

markets. In the homogeneous case studied by Kreps & Scheinkman, it is reduced to a line and

our iterative procedure cannot be applied to rule out densities.

Any marginal cost function Ċ1  can be approached by a step function to yield a payoff

function Π̂1
ε  whose distance from the original Π1 in the supremum norm over 0 0; ;p p[ ] × [ ]  is

less than ε. Let F F1 2
* *,( ) be a Nash equilibrium of the original game and let pk

k

n
1 1

1( ) =
 be the

argmax of ˆ , *Π1 1 2
ε p F( ). For every ε there exists α  such that p pk

1 1− > α  implies

ˆ ( , ) ˆ ( , )*Π Π1 1 2 1 1 2
ε ε ε εp F p Fk< −  (this comes from the fact that the points pk

1  are isolated) thus

Π Π1 1 2 1 1 2( , ) ( , )*p F p Fkε < . As a consequence the support of F1  is included in

p p pB k

k

n

1 1
1

1

; \[ ] ±[ ]
=

αU . The same argument applies for firm 2. We proved in step 1 that there are

no indices k,l such that p pk l
1 2 2= ψ ( )  or p pl k

2 1 1= ψ ( ) thus we may take ε small enough to

guarantee that rectangles p pk l
1 2±[ ] × ±[ ]α α  never intersect the graphs of ψ1 and ψ2  i.e.,

they belong to the interior of area B, G or C. Over each pk
1 ±[ ]α , 

∂
∂

Π1 1 2

1

( , )*p F
p  is a finite sum of

integrals of either ∂
∂
Π1

1

G

p , ∂
∂
Π1

1

B

p  or Π̇1
C  over intervals of the form pl

2 ±[ ]α , thus it is

continuously differentiable and has finitely many zeroes leading to finitely many best replies

to F2
*: the support of a Nash equilibrium is finite. ♦♦♦♦
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LEMMA A.1

Derivation of the cut-off between aggressive pricing (Lemma 1) and monopoly

behaviour and existence of the A type equilibria ( proposition 3)

Proof i) The profit of the Hotelling best reply ϕ
α

α1 2

1
2 2 1

2 1 2 1

2

1 2
( )

( )

( )
p

if p k

p k if p k

p

=
<

+ − ≥







+
, the

associated profit is 
Π

Π

1 2
2

2

2 1

1 2 1 2 1 2 1

1

8
1 2

( )
( )

( )

( ) ( )

p
p

if p k

p k p k if p k

≡
+

<

≡ + −[ ] ≥







α

α
 while that associated with the

security strategy ρ(k2) is Πd k S k k( ) ( )2 2 21 1≡ − +[ ] − . The solution to Π Πd k p( ) ( )2 1 2=  is

denoted x S k k≡ − +[ ] − −8 1 1 12 2( )  while that of Π Πd k p( ' ) ( )2 1 2=  is denoted

y k
S k k

k≡ − +− +[ ] −1 1
1

2 2

1
1 2

' ( ' )
. Observe that if S is too small then x is negative and the security

strategy is never used; also the bound x is useful for large values of k2 as Πd is decreasing;

solving in k2 the inequality x k≤ ⇔α( )1  8 1 1 1 4 12 2 1S k k k− +[ ] − − ≤ −( )  leads to

k S k
S S k

2 1
2 8

2

2
1
2

≥ ≡ − + −Λ( , )  having eliminated the negative solution. Letting

γ( )
( , )

max{ , }
,k k

y if k S k

x otherwise1 2
2 1

0
≡

<



Λ
, we obtain the best reply function of firm 1 as

BR p
k if p k k

p if p k k
( )

( ) ( , )

( ) ( , )2
2 2 1 2

1 2 2 1 2
≡

≤
>





ρ γ
ϕ γ

. The best reply of firm 1 to a low price p2 is the

default option ρ(k2) and above the threshold x, the optimal play becomes H(.). For the smaller

capacity k'2, the cut-off value is y and the optimal play above y is a(k1,.).

ii) We characterise the area of the capacity space 0 1 12
2 1;[ ] ∩ +{ }>k k  where the pure

strategy equilibrium (type A in proposition 4) exists. The condition γ(k1,k2) < 1 is equivalent
to k S k and y2 1 1< <{ }Λ( , )   or k S k and x2 1 1≥ <{ }Λ( , )  . When γ(k1,k2) = y, we solve 1 >

2 k 1  −  1 + 
S k k

k
− +[ ] −1 12 2

1

( )
. Using the only meaningful root, we derive: k2  >

Φ( , )S k1 ≡ 2 8 1
2

2
1 1− + − −S S k k( )

. Note that Φ(S,k1) < k2 < Λ(S,k1) make sense only for k1 < 1/2.

