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Abstract

We study the role of conflicting interests in boundedly rational belief dy-

namics. Agents meet pairwise with their neighbors in the social network and

exchange information strategically. They hold beliefs about an issue of com-

mon interest and differ in their preferences about the action to take. The

sender of information would like to spread his belief about the action to take,

while the receiver would like to learn the sender’s belief about the issue. In

equilibrium the sender only communicates a noisy message containing infor-

mation about his belief; the receiver interprets the sent message and updates

her belief by taking the average of the interpretation and her pre-meeting

belief. With conflicting interests, the belief dynamics generically fails to con-

verge almost surely: each agent’s belief converges to some interval and keeps

fluctuating on it forever. In particular, our results suggest that the classical

consensus result is not stable with respect to conflicts of interest.
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1 Introduction

Individuals form their beliefs and opinions on various economic, political and social

issues based on information they receive from their social environment. This may
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include friends, neighbors and coworkers as well as political actors and news sources,

among others. Typically, all these individuals have widely diverging interests, views

and tastes, as can be seen in daily political discussions or in all kinds of bargaining

situations. In election campaigns, politicians have incentives to argue solutions or

proposals that differ from their beliefs. In budget allocation problems, the recipients

of capital, e.g., ministries, local governments or departments of companies or uni-

versities, have incentives to overstate their capital requirement, while the other side

is concerned with efficiency. Another example are court trials, where the accused

has clearly incentives to misreport the events in question. And in marketing, firms

might overstate the product quality to attract costumers.

When interests are conflicting, individuals will find it more advantageous not to

reveal their true belief for strategic reasons. However, in the literature on commu-

nication in social networks, it is usually assumed that agents report their beliefs

truthfully, see, e.g., DeGroot (1974); Golub and Jackson (2010); DeMarzo et al.

(2003); Acemoglu et al. (2010); Förster et al. (2013). DeMarzo et al. (2003) state

that this assumption is for simplicity, but that “[n]onetheless, in many persuasive

settings, (e.g., political campaigns and court trials) agents clearly do have incentives

to strategically misreport their beliefs.”

In this paper, individuals differ in their preferences about the action to take with

respect to some issue of common interest. Each individual holds a belief about the

issue, henceforth simply belief, and a belief about the action to take, henceforth

action-belief.1 We assume that when two individuals communicate, the receiver of

information would like to get to know the belief of the sender about the issue as

precisely as possible in order to refine her own belief, while the sender wants to

spread his action-belief, i.e., he would like the receiver to adopt his action-belief.

To illustrate this approach, consider an international meeting of politicians, e.g.,

the United Nations climate change conferences. The common issue of the decision-

makers at these meetings is to find and to agree on the measures or actions to take

in order to limit global warming. Each decision-maker holds a belief about which

measures are to be taken by the global community to achieve this goal. However, the

measures they intend to support in front of the other decision-makers (their action-

belief) might differ from this belief due to strategic reasons that depend on the local

environment within their country. These reasons include local costs of adaption of

the measures, the risk profile of the country, and the local public opinion.2 During

1We can interpret her belief as to be about the fundamentals of the issue, while her action-belief

is a personal judgement about the issue for strategic reasons or taste considerations.
2The 2009 United Nations climate change conference that took place in Copenhagen, Denmark,
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these meetings, politicians interact repeatedly with each other. When receiving

information, they would like to do so as precisely as possible since the ideal action

for each country depends on the fundamentals of global warming, while they intend

to support their action-belief when sending information in order to reach an outcome

close to the ideal measure for their country.

An important question for society is how the presence of these conflicts influ-

ences information aggregation, long-run beliefs and opinions in society. We develop

a framework of belief dynamics where individuals with conflicting interests commu-

nicate strategically in a social network and update their beliefs näıvely with the

obtained information.

We show that these conflicts lead to persistent disagreement among the agents

and fluctuating beliefs. In particular, our results suggest that the classical consensus

result is not stable with respect to conflicts of interest. Thus, we provide a rationale

for why disagreement among individuals in our societies is the norm on many central

issues that have been debated for decades.

