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1 )  I NT RODUCT I ON

According to the Bertrand paradox ''two is enough for competitive outcomes''. This

result however is well-known to rely on the hypothesis of constant marginal cost and for

this reason lacks any generality (this critique of Bertrand [1883] dates at least back to

Edgeworth [1925]). Still, this paradox is often contrasted with the Cournot outcomes and

reconciling these two approaches has been the aim of many papers. The most spectacular

result in this field is to be found in Kreps & Scheinkman [1983] (hereafter KS). Two firms

invest in capacities and then compete in prices with constant marginal cost up to capacity

and an abritrarily large marginal cost above capacity; investing into limited capacity has a

strategic value because it amounts to commit not to be aggressive in the pricing game. KS

reconciliate the Cournot and Bertrand approaches by showing that the Cournot outcome is

the unique Subgame Perfect Equilibrium of their game. This result also has been much

criticized. In particular because of the particular rationing rule, the efficient one, retained

for the analysis. Still, the fact that capacity commitment relaxes price competition and

drives equilibrium outcomes towards cournotian ones is much less controversial.

An open question remains: to which extent is the "rigid capacity" assumption central

for this result to hold? In other words, would smoothly increasing marginal cost (or weaker

forms of quantitative constraints) lead to similar outcomes? This question is interesqting

from a purely theoretical point of view but it also belongs to the class of generalizations

that seem necessary to pursue robust empirical studies on oligopolistic markets. As argued

for instance by Tirole [1988] (chap. 5, p.244), "the Bertrand and Cournot models should not

be viewed as two rival models giving contradictory predictions of the outcome of

competition in a given market. (After all, firms almost always compete in prices.) Rather,

they are meant to depict markets with different cost structures." It seems fair however to

say that a rigorous link between the shape of marginal cost and equilibrium price is still

missing under strategi price competition. The main goal of the present paper consists

precisely in showing how the whole range of prices, from Bertrand towards Cournot ones,

can be sustained as equilibrium outcomes in oligopolistic industries, depending on the

shape of marginal costs.

Price competition under decreasing returns to scale, or weaker forms of capacity

constraints, has been recently studied in the literature. Klemperer and Meyer [1989] have

sdhed light on this issue using the concept of supply -function equilibrium. In their model

however, the price is not fully strategic in the sense that they are intemately related to

supply. Dastidar [1995], [1997] considers a price Bertrand competition with continuously
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increasing marginal costs and homogeneous products. Maggi [1996] introduces imperfect

commitment in capacity games using the set up developed by Dixit [1980] in a market for

differentiated products. In his model, marginal cost is modelled as a stepwise,

discontinuous function, being constant up to the capacity level where it jumps up to a

higher level. Maggi  obtain a "cournotian-like" outcome in his unique subgame perfect

equilibrium. Still, both Maggi's and Dastidar's result does not compare at all with that of KS

and more generally with the standard literature on capacity-constrained pricing games

because they totally rule out any form of rationing.

Whether firms are allowed to ration consumers or not is central when studying price

competition under decreasing returns to scale. From a technical point of view, it is well-

known that rationing tends to destroy payoffs' concavity, and therefore pure strategy

equilibria.  Under weak forms of capacity constraints (such as those retained by Dastidar

and Maggi) producing beyond capacities is always feasible but not necessarily profitable.

We are inclined to believe that firms should be allowed not to meet full demand whenever

this last strategy is profitable. As a consequence, we will allow for consumers' rationing.

 In the next section, we extend the KS result to the case of imperfect commitment

and many firms. To this end we retain the cost framework put forward by Dixit [1980] and

Maggi [1996]. The chief merit of the cost structure proposed by these authors is that it

allows us to parametrize the commitment value of capacities by the height of the upward

jump in marginal cost. Firms commit to capacities in a first stage and then compete in price

in the second stage. In the second stage, they may produce beyond installed capacity but

have to incur for this an extra unit cost, denoted by θ. The subgame perfect equilibria of this

game exhibit the following features.  If the marginal cost θ of producing beyond capacity is

larger than Cournot price, then Cournot equilibrium always obtain in the unique subgame

perfect equilibrium.  If θ is less than the cournot price, there is a continuum of subgame

perfect equilibria but the price on the equilibrium path is always θ which implies that the

aggregate quantity converges toward the Bertrand-competitive solution at the limit θ = 0. In
other words, capacity has its full commitment value whenever producing beyond capacity

entails an additional unit cost at least equal to the corresponding Cournot price. The lower

the value of the additional unit cost, the closer the price to the competitive benchmark.
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2 )  BERT RA ND- EDGEWORT H COMPET I T I ON A ND