When γ(k1,k2) = x, we solve 8 1 1 1 12 2S k k− +[ ] − − <( )  and we get k2 > Φ(S,1/2) =

2 2
2

2
1 2 1− + − ∈ [ ]S S / ;  valid for S larger than 2. Area A1 is thus defined by its lower contour

Φ(S,k1) over 0 1
2;[ ]  and the constant Φ(S,1/2) over 1

2 1;[ ] . Area A2 is symmetrically defined

and since Φ(S,1/2) > 1/2, area A where the Hotelling equilibrium exists is the square
Φ Φ( , / ); ( , / );S S1 2 1 1 2 1[ ] × [ ] . Yet, we cannot claim that it is the only equilibrium of area A

because profit functions are not concave. ♦♦♦♦
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LEMMA A.2

In a completely mixed strategy equilibrium of G(k1,k2), firms use the same number of

atoms n and ∀ ≤ − − < − < −k n k p p kk k1 1 2 2 12 1 2 1, .

Proof We use the table of points formed by the distributions pk m
1( ) =k 1

 and pk

k2( )
=1

n
 (cf. Figure

A3 below) ; we speak of lines when p1 is fixed, of columns when p2 is fixed and of the

"diagonal" for the pairs p pk k

k1 2 1
,( ) ≥

. The equilibrium being in completely mixed strategies

assume w.l.o.g. m ≥ n > 1.

Claim 1 The pair p p
1 2
,( )  of minimal atoms lies in the band (cf. point α on Figure A3)

If p p k
1 2 21 2< + − , then the whole

line p pk

k

m

1 2 1
,( ) =

 lies under the band and

Π Π1 2 1 2( ,.) ( ,.)F FC=  which is locally
increasing meaning that p

1
 cannot be part

of an equilibrium. We have the symmetric

result for firm 2. In the Hotelling model, the

same reasoning implies that every line and

every column has at least one point in the

band because Π1 2 1 1
C F k p( ,.) =  and

Π1 2 2 11G F k p( ,.) ( )= −

α

β χ

ω

δ ε

p2

p2

p1

D1 = k1

D2 = k2

p2

p1

p1

q2

Figure A3

Claim 2 ω and β lie strictly outside the band

Let pi  be the second atom of Fi for i = 1, 2 and q p k2 1 21 2≡ − + . Since F1 has a

countable support, Π 2(F1,.) cannot be constant over an interval thus not over p p
2 2,[ ] ,

therefore it must strictly decrease after p
2
 and then strictly increase up to p2. Yet since

Π2(F1,.) is concave at p
2
−  (we do not exclude p q

2 2=  yet), the only way to make it increasing

again is to move into the positive externality area when reaching p2. Consequently ω =
p p

1 2,( )  (and may be some other points in the ω−χ column) must lie strictly in the lower

triangle i.e., p q2 2> . The case for β is symmetrical.
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Claim 3 α is strictly interior to the band

If p q
2 2= , D2(F1,.) is locally increasing at p

2
+  because β lies strictly in the upper

triangle, a contradiction. The case for the upper frontier of the band is symmetrical.

Claim 4 All points p pk k

k

n
1 2 1

1
,( ) =

−
 are strictly interior to the band

The second "diagonal" point p p1 2,( )  could be either χ, δ or ε on Figure A3 above. If it

were χ, then the ω−χ column would have no point in the band and Π2(F1,.) would be locally

increasing at p2. Likewise, if it were ε, the β−ε line would have no point in the band. Thus

p p1 2,( )  is δ (it could lie on one frontier). By the argument of claim 2, if n >2 then p p1 2
3,( )

must lie strictly in the lower triangle ; likewise p p1
3

2,( )  must lie strictly in the upper triangle.

Now if δ were at the left edge of the band, then Π1(F2,.) would be locally increasing at p1
+

and if δ were at the right edge of the band Π2(F1,.) would be locally increasing at p2
+. The

reasoning applies for all diagonal points whenever there is one more atom above. Only the

last diagonal point p pn n
1 2,( )  could lie on one frontier of the band.

Claim 5 The distributions have the same number of atoms.

Suppose m = n + 1. Consider first the case where p pn n
1 2,( )  is not interior to the band.

