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Abstract

In this paper, we prove that the concept of value traditionally de-
fined in the class of two-person zero-sum games can be adequately
generalized to the class of n-person weakly unilaterally competitive
games introduced by Kats & Thisse [KT92b]. We subsequently es-
tablish that if there exists an equilibrium in a game belonging to the
latter class, then every player possesses at least an optimal strategy
(i.e., a strategy yielding at least the value to this player). Furthermore,
we show that, in all unilaterally competitive games that have a Nash
equilibrium profile, a strategy profile is an equilibrium if and only if
it is an optimal profile. From these results, we deduce a very strong
foundation to the Nash equilibrium concept in unilaterally competitive
games.
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1 Introduction

The class of two-person zero-sum games has always played a central
role in the theory of non-cooperative games. The important equi-
librium idea, of which the notion of Nash equilibrium is an essential
generalization, arises very naturally in this class of games. The reason
is that the existence of a value of the game and of optimal strate-
gies (strategies that yield at least the value against any choice of the
opponent) carries some very interesting and powerful properties.

First, the foundation of the equilibrium solution concept in this
class, is very strong1. The computation of an equilibrium is not an
issue: the game can be solved and the outcome is strictly determined
(it is the value of the game). The key feature is that it is possible to
compute optimal strategies of one player without computing those of
her opponent. The problem of finding equilibrium pairs can thus be
split up into two easier problems: the choice of optimal strategies by
a given player can be done by assuming that her opponent behaves
as a cut-throat automaton whose sole intention is to minimize her
payoff. Finally, the existence of optimal strategies implies that all
Nash equilibria yield the same payoff vector. This is important in
some classes of extensive games with two steps. Indeed, if in the second
stage every equilibrium gives the same payoff then, one is able to use
backward induction to solve the whole game. Typical examples are
Hotelling Location - Price fixing problems (see [KT92a] for instance).

Unfortunately, the elegant theory of two-person zero-sum games
is not appropriate when applying game theory to economic or other
social sciences situations. Indeed, although such games have been
widely studied in game theory, most of the games that bear some
interest in the social sciences are non-zero-sum ones. In order to be
useful for economic applications, a class of games needs to represent
more realistic situations and has to deal with more than two players.

A traditional theme among game theorists is to preserve some of the
elegant properties of the two-person zero-sum games within enlarged
class of games2. Because, the antagonistic nature of two-person zero-
sum games is the source of the interesting characteristics, theorists
have naturally paid attention to the classes of games that are “com-

1In general, this is not necessarily the case. See [DWF98] and [DW98] for details.
2See, among others, [vNM47], [Aum61],[Sha64], [Ros74], [MV76], [Fri83], [KT92b],

[DW99], [Bea99].
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petitive” in the sense that players do not have many incentives to
cooperate nor correlate their plans.

In this article, we study the class of n-person (weakly) unilater-
ally competitive games, introduced by Kats & Thisse [KT92b]. We
show that this class shares some very nice properties with the class of
two-person zero-sum games. Indeed, we establish that, even when the
number of players is greater than two, every player can guarantee her-
self a Nash equilibrium payoff by selecting a Nash equilibrium strategy.
From this result, we define an extension of the notion of value and we
prove that, if there exists an equilibrium3, optimal strategies always
exist. We also state that in a unilaterally competitive game possessing
an equilibrium, if one selects an optimal strategy for each player then
the resulting profile is always an equilibrium and all equilibria can be
constructed in this way. This result is important because similarly to
the case of the class of two-person zero-sum games, it is possible to
compute the optimal strategies of the players independently of each
other. We thus prove that in unilaterally competitive games the foun-
dation of Nash equilibria is very strong.

Our results on the existence of a value of the game and of optimal
strategies imply Kats & Thisse’s main theorems: for all weakly unilat-
erally competitive games, each of the players receives the same payoff
at all equilibrium points and for all unilaterally competitive games,
equilibrium strategies are exchangeable. We give some very simple,
short and intuitive proofs of their results.

The paper is organized as follows. Section 2 consists of preliminar-
ies where we recall the important notions of maximin and minimax
strategies. In section 3, we define the class of weakly unilaterally com-
petitive games and illustrate it with economic applications. Among
other examples, we develop a new model of product differentiation.
Section 4 contains the main results of the paper. Section 5 concludes
by giving a very peculiar example of a unilaterally competitive game.