More precisely, we consider a society represented by a social network of n agents.

At time t ≥ 0, each agent holds a belief xi(t) ∈ [0, 1] about some issue of common

interest.3 Furthermore, each agent holds an action-belief xi(t) + bi about the action

to take, where bi ∈ R is a bias relative to her belief.4 Each agent starts with

an initial belief xi(0) ∈ [0, 1] and meets (communicates with) agents in her social

neighborhood according to a Poisson process in continuous time that is independent

of the other agents.5 When an agent is selected by her associated Poisson process,

she receives information from one of her neighbors (called the sender of information)

according to a stochastic process that forms her social network.6 We assume that

the sender wants to spread his action-belief, while the receiver wants to infer his

belief in order to update her own belief.

In equilibrium, this conflict of interest leads to noisy communication à la Craw-

led to a political agreement on the goal of limiting global warming to no more than two degrees

Celsius over the pre-industrial average. However, views on the measures to take remained widely

diverging depending on local environments and therefore prevented a full-fledged legal agreement,

see Bodansky (2010).
3We refer to DeMarzo et al. (2003) for a discussion about the representation of beliefs by a

unidimensional structure.
4Thus, if θ was the true answer to the issue, her ideal action would be θ + bi.
5See Acemoglu et al. (2010, 2013), who use this timing in related models.
6Note that we model communication as directed. We want to allow for asymmetric communi-

cation since, e.g., an agent might obtain a lot of information from another agent, but this might

not be the case vice versa. We can think of journalists whose information reach a large audience,

who themselves only receive information from few people, though.
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ford and Sobel (1982, henceforth CS): the sender sends one of finite messages that

contains information about his belief, which is then interpreted by the receiver.7 In

optimal equilibrium, communication is as informative as possible given the conflict

of interest, i.e., the sender uses as many messages as possible and discriminates

as finely as possible between different beliefs.8 The receiver updates her belief by

taking the average of the interpretation of the sent message and her pre-meeting

belief. Although simple, this updating rule reflects the idea that agents fail to ad-

just for repetitions and dependencies in information they hear several times due to

the complexity of social networks, as argued by DeMarzo et al. (2003).9 In other

words, agents are assumed to be only boundedly rational: they are rational when

communicating (with respect to the conflicts of interest), but näıve or boundedly

rational when updating their beliefs as they fail to take into account the history of

beliefs.

Our framework induces a belief dynamics process as well as an action-belief

dynamics process. As a first observation, we note that we can concentrate our anal-

ysis on the belief dynamics process since both processes have the same convergence

properties. We say that an agent’s belief fluctuates on an interval if her belief will

(almost surely) never leave the interval and if this does not hold for any subinterval.

In other words, the belief “travels” the whole interval, but not beyond.

In our main result, we show that for any initial beliefs, the belief dynamics

process converges with probability 1 to a set of intervals that is minimal mutu-

ally confirming. Given each agent’s belief lies in her corresponding interval, these

intervals are the convex combinations of the interpretations the agents use when

communicating. Furthermore, we show that the belief of an agent eventually fluctu-

ates on her corresponding interval whenever the interval is proper, i.e., whenever it

contains infinitely many elements (beliefs). As a consequence, the belief dynamics

has a steady state if and only if there exists a minimal mutually confirming set such

that all its intervals are degenerate, i.e., contain only a single point.

7The receiver faces (unmeasurable) uncertainty (also called Knightian uncertainty, see Knight

(1921)) about the sender’s belief after receiving the message. We assume that agents are maxmin

utility maximizers in the sense that upon receiving a message, they choose an interpretation that

maximizes their worst-case utility.
8Note that CS argue that the optimal equilibrium is particularly plausible in a situation like

ours, where communication is repeated.
9Note that this updating rule has another appealing interpretation: if the initial beliefs were

drawn independently from a normal distribution with equal mean and equal variance and if there

was no conflict of interest, then this updating rule would be optimal. In view of this, we should

think about the conflicts of interest as being rather small.
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However, we remark that such a situation must be constructed explicitly by

choosing specific biases and network configurations and thus, we conclude that the

belief dynamics generically fails to converge almost surely. On the contrary, in

absence of conflicting interests, we recover the classical result that a connected social

network makes society reaching a consensus. Thus, it is conflicts of interest that

drive our main result and moreover, our results suggest that the classical consensus

result is not stable with respect to conflicts of interest.