Since m > n there is another point on the right with p kn
2

1
1

+ ≤ ρ( ) . If p pn n
1 2,( )  were on the right

frontier then Π2(F1,.) would be strictly increasing over p pn n
2 2

1; +[ ]  a contradiction. Thus

p pn n
1 2,( )  is on the left frontier as on Figure A4 below. Still, if p kn

1 2< ρ( ) , Π1(F2,.) is strictly

increasing over p kn
1 2; ( )ρ[ ] , a contradiction, therefore p kn

1 2= ρ( ) as on Figure A4. To prove

that m = n, observe that D2(F1,.) has the same definition over the whole interval r q2 2;] ]  and

being concave on that interval it cannot have two strict maximisers. The case for p pn n
1 2,( )

interior to the band is depicted on Figure A5. It is similar because the change in D2(F1,.) from

r2 to q2 is the switch from the slowly decreasing duopolistic demand to the more decreasing

monopoly demand thus reinforcing the impossibility to have another argmax of Π2(F1,.)

beyond r2. The case for m > n + 1 is now easy because Π2(F1,.) must have the same shape

over p pn n
2 2

1; +[ ]  or over p pn n
2

1
2

2+ +[ ];  which leads to a contradiction. ♦♦♦♦
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LEMMA A.3

The nature of the equilibria with n atoms in the pricing game G(k1,k2).

Proof Consider the distributions pm m
1 1,µ( ) ≤m n

 and pm m
2 2,µ( ) ≤m n

 of an equilibrium with n

atoms on each side. By lemma 3 we can write for m ≤ n:

Π1 2 1 1 2 2 2
1 2

1 21
1

2
( , ) ( )F p p k

p p
km m h

h m

m
m m

h

h m

= − +
− +

+










< >

∑ ∑µ µ µ (E3)

We consider first an equilibrium where all diagonal points are interior to the band i.e.,

p kn
2 1< ρ( ) and p kn

1 2< ρ( ) . In that case, the first order condition (FOC) of local optimality

applies with equality for all j ≤ n by lemma 3.

∂
∂

µ µ µ
Π1 2 1

1
2 2 2 1 2 1 20 2 1 1 2 2 0

( , )
( ) ( )

F p

p
k p p k

m

m
h

h m

m m m h

h m

= ⇔ − + − + + =
< >
∑ ∑  (E4)

By virtue of (E4), the profit at the optimum is Π1 2 1
2 1

2

2
( , )

( )
F p

pm
m m

=
µ

. The same first

order condition for firm 2 at its mth atom leads to the following system with the constants M1

and M2 adequately defined:

µ µ µ

µ µ µ

2 1 2 1 2 2 2 1

1 2 1 2 1 1 1 2

1 2 2 2 1

1 2 2 2 1

m m m h

h m

h

h m

m m m h

h m

h

h m

p p k k M

p p k k M

( ) ( )

( ) ( )

− + = − − − = −

− + = − − − = −









> <

> <

∑ ∑

∑ ∑

⇒ 3 3 2 21 2 1 1 2 1 1 2 2µ µ µ µ µ µm m m m m m mp M M= + +
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⇒ p k k k km
m

h

h m

h

h m
m

h

h m

h

h m
1

2
2 2 1 2

1
1 1 2 11

4

3
1

2

3
1= + − +









 + − +











< > < >
∑ ∑ ∑ ∑µ

µ µ
µ

µ µ( ) ( )

     (E5)

We also have the n equations for the prices charged by firm 2. Having eliminated the

prices, the number of unknowns is reduced from 4n to 2n. Since µ µi
n

i
m

m n

= −
<
∑1  for i = 1,2,

we can use the vectors 

  

u

m

h
m n
h n

≡





 <
<

µ
µ

1

2

of 2n − 2 unknowns and the 2n − 2 equations system is

obtained by equating profit for each firm at each of the atoms it plays in equilibrium i.e. 0 =

X u
p p

p p

n n m m

n n h h
m n
h n

( )
( ) ( )

( ) ( )
≡ −

−






 <
<

µ µ
µ µ

2 1
2

2 1
2

1 2
2

1 2
2

.

This system can be reduced to a polynomial one with as many equations as unknowns,

it has a finite number of solutions (cf. Theorem 1). Except for the 2-atoms case (see Lemma

A.4), we have not been able to check unicity beyond variation of the starting point of our

algorithm. The algorithm we are proposing is only an equilibrium selection, not the

equilibrium correspondence. It must be noted that all equations are fractional and can thus be

reduced to polynomial equations with a maximum exponent of 7 (independently of n).