3All our results hold (in particular) for pure strategies, so that such an assumption is
sensible.
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2 Preliminaries

A finite noncooperative normal form game4 Γ is a triple {n,Σ,
(ui)1≤i≤n} where n is the number of players5, Σ = Σ1 × · · · × Σn

is a compact set and for every i (i = 1, . . . , n), ui is a continuous
mapping from Σ to R. Σ represents the set of strategy profiles. Each
player i simultaneously chooses a strategy si in Σi. Notice that Σi can
be interpreted as a set of either pure or mixed strategies. Player i’s
payoff is given by her utility function ui. We frequently denote all
players, other than some given player i, as −i.

Definition 2.1 Let Γ = {n,Σ, u} be a game.

• The maximin value or the gain-floor for player i is the maximum
payoff that she can guarantee to herself; it is her best security
level:

vi := max
si∈Σi

min
s−i∈Σ−i

ui[si, s−i]

• A maximin strategy for player i, si, is a strategy that maximizes
her security level. Formally, for all strategy profiles s−i of players
−i, we have that ui[si, s−i] ≥ vi. Whatever the other players
play, by playing a maximin strategy, player i cannot receive less
than her maximin payoff.

• The minimax value or loss-ceiling for player i is the lowest payoff
that the other players can force upon player i:

vi := min
s−i∈Σ−i

max
si∈Σi

ui[si, s−i]

• A minimax strategy, s−i, is a strategy such that, for all strate-
gies si of player i, ui[si, s−i] ≤ vi. Whatever player i does, if the
other players choose a minimax strategy, then she cannot receive
more than her minimax value.

Maximin and minimax strategies always exist under our assump-
tions, but need not be unique. If the maximin and the minimax values
are equal for each player, we name this n-uple the value of the game.
In that case, by choosing a maximin strategy, a player always receives
at least her value against any choice of her opponents. In this con-
text, because they always yield the best possible outcome, we define
maximin strategies as optimal.

4Or simply a game.
5We always assume that the number of players is at least two.
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Note that it is easy to prove that in any game, a player’s equilibrium
payoff is always greater than the loss-ceiling of that player which, in
turn, always exceeds (weakly) her gain-floor: if s∗ is an equilibrium,
vi ≤ vi ≤ ui[s∗]. Lemma 2.1, whose proof is trivial, gives a set of
sufficient conditions for a profile to be a Nash equilibrium.

Lemma 2.1 Let Γ = {n,Σ, u} be a game. If for every player i, the
profile s∗−i is minimax and the payoff ui[s∗] is equal to vi, then s∗ is a
Nash equilibrium of Γ.

3 (Weakly) Unilaterally Competitive

Games

3.1 Definitions

In their paper, Kats & Thisse define a new class of games: the
weakly unilaterally competitive games (see [KT92b]). To quote them,

A game belongs to this class if a unilateral move by
one player which results in an increase in that player’s pay-
off also causes a (weak) decline in the payoffs of all other
players. Furthermore, if that move causes no change in
the mover’s payoff then all other players’ payoffs remain
unchanged.

Definition 3.1 A game Γ = {n,Σ, u} is weakly unilaterally compet-
itive if:

∀i,∀si, s′i ∈ Σi,∀s−i ∈ Σ−i
ui[si, s−i] > ui[s′i, s−i] =⇒ u−i[si, s−i] ≤ u−i[s′i, s−i]

and ui[si, s−i] = ui[s′i, s−i] =⇒ u−i[si, s−i] = u−i[s′i, s−i]
(1)

The two authors slightly strengthen their definition and define a
game as unilaterally competitive if any unilateral change of strategy
by one player results in a (weak) increase (resp. decrease) in that
player’s payoff if and only if this change in strategy results in a (weak)
decline (resp. increase) in the payoffs of all other players.

Definition 3.2 A game Γ = {n,Σ, u} is unilaterally competitive if:

∀i,∀si, s′i ∈ Σi,∀s−i ∈ Σ−i
ui[si, s−i] ≥ ui[s′i, s−i]⇐⇒ u−i[si, s−i] ≤ u−i[s′i, s−i]

(2)
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3.2 Some Illustrative Economic Examples

We now present three economic models formalized as weakly uni-
laterally competitive game6. We first expose the standard model of
private provision of a public good and we follow by giving an exam-
ple of oligopolistic competition inspired by the Bertrand model. The
third example is an alternative model of product differentiation.