We then investigate more closely the pattern of the fluctuations and show that

the belief dynamics – although failing to converge almost surely – converges in

distribution to a random vector. And moreover, we find that the beliefs fluctuate in

an ergodic way, i.e., the empirical averages of the agents’ beliefs converge to their

long-run expectations. We illustrate our results by several examples.

The introduction of conflict of interest leads not only to persistent disagreement

among the agents, but also to fluctuating beliefs. These phenomena are common

in our societies, where disagreement among individuals and constantly changing

beliefs and opinions are the norm on many central issues, and agreement is the

rare exception even though these issues have been debated for decades. Persistent

disagreement and in particular belief fluctuations have been frequently observed in

social sciences, see, e.g., Kramer (1971) who documents large swings in US voting

behavior within short periods, and works in social and political psychology that

study how political parties and other organizations influence political beliefs, e.g.,

Cohen (2003); Zaller (1992). Furthermore, DiMaggio et al. (1996) show that the

variance of several opinion dimensions has not changed significantly in the US be-

tween the 70s and the 90s, and Evans (2003) finds that the variance has actually

increased on moral issues. At the same time, our result is surprising in view of the

literature on communication in social networks: in most models, a strongly con-

nected network leads to mutual consensus among the agents in the long-run. To

this respect, Acemoglu et al. (2013) is the closest to our work, where the authors

introduce stubborn agents that never change their belief, which leads to fluctuating

beliefs when the other agents update regularly from different stubborn agents.

There exists a large literature on communication in social networks, using both

Bayesian and non-Bayesian updating rules.10 Apart from the various works that

10In Bayesian and observational learning models communication is typically assumed to be truth-

ful and agents have the tendency to converge to a mutual consensus, e.g., Banerjee and Fudenberg

(2004); Gale and Kariv (2003); Acemoglu et al. (2011). Another stream of literature studies how

observable behaviors spread in a population, e.g., López-Pintado (2008, 2012); Jackson and Yariv

(2007); Morris (2000).
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assume truthful communication, Büchel et al. (2012) study a model where agents

act strategically in the sense that their stated belief differs from their true belief

depending on their preferences for conformity. Acemoglu et al. (2014) study a

model of Bayesian learning where the agents’ objective is to form beliefs (acquire

information) about an irreversible decision that each agent has to make, eventually.

In this setting, agents might want to misreport their information in order to delay

the decisions of other agents. The authors show that it is an equilibrium to report

truthfully whenever truthful communication leads to asymptotic learning, i.e., the

fraction of agents taking the right decision converges to 1 (in probability) as the

society grows. They also show that in some situations, misreporting can lead to

asymptotic learning while truthful communication would not. However, also these

models lead to mutual consensus under the condition that the underlying social

network is strongly connected (and some regularity condition).

Several authors have proposed models to explain non-convergence of beliefs, usu-

ally incorporating some kind of homophily that leads to segregated societies and

polarized beliefs.11 Axelrod (1997) proposed such a model in a discrete belief set-

ting, and later on Hegselmann and Krause (2002) and Deffuant et al. (2000) studied

the continuous case, see also Lorenz (2005); Blondel et al. (2009); Como and Fag-

nani (2011). Golub and Jackson (2012) argue that the presence of homophily can

substantially slow down convergence and thus lead to a high persistence of disagree-

ment. While being able to explain persistent disagreement, these models fail to

explain belief fluctuations in society.

Furthermore, our work is related to contributions on cheap-talk games. Hagen-

bach and Koessler (2010), Galeotti et al. (2013) and Ambrus and Takahashi (2008)

extend the framework of CS to a multi-player (-sender) environment, but maintain

the one-shot nature of the model.