Furthermore, if we count k1 and k2 as variables, each equation contains 60 monomials for n =

2, 247 monomials for n = 3, 686 monomials for n = 4 and 1533 monomials for n = 5. It must

be noted that even for n = 2, the Mathematica software is not able to solve this polynomial

system. We have therefore programmed an algorithm for this purpose.

Since pn
1  is proportional to 

1

2µn , the profit µ2 1
2n np( )  decreases with µ2

n , thus by

choosing µ1
n  and µ2

n  nearby 1 i.e. u near 0, we obtain X(u) << 0. The Taylor expansion of the

differentiable function X is X u du X u dX du( ) ( ) .+ = +  where dX is the Jacobian of X

evaluated at u. We approach a solution by following the path of optimal growth i.e., we

choose du = − . −δ ( ) . ( )dX X u1  where δ is chosen to enable a rapid but certain convergence of

the numerical computation. If p kn
2 2= ρ( ) then p kn

1 2= δ( ) and vice versa. One implication is

that (E4) must be satisfied only as an inequality at ρ( )k2
− and δ( )k2

− thus there is more slack

for the choice of the probabilities. This permits a candidate equilibrium to pass more easily

the supplementary constraint that the diagonal points of the equilibrium distribution must lie

in the band. We show this in the next lemma for the 2 atoms case.

The width of the band is defined as K = 2(k1+k2−1). By proposition 3, firm 1's support

is included in 
  

( )
( );

1
1 1

2

1
2 2

−
− + − +













k

k
S k S k  thus the range of prices has a length of
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( )S k K

k

− +1

2
2

1
. The reasoning of lemma 4 has shown that the distance from p1

1 to p1
3  is at

least K, thus if there are 2n+1 atoms, the necessary range is at least nK. We obtain a bound on

the number of atoms with S: 
( )S k K

k
nK n

S k k

k

− +
≥ ⇒ + ≤

+ + −1

2
2 1

12

1

2 1

1
. ♦♦♦♦

LEMMA A.4

Analysis of the two atoms price equilibrium

Proof We first analyse the "interior" equilibrium as a particular case of the previous lemma

and then we derive the existence of the two atoms price equilibrium where the firm with the

largest capacity plays her security price.

For a two atoms equilibrium with prices p p
1 1,( ) and distribution ( , )µ µ1 11 − , we let

β
µ

µi
i

i
≡

−1
 for i = 1, 2 so that system (E5) for the lower and upper atoms reads:

 3 3
4

1
2 1

3 4 2
1

1

2
2

2 1

1
2 1 1 2p

k k
k k= + − +

−
= + +

µ
µ

µ
µ

β β( )
( )

(E6)

and 3 3
4 1

1

2 1

1
3 4

1
2

1
1

2 2

2

1 1

1

2

2

1

1
p

k k k k
= +

−
−

+
−
−

= +
−

+
−( )

( )

( )

( )

µ
µ

µ
µ β β

(E7)

The equality of the profits Π1 2 1

2 1
2

2
( , )

( )
F p

p
=

µ
 and Π1 2 1

2 1
21

2
( , )

( )( )
F p

p
=

− µ

simplifies to µ β β µ
β β2 2 1 1 2

2
2

2

2

1

1

2

3 4 2 1 3 4
1

2
1

( ) ( )+ + = − +
−

+
−





k k
k k

⇔ 3 4 2 3 4
1

2
1

2 1 1 2 2
2

2

1

1
+ + = +

−
+

−





β β β
β β

k k
k k

(E8)

We derive β1 as the largest (i.e., the meaningful) root f(β2,k1,k2) of the second degree

equation (E8). By symmetry for firm 2, we get β2 = f(β1,k2,k1). It is now clear that an

equilibrium of the pricing game is a fixed point of f f k k k k(., , ), ,1 2 2 1( ). Since p p
1 1<  and

profits are proportional to µ1 1
2( )p  and ( )( )1 1 1

2− µ p , it must be true that µ1 > 1/2, thus β2 < 1

and symmetrically β1 < 1. Those supplementary conditions are helpful to analyse the large

capacity case. Observe that, independently of the capacities, if β2 tends to 0, the second

degree equation tends to 2 4
1

02 1
2 2

2
1k

k
β

β
β[ ] −

− [ ] = . Its positive solution diverges and by

symmetry, we obtain f k k( , , )β
β1 2 1 01→

 → +∞ . Now, since β2 is bounded, the constant in
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(E8) tends to zero when k1  approaches unity, thus β β1 2 1 2= f k k( , , )

=
− + −

 →
→

B B AC

A k

2

1

4

2
0

1
. Plugging this in the preceding result, we see that β2 =

f(β1,k2,k1) diverges, a contradiction with the constraint β2 < 1.

