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Abstract

This paper introduces a novel set of one-to-one matching problems: matchings
subject to location restrictions. When scarcity of matching locations exists some
agents may want to form a new partnership without being able to implement it.
In this general setting we develop two stability concepts, direct and (coalition) ex-
change* stability, akin to Gale Shapley stability and exchange stability (Alcalde,
1995) respectively. We show that coalition-exchange* stability is a refinement of
direct stability. When no location scarcity exists then direct stability is equivalent
to Gale Shapley stability and coalition-exchange* stability is equivalent to requiring
both exchange stability (Alcalde, 1995) and Gale Shapley stability. We show that
the set of coalition-exchange* stable matchings is a superset of the farsighted core,
and equal to the farsighted core if locations are not scarce and the matching problem
is individually rational. The paper also shows that an exchange* stable set can not
be a strict subset of a farsighted stable set and provides an example of a roommate
problem in which no farsighted stable set exists while an exchange* stable set does
exist. Finally, the paper obtains that deciding whether the farsighted core of an
individually rational roommate problem exists is NP-complete.

JEL classification: C71, C78

Keywords: One-to-one Matching, Direct Dominance, Exchange* Dominance,

Indirect Dominance.
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1 Introduction

Consider a roommate problem such that two students prefer to share a room

rather than sticking to their current roommates. On their own, these students can

only do so if there is a room available to them. Indeed, when an assignement gives a

student the right to occupy a given room, and all rooms are occupied by others, these

students cannot, on their own, enforce a new matching in which they occupy a room

together. More generally, the size of the set of available rooms (matching locations)

can effectively restrict the possible matchings that a set of agents can enforce over

the current assignment. When this is the case, it is natural to consider the set of

available matching locations as a primitive of the matching problem, alongside the

agents and their preferences. A stability concept that is defined on such a matching

problem should then take these primitives as given.

The first contribution of this paper is to formally introduce a, possibly scarce, set

of matching locations into one-to-one matching problems. Doing so, we generalize

one-to-one matching problems by possibly requiring that a match between agents

must happen at a matching location. We introduce a finite set of matching locations

and the notion of a location mapping as a function that assigns agents to a matching

location, if any, providing them with the right to be matched at that location. We

then require that a match between two agents happens if and only if both are

assigned to the same location by a location mapping.

The second contribution of our paper is to study stability in this setting by an-

alyzing the incentives of (a group of) agents to change the current ’status quo’

matching. In order to do so, we first analyze how a set of agents can alter the

composition of any given matching. This is operationalized through the idea of

enforceability. We introduce two different concepts of enforceability. First, we say

that a set of agents can directly enforce one matching over an initial assignment

if they can reassigning the matching locations amongst them that are exclusively

under their control. Second, we say that a set of agents can exchange* enforce

one matching over an initial assignment if they can reassign themselves the rights

that are exclusively under their control. The key difference between the two enforce-

ability conditions is that direct enforceability requires that the agents must control

all rights assigned to a location, while exchange* enforceability only requires that

they exchange location rights, thereby potentially ’forcing’ other agents to accept

a different partner of the (deviating) set. In other words, exchange* enforceability
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implies that if a partner x of an agent y exchanges her matching right with someone

else, say agent z , then agent y has no say in this exchange, even if it means she

will become matched to agent z . We also allow agents to exchange their current

location right for any available (unassigned) locations right as it seems natural to

let agents, when they are allowed to exchange matching location rights, to perform

this swap. From this it logically follows that direct enforceability implies exchange*

enforceability but not vice versa: exchange* enforceability allows for more possible

alterations of a given matching by some set of agents than direct enforceability.

The enforceability notions are then used to define dominance relationships, direct

dominance and exchange* dominance, and stability concepts, direct stability

and coalition-exchange* stability. A matching is directly (coalition-exchange*)

stable if it is not directly (exchange*) dominated by any other matching. A match-

ing is exchange* stable if it is not exchange* dominated by a pair or singleton of

agents. Direct stability is closely related to Gale Shapley stability. Gale Shap-

ley stability is an ex ante stability1 concept in the sense that before a matching is

implemented , no single or pair of agents (a blocking pair or individual) would like

to deviate. Once a matching is implemented (ex-post), two agents may want to

deviate but cannot if they cannot find a matching location to do so. Gale Shapley

stability is thus equivalent to direct stability when assuming that the set of match-

ing locations is never scarce. Exchange* stability is different from the notion of

exchange stability introduced by Alcalde (1995). He defines a matching to be

exchange stable if there does not exist an exchange blocking pair : no two agents

can be made better off by exchanging their current matching position. The implicit

assumption behind this concept is that there are no unassigned matching locations

(rights) which a set of agents can exchange their current matching rights for. In

other words, the set of matching locations must be limited. Our paper is rooted in

the same spirit as Morrill (2010) who studies the roommate problem and asks: ’ex

post, what types of coalitions will be able to block a given assignment?’, recognizing

that agents face two restrictions: 1. the set of rooms is limited (the amount of rooms

is exactly half the amount of students) and 2. bilateral approval is needed to dis-

solve a match between two roommates. Morrill’s (2010) set up then naturally leads

to finding Pareto optimal matchings. Morrill (2010) notes that when the current

assignment can be dissolved unilaterally, then (Gale Shapley) stability is a natural

stability concept. Our paper argues that direct (exchange*) stability is a natural

solution concept when rights cannot (can) be exchanged. Our first result (propo-

sition 1) is that coalition-exchange* stability is a refinement of direct stability. At

1This meaning of ex ante stability is to be distinguished from Kesten and Unver (2015).

3



first hand, this seems to be at odds with the literature in view of Alcalde’s result

(1995) that Gale Shapley stability and exchange stability are mutually independent

stability concepts. We show that this is due to the fact that these stability concepts

(implicitly) assume different location restrictions: scarcity in the case of exchange

stability and no scarcity in the case of Gale Shapley stability. When one considers

the set of matching locations and associated matching rights as a primitive of the

matching problem then this independence result disappears. We subsequently show

(proposition 2) that when matching locations are not scarce then direct stability is

equivalent to Gale Shapley stability and coalition-exchange* stability is equivalent

to requiring Gale Shapley stability and exchange stability simultaneously.