The paper is organized as follows. In Section 2 we introduce the model and

notation. Section 3 concerns the equilibrium in the communication stage. In Section

4 we study the long-run belief dynamics. In Section 5 we conclude. The proofs are

presented in the Appendix.

11An exception being Friedkin and Johnsen (1990), who study a variation of the model by

DeGroot (1974) where agents can adhere to their initial beliefs to some degree. This leads as well

to persistent disagreement among the agents.
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2 Model and Notation

We consider a set N = {1, 2, . . . , n}, with n ≥ 2, of agents who repeatedly commu-

nicate with their neighbors in a social network. At time t ≥ 0, each agent i ∈ N
holds a belief xi(t) ∈ [0, 1] about some issue of common interest. Furthermore,

agent i holds an action-belief xi(t) + bi about the action to take, where bi ∈ R is a

commonly known bias relative to her belief xi(t).

The social network is given by a stochastic matrix P = (pij)i,j∈N , i.e., pij ≥ 0

for all i, j ∈ N and
∑

j∈N pij = 1 for all i ∈ N . For agent i, pij is the probability

to meet agent j, and Ni = {j ∈ N | pij > 0} denotes i’s neighborhood. Let (N , g)

denote the directed graph where g = {(i, j) | pij > 0} is the set of directed links

induced by meeting probabilities pij > 0. Throughout the paper we will make the

following assumption.

Assumption 1. (i) (Self-communication) Agents do not communicate with them-

selves, i.e., pii = 0 for all i ∈ N .

(ii) (Connectivity) The graph (N , g) is strongly connected, i.e., for all i, j ∈ N
there exists a directed path connecting i to j with links in g.

The first part states that “self-communication” is not possible. We make this

assumption for simplicity, but it could be included as a possibility to abstain from

communication. The second part guarantees that every agent communicates indi-

rectly with every other agent, possibly through several links. We make this assump-

tion for several reasons. First, it seems to be natural as evidence suggests that our

societies are indeed connected, see, e.g., Watts (2003). And second, it is known

to be a necessary condition for convergence of beliefs to a consensus. We want to

exclude that beliefs fail to converge because agents are not connected.

Each agent i ∈ N starts with an initial belief xi(0) ∈ [0, 1]. Agents meet (com-

municate) and update their beliefs according to an asynchronous continuous-time

model. Each agent is chosen to meet another agent at instances defined by a rate

one Poisson process independent of the other agents. Therefore, over all agents, the

meetings occur at time instances ts, s ≥ 1, according to a rate n Poisson process.

Note that by convention, at most one meeting occurs at a given time t ≥ 0. Hence,

we can discretize time according to the agent meetings and refer to the interval

[ts, ts+1) as the sth time slot. There are on average n meetings per unit of abso-

lute time, see Boyd et al. (2006) for a detailed relation between the meetings and

absolute time. At time slot s, we represent the beliefs of the agents by the vector

x(s) = (x1(s), x2(s), . . . , xn(s)).
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If agent i ∈ N is chosen at time slot s, s ≥ 1 (probability 1/n), she meets agent

j ∈ N with probability pij and communicates with him. We assume that agent i

updates her belief with information she receives from agent j.12 Agent j sends a

message (or signal) m ∈ M := {m1,m2, . . . ,mL} containing information about his

belief xj(s− 1), where L ∈ N is very large but finite, and which is interpreted by i

as an estimate yij(m) of xj(s− 1).13 Agent i then updates her belief by taking the

average of this interpretation and her pre-meeting belief:

xi(s) =
xi(s− 1) + yij(m)

2
.

If not stated otherwise, agent i will denote the agent that updates her belief (the

receiver of information), and agent j will denote the agent with whom she commu-

nicates (the sender of information). We write g(s) = ij if link (i, j) is chosen at

time slot s.

Next, we specify how communication between agents takes place. We adapt the

framework of Jäger et al. (2011) to conflicting interests and repeated communication.

Suppose that g(s) = ij; we make the following assumption about the objectives of

the agents.