3.2.1 Private Provision of a Public Good

Consider a desirable7 public good that is produced by means of
private contribution by n consumers i = 1, . . . , n. We will focus on the
case in which exclusion is not possible: no customer can be excluded
from the benefits of the public good. The larger amount of public good
provided, the more each consumer benefits, but each would prefer the
other customers to incur the cost of supplying the good. Consumers
decide simultaneously how much to contribute to the public good ; let
xi ∈ R+ be the amount of the public good produced by consumer i.
The total amount of the public good provided by customers is then
x =

∑n
j=1 xi. We denote consumer i’s utility from the public good

by Φi(x). The cost of supplying q units of the public good is c(q).
Customer i’s total utility function Ψi is the difference between her
utility provided by the aggregate level of production and her cost of
production: Ψi(x1, . . . , xn) = Φi(x)− c(xi).

We assume that the benefits provided to player i by increasing her
own purchasing share does not compensate the increase of the cost.
In other words, each player benefits when the public good is provided,
but each would prefer the others to incur the cost of supplying it8.
Formally, we assume that 0 < Φ′i(

∑n
j=1 xj) < c′(xi). Because of this

assumption, by unilaterally increasing (resp. decreasing) its contri-
bution, player i’s utility increases (resp. decreases) while that of her
opponents decreases (resp. increases). This game is thus weakly uni-
laterally competitive.

6It seems that the class of unilaterally competitive games is less attractive from the
point of view of applied game theory.

7Note that in what follows, the public good need not necessarily be desirable (e.g.,
pollution problem).

8This is the key assumption of the free-rider problem.
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3.2.2 A Model of Price Competition

It is widely observed that the price of retail goods is very rarely
a round amount9. More generally, product prices end with 99, 95
and even sometimes 89. We present a model in which a continuum
of customers want to buy a unit (per consumer) of a homogeneous
commodity. Without loss of generality, we normalize the measure of
the set of consumers to 1. The commodity is sold by three producers.
Each producer has to select a price at which she wants to sell a unit of
commodity. Only three different prices are available: producers have
to choose a price belonging to the set {89, 95, 99}. The consumers buy
the goods to the producer that sell it at the minimum price. If several
producers propose the commodity for the same price, we assume that
each one has an equal probability to sell it to the consumers. The
payoffs for each producer are given in Figure 1.

89 95 99
89 29.7, 29.7, 29.7 44.5, 0, 44.5 44.5, 0, 44.5
95 0, 44.5, 44.5 0, 0, 89 0, 0, 89
99 0, 44.5, 44.5 0, 0, 89 0, 0, 89

89

89 95 99
89 44.5, 44.5, 0 89, 0, 0 89, 0, 0
95 0, 89, 0 31.7, 31.7, 31.7 47.5, 0, 47.5
99 0, 89, 0 0, 47.5, 47.5 0, 0, 95

95

89 95 99
89 44.5, 44.5, 0 89, 0, 0 89, 0, 0
95 0, 89, 0 47.5, 47.5, 0 95, 0, 0
99 0, 89, 0 0, 95, 0 33, 33, 33

99

Figure 1: A model of price competition

It is easy to verify that this game is weakly unilaterally competitive.
Also note that for each player i, the strategy 99 is dominated. Indeed,
both strategies 89 and 95 yield a better payoff to player i against any
players −i’s strategy profile. If strategy 99 is eliminated, then the
strategy 95 is dominated for all players. The equilibrium strategy, 89

9A rationale for this phenomenon has been given in the marketing literature (e.g.
[Wil90]).
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is not dominated.

3.2.3 Location under Nonprice Competition

Product positioning, be it in geographical space or within the space
of product attributes, is a major concern for the firms as soon as
consumers are heterogeneous. This is especially true when price is
not under the control of the firms (which may happen for a variety
of reasons including cartel agreements or regulation). In this case
indeed, firms battle for market shares through location choices and
the game is likely to be highly competitive. Should a firm specialize
on a limited market “niche” or sell a more basic product that competes
with all others? We provide hereafter a framework that formalizes this
problem by allowing firms either to concentrate on their core market
or to steal other firm market shares through location choices.