I MPERFECT  COMMI T MENT

The game tree we are considering is identical to that of KS. Some n ≥ 2 firms

choose some costly capacities and then compete in price in the market for an homogeneous

product. Rationing, if any, is organized according to the efficient rationing rule.  Under the

efficient rationing rule, low pricing firms get served first and ties are broken evenly. The

firm exhibiting the highest price is left with a residual demand (if any) which is simply

defined as a function of the other firms' aggregate capacity.

The cost structure in the pricing game is borrowed from Dixit [1980]. The marginal

cost up to the capacity level is w.l.o.g. zero while it is some positive θ beyond (this jump

typically measures the legal wage gap for overtime work). Thus, in our capacity-price game

tree, firms invest in capacities xi at cost c(xi) and then compete in prices for the demand

function D(.) with the same cost structure mc q
if q x

if q xi
i

i
( ) =

≤
>





0

θ
 for all i ≤ n.

Note that Dixit [1980] uses this set-up under quantity competition whereas Maggi

[1996] retains it for analyzing price competition under product differentiation. Note also,

that the original KS model corresponds to the particular case where θ is infinite; observe

also that any value larger than the zero-demand market clearing price D-1(0) would trivially

yield their result.

As a benchmark we consider the basic model of Cournot oligopolistic competition

among n firms having the same convex cost function c(.). The aggregate consumer demand

is D(p), its inverse P(x). Let 
  
x xi jj i− ≠

≡ ∑  be the total quantity produced by firm i's

opponents. A nil production is clearly optimal if x-i > D(0), otherwise firm i's profit is

x P x x c xi i i i( ) ( )+ −− . We assume throughout that xP(x+z) is concave in x  for all z .

Therefore, the profit maximizing quantity rc(x-i) is unique and decreasing1 in x-i. We

denote r(x-i) the best reply with zero production cost, it will play a central role in the study

of price competition. The symmetric Cournot-Nash equilibrium is the solution x < D(0)/n

of x r n xc= −( )( )1 . For instance, with constant marginal cost c and linear demand P(z) = 1 −

z, we get r zc
c z( )= − −1
2  and  x = 1

1
−
+
c

n .

1 Formally rc(z) is the solution of P x z xP x z c x( ) ˙ ( ) ˙( )+ + + − =0 . Let   f x z xP x z c x( , ) ( ) ( )≡ + −  and

differentiate the equation to obtain  
∂
∂

∂
∂

∂
∂ ∂
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∂
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We are now in a position to solve the two-stage game with imperfect capacity

commitment and price competition. The particular shape of marginal costs affects the

analysis of price subgames. Recall that the Edgeworth's argument consists in showing that

upwards price deviation may be profitable when other firms are likely to ration consumers.

This requires first that the demand addressed to them exceeds their aggregate capacity and

second that they are not willing to meet demand beyond capacity. In the KS model, the

second condition is always satisfied since the cost of producing beyond capacity is

prohibitive whereas this is no longer the case in our model: a firm is willing to meet any

level of demand, beyond its installed capacity provided the price is above θ. It is only for

prices below that level that the Edgeworth's argument applies, otherwise the standard

Bertrand analysis applies.

Figure 1 below helps to understand the nature of price competition. Consider the

case of two fims. A firm will perform rationing if its price is less than θ, which makes it

unprofitable to sell beyond capacity, and if the demand it faces is larger than its capacity,
thus the relevant threshold for rationing is min ,θ 1 −{ }ki . In the region where the two firms

name price above their respective treshold, a standard Bertrand competition applies.

p1

p2

min θ,1 − k{ 1}

firms 1 & 2
ration

Bertrand competition

min θ,1 − k{ 2}

firm 1 rations

firm 2 rations

Figure 1

As appears from inspection of Figure 1, the analysis developed by KS for the pricing games

under capacity constraints applies here in a truncated part of the strategy space. Lemma 1

characterizes equilibria in all possible price subgames.
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Lemma 1

Whenever x Dii∑ ≤ ( )θ , p ≡ θ  is the unique pure strategy equilibrium. Whenever

x Dii∑ ≥ ( )θ  , if the largest capacity x1 is less than r(x-1), the equilibrium is the pure

strategy P(x1+ x-1) , otherwise it is a mixed strategy equilibrium.