Assumption 2 (Objectives). Agent i’s objective is to infer agent j’s belief xj(s−1),

while agent j’s objective is to spread his action-belief xj(s− 1) + bj.

We represent Assumption 2 by the (communication) preferences

ui(xj(s− 1), yij(m)) = h(|xj(s− 1)− yij(m)|)

and

uj(xj(s− 1), yij(m)) = h(|xj(s− 1) + (bj − bi)− yij(m)|),

where h : R+ → R is a continuous, concave and strictly decreasing function. Agent

j wants to send a message m such that i′s interpretation is as close as possible to

xj(s−1)+(bj−bi), the ideal interpretation from his point of view, while agent i wants

to choose an interpretation that is as close as possible to j’s belief xj(s−1).14 Notice

that, first, in absence of conflict of interest (bi = bj) the ideal interpretation from

12Note that agent j does not update his belief. Together with the directed social network, this

assumption allows for asymmetric communication.
13We know from CS that assuming a (sufficiently) large but finite number of messages represents

only a restriction in absence of conflict of interest. Since we focus on conflicting interests, we take

this assumption for analytical convenience.
14We can also interpret −uk(xj(s− 1), yij(m)) as the loss from communication, see Jäger et al.

(2011).
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agent j’s point of view is equal to his belief, i.e., preferences are aligned; second, if

action-beliefs coincide ex-ante (at time slot s−1), then agent j’s ideal interpretation

xj(s−1)+(bj−bi) is the unique interpretation that leaves i’s action-belief unchanged

and that is hence consistent with Assumption 2.15 Furthermore, the belief dynamics

is well-defined since agent i optimally chooses an interpretation in [0, 1] whatever

message she receives. A simple example are quadratic preferences.

Example 1 (Quadratic preferences).

ui(x, y) = −(x− y)2 and uj(x, y) = −(x+ (bj − bi)− y)2.

In this signaling game, a strategy for the sender j is a measurable function

mij : [0, 1]→M

that assigns a message to each possible belief and for the receiver i, it is a function

yij :M→ [0, 1]

that assigns an interpretation to each possible message. We refer to the interpre-

tation of message ml as yl = yij(ml) and to the set of beliefs that induces ml as

Cl = (mij)−1(ml) = {x ∈ [0, 1] : mij(x) = ml} when there is no confusion. An

agent receiving message ml faces (unmeasurable) uncertainty (or Knightian uncer-

tainty) about the location of the sender’s belief within Cl. We assume that she is a

maxmin utility maximizer in the following sense: upon receiving ml, she maximizes

her worst-case utility minx∈Cl
ui(x, y).16

Then, an equilibrium of the game consists of strategies (mij, yij) such that

(i) for each message ml ∈M,

yl ∈ argmax
y∈R

min
x∈Cl

ui(x, y), and

15Suppose that action-beliefs coincide ex-ante, i.e., xi(s − 1) + bi = xj(s − 1) + bj . Then, the

ideal interpretation y∗ for agent j should not change i’s action-belief, i.e., by assumption,

xj(s− 1) + bj = xi(s− 1) + bi
!
= xi(s) + bi =

xi(s− 1) + y∗

2
+ bi =

xj(s− 1) + bj + y∗ + bi
2

⇔y∗ = xj(s− 1) + bj − bi.

16Notice that due to this assumption, the meanings of messages stay the same over time, but

nevertheless differ between pairs of agents depending on their particular conflict of interest.
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(ii) for each belief x ∈ [0, 1],

mij(x) ∈ argmax
m∈M

uj
(
x, yij(m)

)
.

Condition (i) says that agent i uses an interpretation that maximizes her worst-case

utility for each message she receives. Condition (ii) says that for each belief agent

j chooses a message that maximizes his utility. We exclude the possibility of any

prior commitment of the agents and assume without loss of generality that whenever

two messages lead to the same interpretation, then agent j only sends the message

with the lower index. We say that a message ml is induced (used) in equilibrium if

Cl = (mij)−1(ml) 6= ∅. Thus, we can restrict our attention to the messages that are

induced in equilibrium and their interpretations, which are distinct.17 Throughout

the paper we assume that Assumption 1 and 2 hold.