The third contribution of the paper is to provide an interesting link between

exchange* dominance and indirect dominance, a concept introduced by Harsanyi

(1971) and later formalized by Chwe (1994) in order to study deviations from a

current ’state’ when agents do not care about the immediate consequences of their

actions but rather care about the final outcome after other agents have reacted to

their initial reaction. The farsighted core of a matching problem is the set of all

matchings that are not indirectly dominated by some matching. In Theorem 1 we

show that whenever a matching exchange* dominates some other matching and all

agents who see their match change find their new partner acceptable, then it also

indirectly dominates this matching. Intuitively, if two agents wish to exchange their

partners but would need the consent of the latter to do so, then they could perform

this swap in two steps: in step 1 they leave their current partner and in step 2 they

propose to match to complete the swap. On this path of indirect dominance, all

agents will always agree to the proposed changes given the status quo matching.

But, if agents are allowed to swap their current partners, these two steps can be

done in one. Such indirect dominance path can not exist if the agents who were

forced into a new partnership would rather be single than matched to their new

partner in a swap they did not initiate. In Corollary 1 we show that the set of

coalition-exchange* stable matchings of individually rational matching problems is

a superset of the farsighted core and equivalent to the farsighted core if there is not

location scarcity. It is well known that in this setting the farsighted core, and hence

the set of (coalition) exchange* stable matchings, is often empty and if it exists, it

must be a singleton. For this reason the literature (not assuming any restrictions on

the set of matching locations) has introduced alternative stability concepts to study

farsightedly stable matchings. A popular stability concept is the farsighted stable
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set (FSS)2. A set of matchings is a FSS if every matching outside the set is indirectly

dominated by some member of the set (external stability) and if the matchings of

the set do not indirectly dominate each other. Equivalently we define an exchange*

stable set (ESS) as a set of matchings that do not exchange* dominate each other

and all outside matchings are exchange* dominated by some matching in the set.

We then find (proposition 3) that an exchange stable set can never be a proper

subset of a farsighted stable set and sometimes is a superset of a farsighted stable

set. In addition we provide an example of a matching problem without a FSS but

for which there exists an ESS.

The computer science literature paid ample attention to the computational com-

plexity question of determining whether a given matching problem admits a Gale

Shapley stable3 or exchange stable matching. It is known (Manlove 2013 and Irving

2008) that deciding whether a (one-to-one) matching is both exchange stable (à la

Alcalde 1995) and Gale Shapley stable is NP complete. The last contribution of

this paper exploits the link between exchange* dominance and indirect dominance

to say something about the complexity of finding farsightedly stable matchings in

one-to-one matching problems when the set of location rights is not scarce, that is

when coalition-exchange* stability is equivalent to exchange stability combined with

Gale Shapley stability: while deciding whether a matching is Gale Shapley stable

is solvable in polynomial time, deciding whether a one-to-one matching problem

admits a unique farsighted matching (the farsighted core) is NP-complete (corollary

2).

The rest of the paper is organized as follows. Section 2 introduces one-to-one

matching problems with location restrictions. Section 3 introduces direct stabil-

ity and (coalition)-exchange* stability and discusses the relationship between these

concepts. Section 4 analyzes the relationship between exchange* dominance and

indirect dominance. Section 5 deals with the computation complexity question of

deciding whether a given matching problem admits a farsighted stable matching.

Section 6 concludes.

2See Ray and Vohra (2014) for a recent discussion of this concept.
3Determining whether a given roommate problem with strict preferences admits a stable assignment is solvable

in polynomial time (see for instance Irving, 1985 and Ronn, 1990, for a discussion).
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2 One-to-one matching problems with location re-

strictions

2.1 The primitives

A one-to-one matching problem, or roommate problem, is a triple (L,N, P ). L

is a finite set of locations, where a specific location is denoted by l where l ∈ L, N
is a finite set of agents and P is a preference profile specifying for each agent i ∈ N
a strict preference ordering over N . That is, P = {P (1), ..., P (i), ..., P (n)}, where

P (i) is agent i’s strict preference ordering over the agents in N including herself.

For instance, P (i) = 4, 5, i, 2, ... indicates that agent i prefers agent 4 to agent 5 and

she prefers to remain alone rather than get matched to anyone else. We denote by

L and N the cardinality of L and N respectively. We denote by R the weak orders

associated with P . We write j �i k if agent i strictly prefers j to k, j ∼i k if i is

indifferent between j and k, and j %i k if j �i k or j ∼i k. The primitives of any

one-to-one matching problem are thus L,N and P. A marriage problem with location

restrictions is a roommate problem (L,N, P ) where N is the union of two disjoint

finite sets: a set of men M = {m1, . . . ,mh}, and a set of women, W = {w1, . . . , wf},
where possibly h 6= f , and P is a preference profile specifying for each man m ∈M
a strict preference ordering over W ∪ {m} and for each woman w ∈ W a strict

preference ordering over M ∪ {w}: P = {P (m1), . . . , P (mh), P (w1), . . . , P (wf )}.
That is, each man (woman) prefers being unmatched to be matched with any other

agent in M (W , respectively). Since the a marriage problem is a special kind of

roommate problem we will, throughout the paper, use the more general set up

and notation of the roommate problem, while sometimes specifically referring to

the marriage problem whenever appropriate. A roommate problem is individually

rational if all agents prefer to be matched rather than remain single: ∀i, j ∈ N :

j �i i.

2.2 Matching with location restrictions

We now formally introduce the idea that a match between two different agents

must happen at a matching ’location’. Define the mapping λ : N → L∪∅ to be

a function that assigns a location to each player allowing for the possibility that

agents are not assigned to any location l ∈ L:

Definition 1. λ : N → L ∪ ∅ is a location mapping when λ(i) = λ(j) = l ∈ L and

i 6= j ⇒ λ(k) 6= l for all k ∈ N \ {i, j}
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The mapping λ assigns a location to at most two agents and allows for agents

not to be assigned to any location: λ(i) = ∅. Define λ−1 : L → N ∪ ∅ as the

correspondence that assigns to each location l the set of agents that are located at

this location. If no agent is located at l ∈ L, then λ−1(l) = ∅. Let λ ∈ Λ where

Λ is the set of all possible location mappings. The concept of a location mapping

naturally leads to the definition of a matching under location restrictions.

Definition 2. Given is λ ∈ Λ. A matching is a function µλ : N → N satisfying the

following properties:

1. ∀i ∈ N , µλ(µλ(i)) = i;

2. ∀ i 6= j : µλ(i) = j ⇔ λ(i) = λ(j) = l ∈ L.