Considering an oligopoly instead of a duopoly requires a different ordering of the

arguments used by KS in their lemmas 2 to 5 but no real novelty is introduced. Still, the

proof is somewhat technical and has been relegated to the appendix. We present here the

line of reasoning.

We start by showing that either the equilibrium is the pure strategy θ or that there
are more than two firms playing the lower bound p of all equilibrium distributions. Then

we show that those firms are constrained at p so that their equilibrium payoff is Π i ipx* = .2

Next, we show that if the sum of capacities is lesser than D(θ) then the equilibrium has to

be θ because any firm is able to sell all of its capacity at this price. In the remaining cases

the equilibrium is in mixed strategies and we can introduce p P xi
* ≡ ∑( )  < θ. We then

show that firms who play the upper bound p of all equilibrium distributions satisfy i) or ii).

i) r x xi i−( ) <  and p P r x xi i= ( ) +( )− − : those firms have a large capacity and p does not

depend on it but on what other firms did choose.

ii) p p= * must hold in which case p* is the equilibrium.

Lastly, using a complex formula borrowed from KS, we show that firms playing p

in equilibrium have the same capacity and also the largest one.

Relying on Lemma 1, we may state our theorem which extends the result of KS to

oligopoly and imperfect commitment. For n symmetric firms and efficient rationing, the

Cournot outcome emerge as the subgame perfect equilibrium outcome of the capacity-

pricing game as soon as the ex-post marginal cost θ is larger than the Cournot price.

Theorem 1

If θ > P nx( ), the symmetric Cournot-Nash investment  x  followed by P(n  x ) is the

unique subgame perfect equilibrium of Γ. If θ < P nx( ), there is a continuum of SPE
who nevertheless satisfy D xi

i n

( )θ =
≤
∑ . It converges toward the Bertrand solution.

2 In the KS setting, there are only two firms thus all firms derive this payoff which eases the rest of the proof.
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Proof If x D xi i≤ − −( )θ , the equilibrium of the pricing game played after ( )xi i n≤  is the

pure strategy θ and firm i's payoff in Γ is θxi. If D x x r xi i i( ) ( )θ − < ≤− − , the equilibrium is

the pure strategy P x xi i( )− +  and firm i is paid f x x x P x x c xi i i i i i( , ) ( ) ( )− −= + − . This

function is concave with a maximum at r x r xc i i( ) ( )− −< . If x r xi i> −( ), the equilibrium is

in mixed strategies and firm i earns g x x R x c xi i i i( , ) ( )− −= ( ) − .

Notice that P x xi i( )− + = θ when x D xi i= − −( )θ  and g x r x f x r xi i i i− − − −( ) = ( ), ( ) , ( ) .

Hence the first period payoff as a function of xi is continuous. Moreover at x D xi i= − −( )θ ,
∂

∂
θ θ

f

x
x P x x c x

i
i i i i= + + − <−
˙ ( ) ˙( )  and the slope of g is steeper than that of f as the second

period payoff becomes constant. The payoff function is thus concave in xi for any x-i; its

average over the equilibrium distributions of the others firms is concave too, meaning that

the best reply of firm i is always a pure strategy. Because this applies for all firms, the
equilibrium is in pure strategies and satisfies x D x r xi i c i= −{ }− −max ( ) , ( )θ  for all i.

If D x r xj c j( ) ( )θ − >− −  for some xj then D x xj j( )θ = +− . From this we deduce that

D x xi i( )θ = +−  must hold for all other firms, so that x r x D xi c i i= > −− −( ) ( )θ  is

impossible. Therefore the candidate equilibria are all vectors ( )xi i n≤  satisfying

D xi
i n

( )θ =
≤
∑  and D r x xc j j( ) ( )θ > +− −  for all j. The symmetric equilibrium D n( ) /θ  exists

if it is larger than the Cournot candidate  x  i.e., if θ ≤ P nx( ) the Cournot price. Solving for

D r y yc( ) ( )θ = +  yields a value y* that circumvents the range of asymmetric equilibria; they

are given by the constraint ∀ ≤ ≥i n x yi, * in addition to D xi
i n

( )θ =
≤
∑ , thus this set is a

simplex.