3 Communication Stage

In this section we characterize, given g(s) = ij, how agent j communicates with

agent i. Suppose j uses messages m ∈ M|L(ij) := {m1,m2, . . . ,mL(ij)} in equi-

librium that lead to distinct interpretations (yl)
L(ij)
l=1 . Then, given j holds belief

xj(s− 1), he sends a message that maximizes his utility, i.e.,

mij(xj(s− 1)) ∈ argmax
m∈M|L(ij)

uj
(
xj(s− 1), yij(m)

)
= argmax

m∈M|L(ij)

h(|xj(s− 1) + (bj − bi)− yij(m)|)

= argmin
m∈M|L(ij)

|xj(s− 1) + (bj − bi)− yij(m)|,

where the last equality follows since h is strictly decreasing. Note that this choice is

not uniquely defined if xj(s−1)+(bj− bi) has equal distance to two interpretations;

we assume without loss of generality that j sends the message with the lowest index

in this case. Hence, we can identify j’s strategy in equilibrium with a partition

(Cl)
L(ij)
l=1 of [0, 1], where

Cl = (mij)−1(ml) = {x ∈ [0, 1] : mij(x) = ml} = [cl−1, cl)

is such that 0 = c0 < c1 < · · · < cL(ij) = 1. Note that cl refers to the belief where j

is indifferent between sending message ml and ml+1. So, in equilibrium he partitions

17Notice that we restrict our attention to pure strategies.
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the unit interval and only communicates the element of the partition his belief is

from. Upon receiving message ml, i will choose an interpretation that maximizes

her worst-case utility, i.e.,

yl = argmax
y∈R

min
x∈Cl

ui(x, y) = argmin
y∈R

max
x∈Cl

|x− y| = cl − cl−1
2

.

The number of messages induced in equilibrium is bounded under conflict of interest:

we show that the distance between any two interpretations induced in equilibrium is

larger than the distance |bj−bi| between the ideal interpretations of the agents. Only

the equilibrium with one message always exists: in this equilibrium, j’s strategy is

given by C1 = [0, 1] and i uses the interpretation y1 = argmaxy∈R minx∈C1 ui(x, y) =

1/2. We refer to the finite upper bound on the number of messages (or the “size”

of the partition) induced in equilibrium by L(ij). We call the equilibrium using

L(ij) messages optimal equilibrium since it is most informative in the sense that it

uses the finest partition. Furthermore, this equilibrium is essentially unique in the

sense that all equilibria using L(ij) messages induce the same partition and as the

receiver’s interpretation of a given partition element is unique. And, following the

argumentation of CS, we assume that agents coordinate on this equilibrium.18

In absence of conflicting interests, the same result holds since we only allow for a

finite number of messages. Agents use the maximum number of messages L(ij) = L

in optimal equilibrium. Since we do not want to restrict the game under conflict of

interest, we assume L ≥ max{L(ij) | bi 6= bj}. The following proposition summarizes

our findings and explicitly determines the optimal equilibrium.

Proposition 1. Suppose that g(s) = ij.

(i) If bi 6= bj, then there exists a finite upper bound

L(ij) = max{l ∈ N | 1/(2l) ≥ |(l − 1)(bj − bi)|}

on the number of messages in equilibrium.

(ii) The game has an essentially unique optimal equilibrium (mij, yij) in which

agent j uses L(ij) (L if bi = bj) messages and his strategy is given by a

partition (Cl)
L(ij)
l=1 , where Cl = (mij)−1(ml) = [cl−1, cl) is such that

cl = l/L(ij)− 2l(L(ij)− l)(bj − bi).
18They argue that this equilibrium seems to be particularly plausible in situations where com-

munication is repeated, that is, in our case.
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Furthermore, agent i’s strategy is given by interpretations

yl = yij(ml) = (2l − 1)/(2L(ij))−
(
(2l − 1)L(ij)− 2(l2 − l)− 1

)
(bj − bi)

for l = 1, 2, . . . , L(ij).