Consider n lines of length one that have one common endpoint called
the “center”. n sellers 1, . . . , n of a homogeneous product with zero
production cost are installed at respective distances x1, . . . , xn ∈ [0, 1]
from the center (see Figure 2). Each seller owns one and only one line
and can choose any location on this line. Customers are distributed
uniformly along the lines and each one consumes exactly one unit of
the commodity. We assume that the mill price is given and equal for
all firms. Since the product is homogeneous, the price is fixed and,
assuming that consumers pay for the transportation cost, a customer
will purchase the good to the nearest firm. When several firms are
equidistant from a consumer, we assume that each one has an equal
probability to sell to the customer.

15

2

6

3

7

4

8

Figure 2: Particular location of 8 firms

The strategies of the firms are given by locations only. Because
the firm’s payoff only depends on the level of sales, it is given by the
measure of the set of consumers they serve. Consider the set M of
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firms that are located the nearest from the center: M = {i : xi =
min(x1, . . . , xn)}

ui(x) =



1 + 1
#M

∑
j /∈M (dist[xi,xj ]

2 − xi) if xi ∈M

= 1− n−#M
2#M xi +

∑
j /∈M xj
2#M

1− xi + dist[xi,min(x−i)]
2 if xi /∈M

= 1− xi
2 + min(x−i)

2

Note that if seller i does not belong to M , her utility, ui(x), is always
lower than 1: she does not serve her whole line. On the contrary, if
she belongs to M then her payoff always exceeds 1 because she serves
at least her entire line.

Now, let us assume that seller i decides to unilaterally change her
location from x̂i to xi. Without loss of generality, consider that xi >
x̂i. There are three different cases:

• xi, x̂i /∈ M . In that case, seller i’s utility increases of xi−x̂i
2 , the

payoff of every seller belonging to M decreases of an amount
xi−x̂i
2#M and all the other sellers’ payoffs stay unchanged.

• xi /∈ M and x̂i ∈ M . In that case, seller i’s payoff increases
because her payoff was below 1 in xi and becomes greater than
1 in x̂i. Every seller belonging to M decrease while all the other
sellers’ payoffs stay unchanged.

• xi, x̂i ∈ M . Let m be the number of sellers in M . When seller
i is in xi, she increases her payoff of an amount (m−1)xj−mx̂i+xi

2m
while all the other sellers’ payoffs decrease.

This model of nonprice competition is thus a weakly unilaterally
competitive game.

3.3 Value and Optimal Strategies

We first state that in a weakly unilaterally competitive game, play-
ing an equilibrium strategy s∗i guarantees player i her equilibrium
payoff ui[s∗] independently of the strategy chosen by her opponents.

Theorem 3.1 Let Γ = {n,Σ, u} be a weakly unilaterally competitive
game.

s∗ equilibrium of Γ =⇒ ∀i min
s−i∈Σ−i

ui[s∗i , s−i] = ui[s∗] (3)
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Proof We prove the result by induction on the number of play-
ers. We first show that statement (3) always holds in a two-person
weakly unilaterally competitive game. On the contrary, assume that
∃s−i ∈ Σ−i ui[s∗i , s−i] < ui[s∗]. Because the game Γ is a weakly uni-
laterally competitive game, we know that u−i[s∗i , s−i] > u−i[s∗]. But
this contradicts the fact that s∗ is an equilibrium.

Second, we prove that if the result is correct in the (n− 1) players
case, it has to remain valid in the n players case. Note that if the
following statement (4) is correct the result is proved

∀s−i ∈ Σ−i ∃j 6= i uj [s∗i , s
∗
j , s−ij ] ≥ uj [s∗i , s−i] (4)

Indeed, by applying the weakly unilaterally competitive property,
assertion (4) becomes ui[s∗i , s

∗
j , s−ij ] ≤ ui[s∗i , s−i]. By fixing s∗j we

know by the inductive hypothesis that ui[s∗i , s
∗
j , s−ij ] ≥ ui[s∗]. Putting

together the last two inequalities, we obtain the desired result.