Now if θ >P nx( ), the equilibrium is unique. The case for n = 2 is KS, thus consider

n > 2 and let m x≡ − −1 2 . If x1 = rc(m +x2) and x2 = rc(m +x1), then x1 and x2 are solutions

of z h z r m r m zc c= ≡ + +( )( ) ( ) . But since 0 1> > −˙ ( )r zc  (cf. footnote 5) it must be the case

that ˙ ( ) ˙ ( ) ˙ ( )h z r m r m z r m zc c c= + +( ) + <1, thus h has a unique fixed point so that x1 = x2.

By repetition of the argument to all pairs, we conclude that the equilibrium is unique and

symmetric: it is the Cournot quantity   x .♦

Figure 2 below illustrates our findings for n = 2, a linear demand D(p) = 1 − p and

zero marginal cost. The Cournot quantity 1/3 is found at the intersection of the two best

reply functions (dashed lines on Figure 2). If the sum of quantities x1 + x2 is less than D(θ)

= 1 − θ then firms are not able to avoid the traditionnal Bertrand competition, it is only for

large aggregate capacitites that the price equilibrium result in Cournot payoffs. Thus for θ >
1/3 (recall that the KS hypothesis was θ  > 1), very low capacity choices push firms toward



8

the line D(θ) = x1 + x2, then for larger capacities the Cournot competition applies and leads

to the symmetric equilibrium choice of 1/3. For a θ' smaller than 1/3, the area where

Bertrand competition applies incorporates the previous equilibrium meaning that firms are

induce to build more capacity because the fierce price competition yield too small margins.

There is now a continüm of equilibria where firms share the market but not too

asymmetrically as the Cournot best replies provide lower bounds on one's equilibrium

capacity.

x1

x2

1−θ'

1/2 1

1−θ

Figure 2

4 )  FI NA L REMA RKS

Many researches have aimed at reconciling Cournotian outcomes with the explicit

price mechanism involved in the Bertrand model. These researches have been successful to

the extent that they have been able to combine the two features of oligopolistic industries

which are limited scales of production or increasing marginal costs and price setting

behaviour. The main challenge in this respect consists in dealing with the issue of

quantitative constraints (non-constant marginal cost) at the price competition stage which

tends to make it unprofitable for the firms to meet full demand. This in turn generates

rationing possibilities which are at the heart of the Edgeworth's critique.

The issue of rationing in pricing games is best understood by studying closely the

allocation process of a non competitive market with price-setting firms. Three stages are

needed to correctly describe this process. In the first stage firms name prices and consumers

address demand to firms. In the second one, firms decide on their sales and possibly ration

consumers. In the third stage, rationed consumers possibly report their demand to non-

rationing firms who may or may not accept them. In the case of homogeneous products and



9

perfect display of prices, the low pricing firm receives all the demand at the end of the first

stage. Under constant returns to scale, this firm is willing to meet any demand level so that

it always choose to serve all consumers in the second stage; the third stage is then

irrelevant. With decreasing returns to scale, things are quite different because it may not be

optimal to meet full demand in the first stage.

Curiously enough, Edgeworth's classical approach has been abridged in several

recent papers. Their authors consider decreasing returns to scale; hence they have to deal

with the fact that firms are not always willing to meet demand. Yet, it is generally asserted

that "firms meet demand" without a word of explanation. There is neither reference to an

external mechanism that forces firms to meet demand nor reference to some reputation

effect in a larger game that would make this restriction tenable. Rationing is thus ruled out

by assumption. Replaced in our three stages process, we can interpret the equilibria of these

price competition games as Nash equilibria which are not subgame perfect. In those

equilibria indeed, each firm names a price and threaten its opponents to take the non

optimal decision to serve all of its clientele in the subsequent stage. Still the threat is never

carried out on the equilibrium path. Kuhn [1994], Maggi [1996], Bulow, Geanakoplos &

Klemperer [1985], Vives [1990], and Dastidar [1995], [1997] are prominent examples3

where such an odd vision of price competition is endorsed. 4

Yet what an economist probably has in mind when introducing quantitative

constraints into pricing models is not that firms commit to incur losses on high levels of

sales but rather commit not to call for such large sales, precisely because this would entail

losses. Obviously, when a firm names a price p, it does not threaten the other firms to make

losses by later selling units having a marginal cost larger than p. A firm has thus two basic

options when setting its price: it either undercuts opponents to receive a large demand and

possibly serves only a fraction of it or it charges a high price in order to benefit from

rationing spillovers.