All proofs can be found in the Appendix. We denote the optimal equilibrium

when g(s) = ij by the triple E ij = (L(ij), Cij, Y ij), where Cij = (c1, c2, . . . , cL(ij)−1)

denotes j’s strategy and Y ij = (y1, y2, . . . , yL(ij)) denotes i’s strategy. The next

example illustrates how such equilibria can look like.

Example 2. Consider N = {1, 2} and the vector of biases b = (0, 1/20). The first

agent is not biased, while the second is biased to the right.

When g(s) = 12, then L(12) = 3 messages are induced in optimal equilibrium

and strategies are C12 = (4/30, 14/30) and Y 12 = (2/30, 9/30, 22/30). This means

that if, for instance, agent 2’s belief is below c1 = 4/30, then he sends message m1

and agent 1 interprets this as y1 = 2/30. When g(s) = 21, then as well L(21) = 3

messages are induced in optimal equilibrium and strategies are C21 = (16/30, 26/30)

and Y 21 = (8/30, 21/30, 28/30). Both equilibria are depicted in Figure 1.

E12 m1
c1 m2

c2 m3

y1 y2 y3

E21 m1
c1 m2

c2 m3

y1 y2 y3

Figure 1: Optimal equilibria in Example 2.

4 Belief Dynamics

In this section we study the long-run behavior of the belief dynamics. At each

time slot s, a pair of agents g(s) = ij is selected according to the social network

and communicates by employing the optimal equilibrium E ij. Agent i adopts the

average of her pre-meeting belief and the equilibrium outcome of communication

(her interpretation) as her updated belief. Hence, the belief dynamics {x(t)}t≥0
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defines a Markovian stochastic process. Note that we can define as well the action-

belief dynamics process {x(t) + b}t≥0, where b = (b1, b2, . . . , bn) denotes the vector

of biases.

Remark 1. The action-belief dynamics {x(t) + b}t≥0 is obtained by a translation

of the state space of the belief dynamics {x(t)}t≥0. Hence, both processes have the

same properties in terms of convergence.

In the following, we will focus on the belief dynamics. The next example suggests

that conflicting interests might prevent society from finding a consensus and instead

lead to fluctuating beliefs.

Example 3 (Belief fluctuation). Consider N = {1, 2, 3} and the vector of biases

b = (0, 1/25,−1/15). Furthermore, all agents hold the same initial belief xi(0) = 1/2

and the social network is given by

P =

 1/2 1/2

1/2 1/2

1/2 1/2

 ,

i.e., each possible pair of agents is chosen with probability 1/6 at a given time slot.

This leads to the following equilibria in the communication stage:

• E12 = (4, (6/600, 108/600, 306/600), (3/600, 57/600, 207/600, 453/600)),

• E13 = (3, (360/600, 560/600), (180/600, 460/600, 580/600)),

• E21 = (4, (294/600, 492/600, 594/600), (147/600, 393/600, 543/600, 597/600)),

• E23 = (2, (428/600), (214/600, 514/600)),

• E31 = (3, (40/600, 240/600), (20/600, 140/600, 420/600)),

• E32 = (2, (172/600), (86/600, 386/600)).

The number of messages induced in equilibrium varies depending on the pair of

agents selected to communicate. Agents 1 and 2 use four messages when commu-

nicating. The agents with the largest conflict of interest, 2 and 3, only use two

messages in equilibrium, though. When looking at the long-run belief dynamics,

we find that beliefs do not converge although agents started with identical beliefs.

Instead, the beliefs keep fluctuating forever. In particular, each belief fluctuates on

some subinterval of [0, 1]. Agent 1’s belief fluctuates on [180/600, 460/600], agent

2’s belief on [147/600, 393/600], and agent 3’s belief on [86/600, 420/600]. Figure 2

depicts one outcome of the long-run belief dynamics.
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Figure 2: Long-run belief dynamics in Example 3. The solid line represents agent

1, the dashed line agent 2 and the dashed-dotted line agent 3.