By contradiction, assume that statement (4) is false:

∃s−i ∈ Σ−i ∀j 6= i uj [s∗i , s
∗
j , s−ij ] < uj [s∗i , s−i] (5)

This implies that the profile s−i is a strict Nash equilibrium of
the restricted game Γ−i(s∗i ) = {n − 1, Σ̂, u[s∗i , .]} where the players
are those of Γ except player i and the strategy space is restricted
to Σ̂ =

∏
j 6=i{s∗j , sj}. Thus, by the inductive hypothesis applied on

Γ−i(s∗i ) which is a weakly unilaterally competitive game, we must have
that ∀j 6= i uj [s∗i , s−i] ≤ uj [s∗i , sj , s

∗
−ij ]. Taking into account this last

inequality, the fact that s∗ is a Nash equilibrium of Γ and statement
(5) we have that ∀j 6= i uj [s∗i , s

∗
j , s−ij ] < uj [s∗]. But this contradicts

the inductive hypothesis on every player j (by fixing s∗i ). �

Note that the proof of Theorem 3.1 does not use the fact that s∗i is
an equilibrium strategy. Indeed, consider any strategy s∗i of player i.
The proof establishes that if s∗−i is a Nash equilibrium of the (n− 1)-
person game obtained when strategy s∗i is fixed then s∗i is a maximin
strategy of the original game.

As a corollary, we prove that for all weakly unilaterally competitive
games that have a Nash equilibrium profile, the maximin value, the
minimax value and all the equilibrium payoffs of any player are equal.
We denote this number as the value of the game for that player. It is
also shown that any equilibrium strategy is a maximin strategy and
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that by selecting Nash equilibrium strategies, player −i guarantee that
player i gets at most her value.

Corollary 3.1 Let Γ = {n,Σ, u} be a weakly unilaterally competitive
game. If s∗ is a Nash equilibrium then ui[s∗] = vi = vi. Furthermore,
for every player i, s∗i and s∗−i are always maximin and minimax strate-
gies respectively.

Proof By Theorem 3.1, we know that vi ≥ ui[s∗]. But because
s∗ is a Nash equilibrium we also know that vi ≤ ui[s∗]. Thus we
have that ui[s∗] = vi = vi. By replacing vi and vi by ui[s∗] in the
definition of maximin and minimax strategies the remaining of the
proof is straightforward (using Theorem 3.1 and the fact that s∗ is a
Nash equilibrium). �

Corollary 3.1 is very powerful because it proves the existence of a
value of the game which in turn implies that maximin strategies are
optimal (as explained in section 2). Also note that because the value
is defined independently of the equilibria, this result trivially implies
Kats & Thisse’s main theorem: In all weakly unilaterally competitive
games, all equilibrium payoffs are equal. Our proof, based on Theo-
rem 3.1, is simpler, shorter and more intuitive than Kats & Thisse’s
one.

Theorem 3.1 and Corollary 3.1 assert that a strategy needs to be
optimal in order to be an equilibrium one. We now prove that for
all unilaterally competitive games that have an equilibrium, to be an
optimal strategy is also a sufficient condition. More precisely, Theo-
rem 3.2 proves that a strategy is maximin if and only if it is a Nash
equilibrium strategy.

Theorem 3.2 Let Γ = {n,Σ, u} be a unilaterally competitive game.
If there exists a Nash equilibrium, say s∗, then the profile (si, s∗−i) is
an equilibrium if and only if si is a maximin strategy.

Proof Note that corollary 3.1 implies dir ectly the only if part of
the proof. To prove the other part, consider any maximin strategy, si,
of player i. We thus know that ui[s∗] ≤ ui[si, s∗−i]. From the fact that
s∗ is an equilibrium we deduce that player i has no incentive to uni-
laterally deviate from (si, s−i∗) and also that ui[s∗] = ui[si, s∗−i] which
in turn implies by the (weakly) unilaterally competitive property of Γ
that

∀l ul[s∗] = ul[si, s
∗
−i] (6)
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There remains to prove that no player j 6= i has an incentive to
unilaterally deviate from the profile (si, s∗−i). We give a different proof
of this assertion for the two player case and the (strictly) more than
two players case.

In order to prove the result in the two-person case, note that because
si is a maximin strategy for player i, we know that ∀sj ∈ Σj ui[s∗] ≤
ui[si, sj ]. This implies, together with the fact that ui[s∗] = ui[si, s∗−i],
that ∀sj ∈ Σj ui[si, s∗−i] ≤ ui[si, sj ]. Applying the unilaterally com-
petitive property of Γ, we obtain the desired statement.