Allowing for rationing drives us back to the analysis initiated by Edgeworth [1925]

and popularized by KS. In the setting of these last authors, the quantitative restriction may

seem too effective since it is physically impossible to produce beyond capacities at the

pricing stage. In the present paper we have thus considered the imperfect commitment of

Dixit [1980] within an oligopolistic framework. Our framework thus exhibits as its two

3 The first two papers state the hypothesis implicitly, the next two use a footnote but without justification;
only Dastidar makes an effort by referring to Dixon [1990] (see the preceding footnote).
4What is lost exactly of the competition process when rationing is forbidden is largely an open question. In a
companion paper however we show that when rationing is forbidden within the KS framerwork, many SPE
outcomes , including the collusive ones can be sustained.
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polar cases the Bertrand and the KS's cost structure. We have then generalized of the

findings of KS in this framework to show that, depending on the value of the commitment,

the whole range of prices between Bertrand and Cournot prices can be sustained as part of

subgame perfect equilibria.
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Proof of Lemma 1

If the large capacity x1 is less than r x−( )1 , the equilibrium is the pure strategy

P x x1 1+( )− , otherwise it is a mixed strategy equilibrium.

Proof W.l.o.g. firm 1 has the largest capacity in the subgame following the play of ( )xi i n≤ .

Let p
i
 and pi  be the lower and upper bounds of firm i's equilibrium distribution Fi. Let

H p
i n

i
≡

≤
argmin , p p

i n i
≡

≤
min , H p

i n
i≡

≤
argmax  and p p

i n
i≡

≤
max .

Existence of an equilibrium is guaranteed by theorem 5 of Dasgupta & Maskin

[1986]. By lowering its price a firm always benefits from an increase in demand (this

property is not influenced by our rationing rule), its payoff is therefore left lower semi-

continuous (l.s.c.) in its price, thus weakly l.s.c.. The sum of payoffs is u.s.c. because

discontinuous shifts in demand occur only when two firms or more derive the same profit.

Claim 1 # >H 1 or the equilibrium is θ.

If # =H 1, some firm k enjoys demand D(pk) on p p
i H i

; min
∉#






.

i) p < θ. If firm k is constrained at p its revenue is the strictly increasing function pkxk, a

contradiction to p being in the support of the equilibrium distribution Fk. Thus, D( p) < xk

and because pkD(pk) is a non-constant function, it must be the case that p is the monopoly

price P(r(0)). Since no other price (irrespective of what may play the other firms) can yield

the monopoly payoff, firm k must be playing the pure strategy P(r(0)) but then any other

firm i undercuts it, contradicting the optimality of its own equilibrium strategy.

ii) p ≥ θ. We are contemplating the classical Bertrand price competition whose outcome is

pricing at the marginal cost θ.

Claim 2 ∀ ∈ =i H pxi i, *Π

i) p < θ. If firm i H∈  deviates to p- (this is a shorthand for p − ε where ε is a small

positive real number) its demand may jump upward; in order for p to be in the support of

an equilibrium distribution it must be the case that this does not happen, thus the payoff is
continuous at p. If the demand at p- is D( p-) it must be the case that p- < P(r(0)) for
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otherwise firm i would deviate downward, thus D( p-) > r(0) which is an upper bound on

capacity investment5 as it is the optimal quantity with zero cost for a monopoly. Therefore

firm i is constrained at p and we get Π i ipx* = .

ii) p ≥ θ. We saw that θ is the unique possible price equilibrium. The claim is even valid for

all firms since sales beyond capacity neither generate losses nor benefits.

Claim 3 If x x D1 1+ ≤− ( )θ , θ is the unique price equilibrium.

The only case we need to consider is p < θ. If firm i plays θ− > p then the other

firms that are less expensive receives full demand but serve only their capacities so that

firm i receives more than D x xi i( )θ − ≥−  thus Π Πi i i iF xθ θ−
−

−( ) = >, * a contradiction.

From now on we study the case where p P x x* ≡ +( ) <−1 1 θ.