Condition 1 implies that a matching must yield a partition of the set N into

pairs and/or singletons. Condition 2 imposes that for two different agents to be

matched they must be assigned the same location l ∈ L. Denote by M* the set of

all matchings. One interpretation of a matching problem with location restrictions

is that in order for two agents to be matched at location l, they must both possess

(be assigned) the matching right attached to matching location l, where l belongs

to a limited set of possible matching locations. In other words, if an agent ’owns’ a

matching right to a certain matching location then no other agent can assign herself

this matching right unless the ’owner’ agrees to this.4

We assume that agents have no preference over the possible matching locations

but only over their possible partners at such a location.5 Agent µλ(i) is agent i’s

partner at µλ; i.e., the agent with whom she is matched to (possibly herself). A

matching µλ is individually rational if each agent is acceptable to his or her

partner, i.e. µλ(i) %i i for all i ∈ N . For a given matching µλ, a pair {i, j} (possibly

i = j) is said to form a direct blocking pair if they are not matched to one another

but prefer one another to their partner at µλ and they can assign themselves to some

location l ∈ L to which no one else is assigned by the current location mapping λ, i.e.

j �i µλ(i), i �j µλ(j) and ∃l ∈ L such that ∀k /∈ {i, j} : λ(k) 6= l. This definition is

4This interpretation is in line with that of Alcalde (1995) but additionally introduces scarcity of matching
locations.

5We do so to focus on the consequences of introducing scarcity in the set of possible matching locations.
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different from the classic definition of a blocking pair (Gale Shapley, 1962) since it

requires two agents who prefer to be matched together to their current match, to be

able to guarantee themselves a location to do so. We extend each agent’s preference

over her potential partners to the set of matchings in the following way. We say

that agent i prefers µ′λ′ to µλ, if and only if agent i prefers her partner at µ′λ′ to

her partner at µλ, µ
′
λ′(i) �i µλ(i). Abusing notation, we write this as µ′λ′ �i µλ. A

coalition S is a subset of N . In order to study stability in this setting one needs

to know how a given matching µλ can be altered by a coalition of agents S ⊂ N.

We will introduce two different notions of enforceability: direct enforceability

and exchange* enforceability. A specific stability concept is then defined using

a given enforceability concept.

3 Enforceability, dominance and stability

3.1 Direct enforceability, dominance and stability

Define for any coalition S the set Lλ(S) as those locations that members of

coalition S can, on their own, control: no one outside of S is assigned to a location

in Lλ(S) :

Lλ(S) =
{
l ∈ L, λ−1(l) ⊂ S

}
Note in particular that this definition implies that all l ∈ L such that λ(l) = ∅

belong to Lλ(S): all unassigned locations can be controlled by the members of S

when contemplating a deviation from the current matching. We can now state the

definition of direct enforceability:

Definition 3. Given is a matching µλ ∈ M*. A coalition S ⊆ N is said to be able

to directly enforce a matching µ′λ′ over µλ, denoted by µλ →S µ
′
λ′ , if the following

conditions hold for any agent i ∈ N :

1. µ′λ′(i) /∈ {µλ(i), i} implies {i, µ′λ′(i)} ⊆ S; and

2. µ′λ′(i) = i 6= µλ(i) implies a) i ∈ S or b) i /∈ S and µλ(i) ∈ S such that

λ′(µλ(i)) ∈ Lλ(S).
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Intuitively, this definition says that in order to ’deviate’ to a new matching a

set of agents S cannot reassign the locations of non-members without their permis-

sion. However, they can reassign the match of non-members by ’divorcing’ from a

non-member and taking up a different location, possibly by becoming single. For in-

stance, if j = µλ(i) where i ∈ S and j /∈ S, then λ′(i) 6= λ(i) implies that µ′λ′(j) = ∅.
The definition simply means that if an agent obtains a new location right and by

doing so becomes matched to a new partner at this location, if any, then it must be

that both these agents agree to it and belong to S. In addition, such reallocation

must be feasible among members of S only. Note that the above definition is writ-

ten in terms of the matchings µλ and µ′λ′ . It is insightful to rewrite the definition of

direct enforceability in terms of the location assignment only.

Definition 4. Given is a matching µλ ∈M*. A coalition S ⊆ N is said to be able to

directly enforce a matching µ′λ′ over µλ, denoted by µλ →S µ
′
λ′ , if the following

conditions hold for any agent i ∈ N :

1. λ′(i) 6= λ(i)⇒ i ∈ S and λ′(i) ∈ Lλ(S);

2. λ′(i) = λ(i) and λ−1(λ(i)) 6= λ′−1(λ(i)) implies i ∈ S and λ(i) ∈ Lλ(S).

Condition 1 implies that when an agent obtains a new location assignment, then

this agent should belong to S and other members of S should be able to provide

this agent with this new location from the set Lλ(S): λ′(i) ∈ Lλ(S). Condition 2

implies that when an agent accepts a new partner, while not having changed her own

location assignment, then this agent must belong to S and the members of S control

the other location right at that location or it is currently unassigned: λ(i) ∈ Lλ(S).

To illustrate how location scarcity affects direct enforceability consider the following

example, adapted from Alcalde (1995):

Example 1. Let (L,N, P ) where L = {l1, l2} , N = {1, 2, 3, 4} and P (1) = 2, 3, 4;P (2) =

3, 1, 4;P (3) = 1, 2, 4 and P (4) = 1, 2, 3, illustrated as follows:

agent 1 agent 2 agent 3 agent 4

2 3 1 1
3 1 2 2
4 4 4 3
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Consider a matching µλ with the following the location assignment λ(1) = λ(3) =

l1 and λ(2) = λ(4) = l2 so that µλ = (13, 24). This means that agent 1 is matched

to agent 3 at location l1 and agent 2 is matched to agent 4 at location l2. Then the

set of agents S = {1, 4} can not directly enforce a matching over µλ in which they

are matched to one another. If the set of matching locations would be L = {l1, l2, l3}
then they would be able to enforce such a matching.

The concept of enforceability does not depend on the preferences of the agents.

Direct enforceability allows us to define the concepts of direct dominance and direct

stability:

Definition 5. Given is a matching problem (L,N, P ).

1. A matching µλ is directly dominated by µ′λ′ through coalition S, denoted

by µλ <S µ
′
λ′ , if there exists a coalition S ⊆ N of agents such that µ′λ′ �i µλ

∀i ∈ S and µλ →S µ
′
λ′ ;

2. A matching µλ is directly stable if no other matching µ′λ′ directly dominates

µλ.