To show the result in the strictly more than two players case, let
sj be an arbitrary strategy of player j and let us consider a third
player k /∈ {i, j}. From Theorem 3.1, we deduce the following in-
equality: uk[s∗] ≤ uk[si, sj , s∗−ij ]. This, in turn, implies, by state-
ment (6), that uk[si, s∗−i] ≤ uk[si, sj , s∗−ij ]. This inequality holds for
every k /∈ {i, j} as well as for k = i (by the above reasoning). Hence,
by the unilaterally competitive property of Γ, player j has no incentive
to unilaterally deviate from the profile (si, s∗−i) by playing sj . �

The weakly unilaterally competitive property of Γ is not enough to
prove Theorem 3.2, as the example in Figure 3 demonstrates. Indeed,
in this weakly unilaterally competitive game, the strategy profile (u, l)
is an equilibrium and player 1’s strategy d is a maximin strategy while
the profile (d, l) is not an equilibrium.

l r
u 0, 1 1, 0
d 0, 1 0, 2

Figure 3: A WUC game which does not satisfy the result of Theorem 3.2

From Corollary 3.1, we know that if s∗ is a Nash equilibrium then
s∗−i is a minimax strategy of players −i. The example presented in
Figure 4 demonstrates that the opposite assertion does not hold for
all unilaterally competitive games possessing an equilibrium: a mini-
max strategy need not be part of a Nash equilibrium. Indeed, in this
game, (u, l, A) is the unique Nash equilibrium while (d, r) is a minimax
strategy of players 1 and 2.
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l r
u 0, 0, 0 1,−1, 0
d −1, 1, 0 0, 0, 0

A

l r
u 1, 1,−1 2, 0,−1
d 0, 2,−1 1, 1,−1

B

Figure 4: A UC game with a minimax strategy that is not a Nash equilibrium
strategy

Nevertheless, Theorem 3.3 asserts that in all two-person unilater-
ally competitive games, the set of minimax strategies, the set of max-
imin strategies and the set of equilibrium strategies always coincide
for every player.

Theorem 3.3 Let Γ = {2,Σ, u} be a two-person unilaterally com-
petitive game which has an equilibrium pair. Consider a player i’s
strategy si ∈ Σi. The three following statements are equivalent:(a) si
is maximin; (b) si is minimax; (c) si is a Nash equilibrium strategy.

Proof In [LR57], Luce & Raiffa prove this result for the set of all
two-person strictly competitive games10 which is a proper subset of
the class of two-person unilaterally competitive games. Their proof
trivially holds also for the latter class. �

We know from Theorem 3.1 and 3.2 that in a unilaterally com-
petitive game, a strategy of a player is optimal if and only if it is
an equilibrium strategy for that player. Theorem 3.4 establishes a
stronger result: a strategy profile is an equilibrium if and only if it is
a profile of optimal strategies.

Theorem 3.4 Let Γ = {n,Σ, u} be a unilaterally competitive game.
If there exists an equilibrium,

s equilibrium of Γ⇐⇒ ∀i si is a maximin strategy (7)

Proof By Corollary 3.1, we know that every equilibrium strategy is
a maximin strategy. Assume now that there exists an equilibrium s∗

and denote as s a profile of maximin strategies. Because s1 is a max-
imin strategy and s∗ is an equilibrium profile, Theorem 3.2 implies
that the profile (s1, s

∗
−1) is a Nash equilibrium. But then because s−2

is maximin, we also have that (s12, s
∗
−12) is an equilibrium profile. It-

erating over the players, we obtain the result. �

10A two-person game is stricly competitive if all possible outcomes are Pareto optimal
(see, for example, [Fri83]).
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Theorem 3.4 is important because it implies that, in order to find a
Nash equilibrium, one only has to compute maximin strategies. This
justifies the terminology we used, describing maximin strategies as
optimal ones: if players −i all play a maximin strategy si, then s−i is
minimax against player i, by Theorem 3.4 and Corollary 3.1. Similarly
to the two-person zero-sum game case, n-person unilaterally compet-
itive games can be solved and their outcome are strictly determined.

Also notice that Theorem 3.4 implies directly another Kats & Thisse
result: in all n-person unilaterally competitive games, Nash equilibria
are interchangeable11.

So far, all our results concerning the class of (weakly) unilaterally
competitive games are interesting only if there exists a Nash equilib-
rium profile. Theorem 3.5 asserts that for all two-person unilaterally
competitive games, it is very easy to check the existence of Nash equi-
librium. Indeed, this theorem proves that in this class, the maximin
and the minimax values are equal for all players if and only if there
exists an equilibrium.

Theorem 3.5 Let Γ = {2,Σ, u} be a two-person unilaterally compet-
itive game. Γ possesses an equilibrium if and only if for both players
vi = vi.