Claim 4 H H HA B= ∪  where j H r x xA
j j∈ ( ) <− if  and j H p pB∈ = if *

Let Ψj j j j j jp p x D p x( ) .min ,max , ( )≡ −{ }{ }−0  be the payoff to firm j when it names

a price pj > max{ }
i H

ip
∉

. If p pj
i j

i≤
≠

max{ } then firm j gets at least the payoff Ψj jp( ), thus this

function must be maximal at p to sustain this price as a member of the support of an

equilibrium strategy. Firm j cannot be fully served at p+ for otherwise it would deviate
upward thus it will only sell units with zero marginal cost. Two cases can occur. If Ψj jp( )

= p D p xj j j( ) −( )−  in a neighbourhood of p; we study the alternate formulation of profits

yP y x j( )+ − . The argmax is r x j( )−  so that p P r x xj j= +( )− −( )  and since firm j is not

constrained at p, it must be true that r x xj j( )− < . Furthermore the equilibrium payoff in that

case is Π j jR x* ( )= −  where R x r x P r x x( ) ( ) ( )≡ +( ) . Using the envelope theorem we obtain
˙ ( ) ( ) ˙ ( )R x r x P r x x= +( ) < 0. If on the other hand, Ψj jp( ) = xjpj at p- then the upper price is

p P x xj j= +( )−  and we have x r xj j≤ −( ) .

Claim 5 If HB ≠ ∅ , the equilibrium is p P x x* ≡ +( )−1 1

5 In a Subgame Perfect Equilibrium we can eliminate strictly dominated strategies in the first stage.
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Observe that p* guarantees the revenue p*xi to any firm i. Indeed, if all other firms

are less expensive, they are served first but the residual demand addressed to firm i is

precisely its capacity. If HB ≠ ∅ , the equilibrium must be the pure strategy p* for all firms.

Claim 6 If HB = ∅  then H HA= = { }1  i.e., the large capacity firm

Let j H HA∈ = . If x1 > xj then x x r x x r x xj j j− < − − − − −⇒ + < +1 1 1( ) ( )  as ˙( )r z > −1

(cf. footnote 5). Hence, firm 1 obtains a payoff R x−( ) ≤1 1Π* by naming P r x x( )− −+( )1 1  >

P r x x pj j( )− −+( ) = . We now prove that x R m x x R m xj j1 1+( )< +( ) where m x j= − −1  (zero

if n = 2). Let us define Θ( ) ( ) ( ) ( )z zR m z zr m z P m z r m z≡ + = + + + +( ). The envelope

theorem implies ˙ ( ) ( ) ( )Θ z r m z z P m z r m z= + −( ) + + +( ) . If r m x xj j( )+ <  then Θ̇  < 0 and

we are done. Otherwise r m x xj j( )+ >  implies that r m x x( )+ =  is solved for a x* greater

than xj since r(.) is decreasing. By the same token, x* > xj implies that the solution y* to

r m x xj( )+ =  has to be greater than x*.  Finally, r m y xj( )*+ =  < x1 implies y* < x1. This is

crucial because the positiveness of Θ̇  on [ ; ]*x xj  will be offset by its negativeness on the

large interval [ ; ]*x x1  as the following development shows.

Θ Θ Θ Θ Θ Θ Θ Θ( ) ( ) ˙ ˙ ˙ ˙ ( ) ( )

( ) ( ) ( ) ( )

*

*

*

*

*
*

* *

x x y x

y R r x x R m x y x P x r x x R m x

j x

x

x

x

x

x

x

y
j

j j j j j j j j

j j
1

1 1

1− = + ≤ + = −

= ( ) − + = +( ) − +

∫ ∫ ∫ ∫   

                             

                       

- -

== + + − +( ) <x y P x m y R m xj j j        by definition of R(.)* *( ) ( ) .0

So far we have proved that Π Π Πj j
j jR x

x

x
R x

x

x
* * *( ) ( )= < ≤ <− −

1
1

1
1 1  which is equal to

p F p D p x F p D p
1 1 1 1 1 1 1 1

1− − −−( ) + −( )[ ]( ) ( ) ( ) ( ) . If firm j  plays p
1
−  it obtains demand

F p D p x F p D pj j− − − − −−( ) + −( )1 1 1 1 1 1 1
1( ) ( ) ( ) ( ) which is larger than the demand of firm 1

because there is more weight on the monopolistic demand term, therefore Π Πj j jp F
1
, *

−( ) >

the desired contradiction. We have thus shown that 1 ∈ HA. Since p P r x xj j= +( )− −( )  holds

true for any j HA∈ , members of HA must have the same (largest) capacity.

 The two cases that occur in claim 4 now make sense: if a firm names prices larger

than other firms ( j HA∈ ), it must be the one with the greatest capacity and furthermore,the

excess must be large enough. ♦
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