Remark that if there exists a coalition S ⊂ N such that µλ <S µ
′
λ′ , then there also

exist a pair of agents {i, j} = S∗ ⊂ S, where possibly i = j, such that µλ <S∗ µ
∗
λ∗ . We

say that such a pair {i, j} is a direct blocking pair. Expressing direct dominance

in terms of coalitions or in terms of pairs is thus equivalent. A matching µλ is

directly blocked by a coalition S ⊆ N if there exists a matching µ′λ′ and a coalition

S such that µλ <S µ
′
λ′ . If S directly blocks µλ, then S is called a direct blocking

coalition for µ. The direct core of a roommate problem with location restrictions,

denoted by C(L,N, P ), consists of all matchings which are not directly blocked by

any coalition. It is equivalent to the set of directly stable matchings. Using the

notion of a direct blocking pair defined above we find that the definition of direct

stability is equivalent to the non-existence of any direct blocking pair or individual:

a matching µλ is directly stable if there does not exist a direct blocking pair {i, j}
where possibly i = j.

We now relate this concept to the classic stability concept introduced by Gale and

Shapley (1962). According to Gale and Shapley a matching is stable if there does not
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exist any blocking pair or individual in which a blocking pair is always allowed

to deviate by getting matched. As illustrated by example 1, it is immediate that the

concepts of direct stability and Gale Shapley stability are equivalent whenever L ≥
N−1. When this is the case then location restrictions are essentially immaterial and

direct stability yields equivalent predictions as Gale Shapley stability.Two agents

that would prefer to be linked could then always find a location that is currently

assigned to no one else. When L < N −1 agents have fewer opportunities to deviate

and the possibility arises that a matching is directly stable while it is not stable in

the Gale Shapley sense. The following example illustrates this:

Example 1 continued. Since there exists an odd cycle {1, 2, 3} this matching

problem is ’unsolvable’ in the Gale Shapley sense. The same conclusion is obtained

when L = {l1, ..., lk} where k > 2. However, when L = {l1, l2}, the following

matchings are directly stable: µλ = (13, 24), µ′λ′ = (14, 23), µ∗λ∗ = (12, 34). Impos-

ing more location restrictions leads to more matchings being directly stable. Con-

sider (L,N, P ) where L = {l1} , then all (constrained)6 Pareto optimal matchings

{(12), (13), (14), (23), (24), (34)} are directly stable.

3.2 Exchange* enforceability, dominance and stability

Define for any coalition S the set Lλ(S) as the locations that members of coalition

S partially control: any location in Lλ(S) belongs to some member of S or does not

belong to any agent according to location mapping λ :

Lλ(S) = {l ∈ L,@i, j /∈ S : λ(i) = λ(j) = l }

Lλ(S) is the set of locations that the set of agents S can ’use’ to form a new

matching through exchanging location rights, respecting the location rights of agents

who do not belong to S. Again, all locations that are not assigned under λ belong

to this set, but now also those locations that only belong to one agent who does not

belong to the set. We thus have that Lλ(S) ⊆ Lλ(S). Given Lλ(S) we can now state

the definition of exchange* enforceability:

Definition 6. Given is a matching µλ ∈M∗. A coalition S ⊆ N is said to be able to

exchange* enforce a matching µ′λ′ over µλ, denoted by µλ 
S µ
′
λ′ , if the following

6Constrained in the sense that only one match can possibly be formed.
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conditions hold for any agent i ∈ N :

1. µ′λ′(i) /∈ {µλ(i), i} implies {i, µ′λ′(i)} ∩ S 6= ∅ and λ′(i) ∈ Lλ(S);

2. µ′λ′(i) = i 6= µλ(i) implies i ∈ S if λ′(i) 6= λ(i).

Intuitively, this definition says that in order to enforce a new matching from the

current matching, a set of agents S can do so by reshuffling the available location

rights to members of S. The first condition implies that agents can create a new

matching by exchanging their location rights among themselves. This can happen

in two ways. First, an agent can obtain a new allocation right from another agent of

the set S through a permutation of location rights among members of S. Second, the

agent can obtain a location right that was not assigned to anyone under λ. The sec-

ond condition allows agents to exchange their current location assignment (and thus

their current partner) for a location that is not assigned to anyone else according to

λ or by simply giving up their current assignment without being assigned a location

according to λ′. It is natural to assume that when agents are allowed to exchange

their locations, that then they should also be able to give up their current location

or to exchange their current location for an available unassigned location, as long

as no other agent of S assigns herself the same location. Similarly to the definition

of direct enforceability we can rewrite the definition of exchange* enforceability as

a function of the location mappings only.

Definition 7. Given is a matching µλ ∈ M. A coalition S ⊆ N is said to be able to

exchange* enforce a matching µ′λ′ over µλ, denoted by µλ 
S µ
′
λ′ , if the following

condition holds for any agent i ∈ N : λ′(i) 6= λ(i)⇒ i ∈ S and λ′(i) ∈ Lλ(S).

The key difference between direct and exchange* enforceability7 is that the latter

allows members of S to change the matching partner of agents who do not belong

to S without their consent. For instance, if j = µλ(i) where i ∈ S and j /∈ S, then

λ′(i) 6= λ(i) implies that µ′λ′(j) ∈ S \ {i} or µ′λ′(j) = ∅. The members of the set S

cannot reassign the locations of non-members, but they can reassign the partner of

non-members by exchanging their location right with some other agent or by simply

exchanging their location for a currently available location. It follows that direct

enforceability puts more restrictions on what a set of agents S can do in order to
7Note again that the notion of exchange* enforceability does not depend on the preferences of the agents.
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change a matching. We now show that when a set of agents can directly enforce a

matching µ′λ′ over µλ then this set can also exchange* enforce µ′λ′ over µλ.

Lemma 1. Suppose µλ →S µ
′
λ′ then µλ 
S µ

′
λ′ .

Proof. All proofs are in the Appendix.

Exchange* enforceability allows us to define the concept of exchange* dominance:

Definition 8. A matching µλ is exchange* dominated by µ′λ′ by coalition S, de-

noted by µλ CS µ′λ′ , if there exists a coalition S ⊆ N of agents such that µ′λ′ �i µλ
∀i ∈ S and µλ 
S µ

′
λ′ .

When the coalition S is a pair {i, j} (singleton {i}) then we call this an ex-

change* blocking pair (singleton). We say that {i, j} or {i} exchange* blocks

µλ. This definition allows for an exchange* blocking pair to become matched by

reshuffling the available location rights. In contrast to direct dominance, the ex-

istence of a coalition S ⊂ N such that µλ CS µ′λ′ does not (always) imply8 that

there also exists a set of agents {i, j} = S∗ ⊂ S, where possibly i = j, such that

µλ CS∗ µ∗λ∗ . We therefore have the following stability definitions based on exchange*

dominance:

Definition 9. A matching µλ is exchange* stable if it is not exchange* dominated

by any pair or individual. A matching µλ is coalition-exchange* stable if it is

not exchange* dominated by any coalition S.