Proof Denote respectively by si and si a maximin and a minimax
strategy of player i, and let vi be player i’s value. From the fact that
si is maximin and s−i is minimax, we deduce that ui[si, s−i] = vi
and thus, we also have that ui[si, s−i] ≥ ui[si, s−i] ≥ ui[si, s−i]. Ap-
plying the unilaterally competitive property of Γ to both inequalities
of the latter assertion, we obtain that u−i[si, s−i] ≤ u−i[si, s−i] ≤
u−i[si, s−i]. Consequently, for all players i = 1, 2, we have that
ui[s] = ui[s] = vi. This implies that both profiles s and s are Nash
equilibria. �

The example presented in Figure 5 is a weakly unilaterally com-
petitive that does not have any equilibrium while possessing a value.
The result of Theorem 3.5 is thus not valid for all weakly unilaterally
competitive games.

11Kats & Thisse also prove this result for all two-person weakly unilaterally competitive
games.
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l r
u 0, 1 2, 0
d 1, 1 1, 2

Figure 5: A WUC game which does not satisfy the result of Theorem 3.5

4 Concluding Remarks

The basic intuition in this paper is that if an n-person game is
competitive enough (and has a least an equilibrium) then the best
choice a player can make is to select a cautious strategy (that is a
maximin strategy). Furthermore, the resulting recommended profile
is always a Nash equilibrium. Our results are powerful in the sense
that they predict unambiguously which strategy the players have to
play in a competitive game. Therefore, one can search for equilibrium
strategies by first finding maximin strategies. Nevertheless, unless it is
shown that the game has an equilibrium profile, it is necessary to check
that the maximin strategies are equilibrium strategies. Furthermore,
remind that Kats & Thisse’s contribution and ours are only valuable
when there exists a Nash equilibrium. Indeed, if this condition is not
satisfied, then the game need not possess a value nor optimal strategies
and our results cannot be proved.

None of our results characterizes the (weakly) unilaterally compet-
itive property. Indeed, Figure 6 demonstrates that there exist some
non (weakly) unilaterally competitive games that satisfy the results
of Theorem 3.1, 3.2, 3.4 and Corollary 3.1 (when strategies are inter-
preted as mixed)12. In fact, there is a unique Nash equilibrium (the
profile [1

3 ,1
3 ,1

3 ] for both players) whose strategies are all maximin (they
all yield at least 0 to all players).

A B C
a 0, 0 1, 2 2, 1
b 2, 1 0, 0 1, 2
c 1, 2 2, 1 0, 0

Figure 6: A 2 -person non WUC game satisfying Theorem 3.4.

Also, notice that in all the examples given in this article and in
Kats & Thisse’s one, at least one player possesses a dominated strat-
egy. A natural question is thus to know whether there exist some uni-

12We borrowed this example from [MV76].
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laterally competitive games that are not degenerate in the latter sense.
We will differently answer to this question depending on whether the
strategies are considered as either pure or mixed. When players only
select pure strategies, there exist unilaterally competitive games for
which no player has a dominated strategy and which possess a Nash
equilibrium, as revealed by Figure 713.

l r
u 2, 2, 2 7, 1, 3
d 1, 3, 7 0, 4, 6

A

l r
u 3, 7, 1 6, 0, 4
d 4, 6, 0 5, 5, 5

B

Figure 7: A non-degenerate three-person UC game.

Assume now that the definition of (weakly) unilaterally competitive
games is understood in the mixed strategy sense, that is, when the
strategy set is interpreted as a product of probability distributions.
Formally, this means that in Definition 3.1 we have that Σi := ∆(Si)
and Σ−i := ×j 6=i∆(Sj), where for any finite set X, ∆(X) denotes
the set of all probability distributions over X. The product sets S
and Σ are the pure and mixed strategy set, respectively. The game
of Figure 7 which satisfies Definition 3.1 in terms of pure strategies
does not satisfy its extension to mixed strategies. Indeed, player 1 is
indifferent between the two profiles (u, [1

2 ,
1
2 ], B) and (d, [1

2 ,
1
2 ], B) while

player 2 prefers the latter (yielding 11
2 instead of 7

2). More generally,
we show in [DW99] that the unilaterally competitive property is very
restrictive when randomized strategies are permitted. We prove that
in an n-person unilaterally competitive game (with n greater than 2),
if n − 1 players have exactly two pure strategies, then there exists a
dominated pure strategy for at least one player.
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