We can therefore undertake numerical computations without worrying about the

behaviour at the corner (1,1). As f is analytically known, we have been able to compute the

roots of 
  
f f k k k k(., , ), ,1 2 2 1( ) for a lattice of capacities such that ki + kj > 1 ; it appears that

this function is always decreasing, thus there is at most one equilibrium. The conditions

provided by lemma 4 arising from (E6) and (E7) are

3 1 2 3 4 2 3 4 2 3 2 12 2 2 1 1 1 1 2 2 1( ) ( )− < + + − + +( ) < −k k k k k kβ β β β

⇔ − < − < −
3

2
1 2

3

2
2 12 2 2 1 1 1( ) ( )k k k kβ β (E9)

 and 
3

2
1 2

1 1 3

2
2 12

1

2

2

1
1( ) ( )− <

−
−

−
< −k

k k
k

β β
(E10)

They allow us to eliminate couples with high capacity differential. Our computations
show that the upper prices p and pi j   increase with capacities; thus p k S ki j j≤ = − +ρ( ) 1  is

violated for large capacities i.e., the point p pi j,( )  leaves the "band" as described in lemma 5.

Consequently, atomic equilibrium will never exist for capacities nearby unity.

We now derive the constrained equilibrium (type B') where the high capacity firm 1

uses its security strategy ρ(k2) in equilibrium. For this two atoms equilibrium with bottom

prices q1 and q2 and distribution   ( , )µ µ1 11− , we let β
µ

µi
i

i
≡

−1
 for i = 1, 2 so that system

(E5) for the lower atom reads:

q
k k

k k1
1

2
2

2 1

1
2 1 1 21

4

3
1

2 1

3
1

4

3

2

3
= + − +

−
= + +

µ
µ

µ
µ

β β( )
( )

(E11)

A symmetric equation holds for firm 2 ; the interiority condition for q1 and q2 is still

(E9) which amount to require sufficiently low values for β1 and β2. We consider potential

deviation at the large prices ρ(k2) and δ(k2) for firm 1 and 2 respectively. At ρ(k2), an upward

deviation of firm 1 leads to a monopolistic demand and thus ρ(k2) is optimal. For a downward

deviation, 
∂

∂ ρ

Π1 2 1

1
2

0
( , )

( )

F p

p
k −

> ⇔ µ µ ρ δ
2 2 2

1 2
21 1 02 2( ) ( ) ( ) ( )− + − >− +k k k  ⇔

β2
2

2

2 1

3 1
<

−
− −
( )

( )

k

S k
   (E12)
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As q1 < ρ(k2) − K, the local condition at δ(k2)- for firm 2 is trivial because the demand

is always constant. At δ(k2)+, Π2 1 2 2 1 1 1 21 1( , ) ( ) ( )( )F p p k S p= − + − −[ ]µ µ . The FOC is

∂
∂ δ

Π2 1 2

2
2

0
( , )

( )

F p

p
k +

<    ⇔ − + − − <µ µ δ1 1 1 21 1 2 0( ) ( )( ( ))k S k ⇔
  

β1

1

2

1

2
<

−
−

k

S k

    (E13)

These constraints are compatible with (E10). The equality of payoffs at q1 and ρ(k2)

for firm 1 leads to 
µ µ β β2 1

2

1
2 2 1 1 2

2

2 22

3 4 2

18
1 1

( ) ( )
( )( )

q k k
S k kS= ⇔

+ +
= − + −Π

⇔ + + = − + − +( ) ( )( )( )3 4 2 18 1 1 12 1 1 2
2

2 2 2β β βk k S k k (E14)

while for firm 2, we obtain 
µ

δ µ µ1 2
2

2 1 1 1 22
1 1

( )
( ) ( ) ( )

q
k k k= − + −( )

⇔ + + = − − +( )( ) ( )3 4 2 18 11 2 2 1
2

2 1 1 2β β βk k S k k k (E15)

Using the numerical method previously introduced, we are enable to solve system

(E14-E15) in an unconstrained manner and then eliminate those solution which violate

conditions (E12-E13). For small values of S, we obtain equilibria for the capacity pairs where

the type B equilibrium does not exist. Yet when S increases, the numerical solution to (E14-

E15) does not pass the test anymore meaning that a price equilibrium is a minimum of 3

atoms that enable a fair share of weights among them. This is consistent with the formula on

the maximum number of atoms derived at the end of lemma A.3. ♦♦♦♦