Our definition of exchange* blocking is broader than the notion of exchange

blocking introduced by Alcalde (1995): a pair of agents {i, j} is said to exchange

block a matching when, only by swapping their current partners, they both improve

upon their current match. Alcalde (1995) assumes that only ’partner swaps’ can

happen and does not consider 1) that agents may decide to become single by giving

up their current matching right and 2) that there are, possibly, available match-

ing locations that agents can use to become matched by exchanging their current

8Coalition-exchange* stability implies exchange* stability but not vice versa (see for instance Manlove, 2013).
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location right for such an available location right. The concept of exchange* en-

forceability takes the latter two possibilities into account. We now illustrate these

concepts in example 1.

Example 1 continued. In the example, the matchings {(13, 24)} is exchange

stable according to Alcalde (1995). We obtain that

1. when L = {l1}, then all individually rational matchings {(12), (13), (14), (23), (24), (34)}
are exchange* stable. This set is equivalent to the set of directly stable match-

ings.

2. when L = {l1, l2}, then only matching {(13, 24)} is exchange* stable.

3. when L = {l1, l2, ..., lK} where K > 2, then no matching is exchange* stable.

The literature studied a stability notion which simultaneously requires exchange sta-

bility and Gale Shapley stability9: a matching is both (coalition-) exchange stable

and Gale Shapley stable if there is no exchange blocking pair (coalition) and no

blocking pair . Requiring both Gale Shapley stability, implicitly assuming no loca-

tion scarcity, and exchange stability, assuming location scarcity, seems a somewhat

peculiar assumption. We propose to consider the set of property rights (available

locations) as a primitive of the model and let the stability concept be based on the

enforceability rules that define how agents can transform a current matching into

another one. In particular, can matching rights be obtained through an exchange

of location rights or not? When they can (not), the concept of exchange* (direct)

enforceability is appropriate.

3.3 Direct and coalition-exchange* stability: mutually de-
pendent concepts

Example 1 is illustrative of an important conclusion we draw: when considering

the set of matching locations as a primitive of the model, coalition-exchange* sta-

bility is a refinement of direct stability. This is in contrast to the conclusion made

by Alcalde (1995) that Gale Shapley stability and exchange stability are mutually

independent concepts. We point out that Alcalde’s conclusion is based, implicitly

and explicitly, on the assumption that the sets of available matching rights are dif-

ferent when testing exchange stability and Gale Shapley stability. Once we fix the
9See Chechlarova and Manlove (2005), Irving (2008), McDermid et al. (2007), Manlove (2013).
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set of matching locations, then coalition-exchange* stability implies direct stability.

We now show formally that exchange* stability is a refinement of direct stability.

We first show the following lemma:

Lemma 2. When a matching µλ is directly blocked by a couple {i, j}, where possibly

i = j, then it is also exchange* blocked by {i, j}.

Lemma 2 can be generalized: direct dominance implies exchange* dominance.

Whenever a matching µλ is directly dominated by some matching µ′λ′ it follows that

µλ is also exchange* dominated by the same matching µ′λ′ .

Proposition 1. Given a one-to-one matching problem (N,L,P). Then µλ <S µ
′
λ′ ⇒

µλ CS µ′λ′ .

We return briefly to the relationship between (coalition-) exchange* stability and

other stability concepts. We obtain that whenever there is no scarcity in locations -

when L ≥ N − 1 - then requiring the absence of exchange* blocking pairs is equiva-

lent to simultaneously requiring the absence of exchange blocking pairs10 (exchange

stability à la Alcalde, 1995) and the absence of blocking pairs (stability à la Gale

Shapley, 1962).

Proposition 2. Given a one-to-one matching problem (L,N,P). When L ≥ N−1, then

(coalition-) exchange* stability is equivalent to requiring both Gale Shapley stability

and (coalition-) exchange stability.

4 Characterizing coalition-exchange* stable match-

ings

4.1 A link between exchange* dominance and indirect dominance

We can now be more precise about the matchings that are (coalition-) exchange*

stable. To do so consider the following example.

Example 2. Let (L,N, P ) where L = {l1, l2} , N = {1, 2, 3, 4} and P (1) = 3, 4, 1;P (2) =

4, 3, 2;P (3) = 2, 1, 3 and P (4) = 1, 2, 4. Given these preferences this is equivalent to
10Note that coalition-exchange* stability is a refinement of exchange* stability.
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a marriage problem and they are illustrated as follows:

agent 1 agent 2 agent 3 agent 4

3 4 2 1
4 3 1 2
1 2 3 4

Consider matchings µλ = (13, 24) and µ′λ′ = (14, 23), illustrated below:

       
       

 
 
 
 
 

 
 
 

   µ!            µ '! '  

1 2 

43

1 2 

43

These two matchings are directly stable (and also stable in the Gale Shapley

sense). However, these matchings are not exchange* stable (nor exchange stable

in the sense of Alcalde, 1995). Indeed, agents 3 and 4 can exchange* enforce match-

ing µ′λ′ over matching µλ and agents 1 and 2 can exchange* enforce matching µλ

over matching µ′λ′ .

By close inspection we observe that while agents 1 and 2 cannot directly enforce

matching µλ over matching µ′λ′, they may do so in two steps, assuming that both

agents are forward looking. In a first step they could simply divorce in order to,

in a second step, match with each other’s ex-partners. Hence, if agents 1 and 2

cannot exchange their matching location rights, they may still be able to ’swap’

their partners if they are not myopic. We generalize this intuition by showing that

there is a close relationship between exchange* dominance and indirect dominance,

a farsighted dominance concept introduced by Harsanyi (1974) and Chwe (1994) to

study what happens when agents do not care about the immediate consequences of

their actions but rather to the final outcome after other agents have reacted to their

initial reaction. A matching µ′λ′ indirectly dominates µλ if µ′λ′ can replace µλ in a

sequence of matchings, such that at each matching along the sequence all deviators

are strictly better off at the end matching µ′λ′ compared to the status-quo. Formally,

indirect dominance is defined as follows in our setting
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Definition 10. A matching µλ is indirectly dominated by µ′λ′ , denoted by µλ � µ′λ′ ,

if there exists a sequence of matchings µ0
λ0 , µ

1
λ1 , ..., µ

K
λK (where µ0

λ0 = µλ and µKλK =

µ′λ′) and a sequence of coalitions S0, S1, ..., SK−1 such that for any k ∈ {1, ..., K},

1. µKλK �i µ
k−1
λk−1 ∀i ∈ Sk−1; and

2. coalition Sk−1 can enforce the matching µk
λk

over µKλK �i µ
k−1
λk−1 .

Direct dominance can be obtained from definition 9 by setting K = 1. Obviously,

if µλ < µ′λ′ then µλ � µ′λ′ ; i.e., direct dominance implies indirect dominance. The

set of matchings that are not indirectly dominated by any other matching is the

farsighted core:

Definition 11. Given is matching problem (L,N, P ). A matching µλ belongs to the

farsighted core (FC) if no other matching µ′λ′ indirectly dominates µλ.

When the set of locations is scarce, the farsighted core, if it exists, is not nec-

essarily a singleton (see example 4). Indirect dominance offers the possibility to

two agents to contemplate ’exchanging’ their partners, as long as the latter would

prefer to remain matched compared to being single. Exchange* dominance allows

these two agents to do so directly, even if their partners would prefer to be single

rather than being rematched through a swap they did not initiate. We now confirm

this intuition in Theorem 1: whenever an individually rational matching exchange*

dominates some other matching then it also indirectly dominates this matching.

Theorem 1. Let (L,N, P ) be a one-to-one matching problem with matching location

restrictions. Let µ′λ′ , µλ ∈ M∗, if µ′λ′ B µλ and if for all i such that µ′λ′(i) 6= µλ(i)

it is that case that µ′λ′(i) <i i then µ′λ′ � µλ.

Theorem 1 implies that for individually rational matching problems the farsighted

core must belong to the set of coalition-exchange* stable matchings. Example 3.

shows that this result does not carry through to the case of matchings problems

which are not individually rational: when µ′λ′ B µλ and µ′λ′ is not individually

rational, then it is not necessarily the case that µ′λ′ � µλ.
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Example 3. Consider the following marriage problem (L,M,W,P ) where M = {m1,m2}
and W = {w1, w2} and L = {l1, l2} with the following preferences:

m1 m2 w1 w2

w2 w1 m1 m2

w1 w2 w1 w2

m1 m2 m2 m1

Let µ′λ′ = (m1w2,m2w1) and let µλ = (m1w1,m2w2), as illustrated below:

We then have that µ′λ′ B µλ but not that µ′λ′ � µλ. Indeed, the women would

never accept to remarry a different man than their partner in µλ. That is, exchange*

enforceability can transform an individually rational match into an individually ra-

tional match. This possibility is ruled out by indirect dominance. Note that in this

example the farsighted core is a singleton: FC = {µλ} while the set of coalition-

exchange* stable matchings is empty.

While Theorem 1 implies that for individually rational matching problems ex-

change* dominance entail indirect dominance, the converse is not the case: indirect

dominance does not imply exchange* dominance. This is illustrated by example 4:

Example 4. Consider the following marriage problem (M,W,L, P ) where M = {m1,m2}
and W = {w1, w2} and L = {l1, l2} with the following preferences:

m1 m2 w1 w2

w2 w2 m1 m1

w1 w1 m2 m2

m1 m2 w1 w2
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Let µ′λ′ = (m1w2,m2w1) and let µλ = (m1w1,m2w2). We then have that µ′λ′ � µλ

but also that µ′λ′ 7 µλ since m1 and w2 cannot obtain the rights to a matching

location at which they can match. In this example the farsighted core is a singleton:

FC = {µλ} while the set of exchange* stable matchings is a couple: {µ′λ′ , µλ}.

Example 4 clarifies that for individually rational matching problems the far-

sighted core can be a strict subset of the set of exchange* stable matchings. We now

show that this result depends on the level of location scarcity.

Definition 12. Given is matching problem (L,N, P ). A matching µλ belongs to the

set of exchange* stable matchings (E*) if a pair (or individual) of agents can

enforce a matching that exchange* dominates µλ. A matching µλ belongs to the

set of coalition-exchange* stable matchings (C-E*) if no other matching µ′λ′

exchange* dominates µλ.

When there is no scarcity (L ≥ N −1), then the set of coalition-exchange* stable

matchings is equivalent to the farsighted core, while not necessarily equal to the set

of exchange* stable matchings. We have the following corollary:

Corollary 1. The farsighted core of any individually rational matching problem be-

longs to the set of exchange* stable matchings: if FC ⊂ E∗. However, E∗ * FC.

When L ≥ N − 1, we have that FC = C-E∗ E∗.

4.2 Stable sets

Often times the farsighted core is empty which lead people to introduce alterna-

tive stability concepts to study farsightedly stable matchings. A popular stability

concept is that of the farsighted stable set (FSS)11. A farsighted stable set of

a matching problem is a set of matchings that satisfies internal stability - no

matching of the set indirectly dominates another matching of the set - and ex-

ternal stability - all matchings outside the set are indirectly dominated by some

matching(s) belonging to the set.

Definition 13. A set of matchings V ⊆ M∗ is a von Neumann Morgenstern

farsighted stable set (FSS) if
11See Ray and Vohra (2014) for a recent analysis of the concept of farsighted stable set in coalition formation

problems.
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(i) for all µλ ∈ V , there does not exist µ′λ′ ∈ V such that µ′λ′ � µλ (internal

stability);

(ii) for all µ′λ′ /∈ V there exists µλ ∈ V such that µλ � µ′λ′ (external stability).

In general, existence of a such a set is not guaranteed, nor its uniqueness when it

exists. In the case of no scarcity, Mauleon et al. (2011) and Klaus et al. (2011)

have shown that if a matching is GS stable (and thus directly stable in our setting),

then it is a singleton FSS. When a matching is not stable, a FSS may not exist, as

illustrated by our example 1 or may have more than two elements (see example 2 in

Klaus et al. (2011).

Example 1 continued. Let (L,N, P ) where , L = {l1, l2, ..., lk} where k >

2, N = {1, 2, 3, 4} and P (1) = 3, 4, 1;P (2) = 4, 3, 2;P (3) = 2, 1, 3 and P (4) =

1, 2, 4. Given these preferences this is equivalent to a marriage problem and they are

illustrated as follows:

agent 1 agent 2 agent 3 agent 4

2 3 1 1
3 1 2 2
4 4 4 3

It is easily verified that no FSS exists.

We define an exchange* stable set (ESS) as a set of matchings such that

they do not exchange* dominate each other while any matching outside the set is

exchange* dominated by some matching in the set.

Definition 14. A set of matchings E ⊆M∗ is an exchange* stable set (ESS) if

(i) for all µλ ∈ E, there does not exist µ′λ′ ∈ E such that µ′λ′ B µλ;

(ii) for all µ′λ′ /∈ E there exists µλ ∈ E such that µλ B µ′λ′ .

In the case when L ≥ N −1, Klaus et al. (2011) have shown that (lemma 1 in Klaus

et al., 2011) any matching belonging to a FSS must be individually rational. Their

result immediately extends to our setting with location restrictions.
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Lemma 3. Given is a matching problem (L,N, P ). Let V be a FSS, then any µλ ∈ V
is individually rational.

We now show (proposition 3) that an ESS cannot be a strict subset of a FSS while

the opposite can hold. The latter conclusion is demonstrated by example 4.

Proposition 3. Given is a matching problem (L,N, P ). Let V be a FSS and consider

V ′ ( V , then V’ cannot be a ESS.

Example 4 continued. Consider the following marriage problem (L,M,W,P )

where M = {m1,m2} and W = {w1, w2} and L = {l1, ..., lk} where k > 0 with the

following preferences:

m1 m2 w1 w2

w2 w2 m1 m1

w1 w1 m2 m2

m1 m2 w1 w2

For all sets of location restrictions there is a unique FSS, and a unique ESS. For

all k > 1 the FSS is a strict subset of the ESS.

1. When L = {l1} we have that FSS = ESS = {(m1w1) , (m1w2) , (m2w1) , (m2w2)}

2. When L = {l1, ..., lk} we k > 1 have that FSS ( ESS. We have that FSS =

{(m1w2,m2w1)}( {(m1w2,m2w1) , (m1w1,m2w2)} =ESS.

We end our discussion of the exchange* stable set by providing an example which

has no FSS but there exists a ESS.

Example 1 continued. This matching problem does not have a FSS. Now

consider the following matchings: µ1
λ1 = (13, 24), µ2

λ2 = (12, 34), and µ3
λ3 = (14, 23),

in which agents are matched at locations l1 and l2 (all other locations are available),

and let the set E be the set of all location permutations of these matchings (matched

at li and lj). There are

(
k

2

)
matchings in E and E satisfies internal stability:

no matching of E exchange* dominates another matching of this set. All other

matchings are exchange* dominated by a matching of E (external stability). Hence,

set E is an exchange* stable set.
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5 Computational complexity

In computer science the algorithmic aspects of matching problems have been

studied at length. A large body of literature (see Gusfield and Irving, 1989 and

Manlove, 2013) emerged studying whether deciding if a given roommate problem

admits a (Gale Shapley) stable matching is a computationally complex question. A

smaller literature12 asked the same question while replacing Gale Shapley stability

with the concept of exchange stability introduced by Alcalde (1995). In addition,

Irving (2008) finds that deciding whether a roommate problem admits a matching

which is simultaneously Gale Shapley stable and exchange stable à la Alcalde (1995)

is computationally hard:

Theorem 2. (Irving, 2008) “The problem of deciding whether a given stable roommate

instance admits a stable matching that is exchange stable is NP-complete.”

Our proposition 2 shows that, when L ≥ N − 1, coalition-exchange* stability is

equivalent to simultaneously requiring Gale Shapley stability and coalition-exchange

stability and corollary 1 shows that the set of coalition-exchange* stable matchings

is equivalent to the farsighted core for an individually rational matching problem.

We conclude that finding a farsightedly stable matching in an individually rational

one-to-one matching problem without location scarcity is also computationally hard:

Corollary 2. Let L ≥ N − 1. Deciding whether an individually rational roommate

problem admits a farsightedly stable matching is NP complete

6 Conclusion

This paper contributes to the literature on the roommate and marriage problem

in several dimensions. First , this paper explicitly introduces matching location

restrictions in the one-to-one matching problem. When the set of matching locations

is large (no scarcity), the matching problem is equivalent to the classic matching

problem. When scarcity of matching locations exists some agents may want to

form a new partnership without being able to implement it. Second, it develops

the concepts of direct and coalition-exchange* stability in the general setting and

12Cechlarova (2002), Cechlarova and Manlove (2005), Irving (2008), McDermid et al. (2007).
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shows that coalition-exchange* stability is a refinement of direct stability. In the

absence of location scarcity, direct stability is equivalent to Gale Shapley stability

and exchange* stability is equivalent to simultaneously requiring exchange stability

à la Alcalde (1995) and Gale Shapley stability. Third , the paper shows that there

exists a natural relationship between indirect dominance and exchange* dominance

allowing to conclude that set of coalition-exchange* stable matchings is a superset

of the farsighted core, and equal to the farsighted core if locations are not scarce and

the matching problem is individually rational. It is shown that an exchange* stable

set can not be a strict subset of a farsighted stable set. In addition, an example is

provided of a roommate problem in which no farsighted stable set exists while an

exchange* stable set does exist. Fourth, by using well known complexity results, the

paper obtains that deciding whether the farsighted core of an individually rational

roommate problem exists is NP-complete.

Many questions remain unanswered. We have not fully characterized exchange*

stable matchings. We have not tackled the question whether an exchange* stable set

always exists. While we have shown that deciding whether the (unique) farsighted

core of a individually rational roommate problem exists is computationally hard,

we have not done so for individually irrational roommate problems. Nor have we

discussed how to extend our setting to many-to-one or many-to-many matching

problems. We leave these questions for future research.
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Appendix

Lemma 1. Suppose µλ →S µ
′
λ′ then µλ 
S µ

′
λ′ .

Proof. Note that µλ →S µ
′
λ′ implies that for all i such that λ′(i) 6= λ(i)⇒ i ∈ S and

λ′(i) ∈ Lλ(S). Since Lλ(S) ⊆ Lλ(S), let all these agents i belong to S ′. But then,

by the definition of exchange enforceability: µλ 
S′ µ
′
λ′ where we note that S ′ = S.

Lemma 2. When a matching µλ is directly blocked by a couple {i, j}, where

possibly i = j, then it is also exchange* blocked by {i, j}.

Proof. First assume that i = j. Hence for agent i we have that i � µλ(i). Then agent

i can simply ’divorce’ from µλ(i) without being assigned a new location. But the

same move can be done through an exchange* blocking singleton: i just gives up

her location assignment. Second assume that i 6= j and µ′λ′(i) = j. Then it must be

that λ′(i) = λ′(j) = l′ where l′ ∈ Lλ({i, j}). In other words, location λ−1(l′) = ∅ : it

was not assigned to anyone in λ. But then {i, j} can exchange* enforce µ′λ′ over µλ,

by exchanging their current location for l′.

Proposition 1. Given a one-to-one matching problem (L,N, P ). Then µλ <S

µ′λ′ ⇒ µλ CS µ′λ′ .

Proof. This proposition follows immediately from lemma 1.

25



Proposition 2. Given a one-to-one matching problem (L,N, P ). When L ≥
N − 1, then (coalition-) exchange* stability is equivalent to requiring both Gale

Shapley stability and (coalition-) exchange stability.

Proof. The proof is done for exchange* stability and exchange stability. Proving that

it also holds for coalition-exchange* stability and coalition exchange stability follows

the exact same lines and is therefore omitted.

⇒ Suppose that µλ is exchange* stable and there exists either a blocking pair

(individual) or exchange blocking pair. Suppose first that {i, j} is a blocking pair

(or individual when i = j ) of µλ. Since L ≥ N − 1 {i, j} can enforce the matching

µ′λ′ where µ′λ′ = µλ − iµλ(i) − jµλ(j) + ij . We then have that µ′λ′ B{i,j} µλ, a

contradiction. Now suppose that {i, j} is a exchange blocking pair. But then for

any L we have that µ′λ′ B{i,j} µλ, again a contradiction.

⇐ Suppose there does not exist a blocking pair, nor an exchange blocking pair

but their exists a pair {i, j} (or individual when i = j ) and a matching µ′λ′ such that

µ′λ′ B{i,j} µλ. Since {i, j} is not an exchange blocking pair or individual(s), then it

must be that they must be matched or alone in µ′λ′ in which they are better off. But

then {i, j} would be a blocking pair, a contradiction.

Theorem 1. Let (L,N, P ) be a one-to-one matching problem with matching

location restrictions. Let µ′λ′ , µλ ∈ M∗, if µ′λ′ B µλ and if for all i such that

µ′λ′(i) 6= µλ(i) it is that case that µ′λ′(i) <i i then µ′λ′ � µλ.

Proof. Let B(µλ, µ
′
λ′) be the set of agents who are better off in µ′λ′ compared to µλ:

B(µλ, µ
′
λ′) = {i ∈ N,µλ(i) ≺i µλ′(i)}. Let I(µλ) be the set of agents who are single

in µλ: I(µλ) = {i ∈ N,µλ(i) = i}. We have that there exists a set of agents S who

can exchange* enforce µ′λ′ over µλ and be better off in µ′λ′ . We now construct an

indirect dominance path from µλ to µ′λ′ . Let µ1
λ1 be a matching where all agents of

S are single, if necessary by leaving their partner in µλ by giving up their location

assignment under λ. Let S1 ⊆ S be those agents belonging to S who have a partner

in µλ: S1 = S \ I(µλ). We then have that µλ →S1µ
1
λ1 and for all i ∈ S1 : µ′λ′ �i µ.

Now consider the set S2 = B(µ1
λ1 , µ

′
λ′). For any i ∈ S2 we have

1. µ′λ′(i) 6= i and µ′λ′(i) = j ∈ S. Then it must be that λ′(i) = λ′(j) = l′ ∈
Lλ({i, j}). But then λ−1(l′) = {i, j} and hence l′ ∈ Lλ1({i, j}); or
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2. µ′λ′(i) 6= i and µ′λ′(i) = j /∈ S. Then it must be that λ(j) = λ′(j) = l and

l ∈Lλ(S). But then λ−1(l′) = {i, j} and hence l′ ∈ Lλ1({i, j}); or

3. µ′λ′(i) = i. But then i /∈ S2.

We then have that for all i ∈ S2 : λ′(i) ∈ Lλ1(S2) and hence we have that µ1
λ1

→S2µ
′
λ′ . We conclude that µ′λ′ �µλ.

Corollary 1. Given is an individually rational one-to-one matching problem

(L,N, P ). We have

1. FC ⊂ E∗. However, E∗ * FC.

2. When L ≥ N − 1, we have that FC = C − E∗ E∗.

Proof. Given is that (L,N, P ) is individually rational.

1. Suppose first that µλ ∈ FC and µλ /∈ E∗. Then there exists µ′λ′ and {i, j}
where possibly i = j such that µ′λ′ B{ij} µλ. Since µ′λ′ is individually rational, it

follows from Theorem 1 that µ′λ′ � µλ, a contradiction. That E∗ * FC follows

from example 4.

2. Now let L ≥ N−1, and let µλ ∈ C−E∗. Suppose that there exists µ′λ′ such that

µ′λ′ � µλ. Consider the set B(µλ, µ
′
λ′), then µ′λ′ 7B(µλ,µ

′
λ′ )

µλ. However, since

L ≥ N − 1, there are always enough matching locations to let the members of

B(µλ, µ
′
λ′) enforce any partner swap and/or any direct blocking coalition since

there are at least 1
2
]B(µλ, µ

′
λ′) locations available for members of B(µλ, µ

′
λ′) who

want to be matched to each other. Hence it must be that µ′λ′ BB(µλ,µ
′
λ′ )

µλ, a

contradiction. Exmaple 4 has illustrated that FC = C − E∗ E∗ even if L ≥
N − 1.

Lemma 3. Given a one-to-one matching problem (L,N, P ). Let V be a FSS, then

any µλ ∈ V is individually rational.

Proof. The proof is equivalent to the proof of lemma 1 in Klaus et al. (2011) and

therefore omitted.
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Proposition 3. Given a one-to-one matching problem (L,N, P ). Let V be a FSS

and consider V ′ ( V , then V ′ cannot be a ESS.

Proof. Let V ′ ⊂ V where V is a FSS. Let µλ ∈ V while µλ /∈ V ′. Then it must be that

there exists µ′λ′ ∈ V ′ such that µ′λ′ B µλ, but since µ′λ′ is individually rational (using

Lemma 3) we know (using Theorem 1) that µ′λ′ � µλ, violating internal stability of

V , hence V is not a FSS, a contradiction.

Corollary 2. Deciding whether an individually rational roommate problem admits

a farsightedly stable matching is NP complete.

Proof. This follows immediately from Proposition 2, Corollary 1 above and Theorem

2 in Irving (2008).
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