Note that the boundaries of the subintervals on which the beliefs fluctuate in the

above example are related to the interpretations used by the agents when receiving

information. In the following, we want to characterize the asymptotic behavior of

the belief dynamics. First, we formalize what we mean by fluctuation. We say that

an interval is proper if it contains infinitely many elements (beliefs).

Definition 1 (Fluctuation). We say that the belief of an agent i ∈ N fluctuates on

the closed and proper interval I ⊆ [0, 1] at time slot s if almost surely xi(s
′) ∈ I for

all s′ ≥ s, but for any closed subinterval I ′ ( I this does not hold.

In other words, fluctuation on some interval means that the agent’s belief never

leaves the interval again, but still it “travels” the whole interval. Next, we define

the concept of mutually confirming intervals. For j ∈ Ni, let

Y ij
∣∣
Ij

= {y ∈ Y ij | y = yij(mij(x)) for some x ∈ Ij}

denote the restriction of Y ij to the interpretations that correspond to messages sent

when j’s belief is in Ij.

Definition 2 (Mutually confirming intervals). We say that a set of intervals {Ii}i∈N
is mutually confirming if, for all i ∈ N ,

Ii = conv
(
∪j∈Ni

Y ij
∣∣
Ij

)
.

14



We say that a set of intervals {Ii}i∈N is minimal mutually confirming if it is mutually

confirming and there does not exist a mutually confirming set {I ′i}i∈N such that

I ′i ⊆ Ii for all i ∈ N and I ′i ( Ii for at least one i ∈ N .

Mutually confirming intervals are the convex combinations of the interpretations

of the messages sent when communicating, given each agent’s belief lies in her cor-

responding interval. The next theorem shows that the belief dynamics converges

to a minimal mutually confirming set of intervals. Furthermore, we show that the

belief of an agent eventually fluctuates on her corresponding interval whenever the

interval is proper.

Theorem 1. (i) For any vector of initial beliefs x(0) ∈ [0, 1]n, the belief dynam-

ics {x(t)}t≥0 converges almost surely to a minimal mutually confirming set of

intervals {Ii}i∈N , and

(ii) there exists an almost surely finite stopping time τ on the probability space

induced by the belief dynamics process such that the belief of agent i ∈ N
fluctuates on Ii at time slot s under the event {τ = s} if Ii is proper.

Theorem 1 implies that if all intervals of a minimal mutually confirming set are

degenerate, i.e., contain only a single point, then the belief dynamics process has a

steady state.

Corollary 1. The belief dynamics {x(t)}t≥0 has a steady state x∗ if and only if

there exists a minimal mutually confirming set of intervals {Ii}i∈N such that Ii is

degenerate for all i ∈ N . In this case, x∗ = {Ii}i∈N .

When each agent communicates only with one other agent, there is a steady

state for sure. The next example shows that this is also possible if some agent

communicates with several agents.

Example 4 (Steady state). Consider N = {1, 2, 3} and the vector of biases b =

(0, 37/600,−26/600). Furthermore, all agents hold the same initial belief xi(0) = 1/2

and the social network is given by

P =

 1/2 1/2

1

1

 ,

i.e., agent 1 is connected to all other agents, while these agents only listen to agent

1. This leads to the following equilibria in the communication stage:

15



• E12 = (3, (26/300, 126/300), (13/300, 76/300, 213/300)),

• E13 = (3, (152/300, 252/300), (76/300, 202/300, 276/300)),

• E21 = (3, (174/300, 274/300), (87/300, 224/300, 287/300)),

• E31 = (3, (48/300, 148/300), (24/300, 98/300, 224/300)).

Figure 3: Long-run belief dynamics in Example 4. The solid line represents agent

1, the dashed line agent 2 and the dashed-dotted line agent 3.

All equilibria induce three messages in equilibrium. The vector of beliefs x∗ =

(76/300, 87/300, 98/300) is a steady state of the process. Note that since agent 1

communicates with two different agents, it is key that the interpretation y = 76/300

is part of both equilibria when she is selected to update her belief. Figure 3 depicts

an outcome where beliefs converge to this steady state.

The above example shows that the belief dynamics might converge in certain

cases. However, such an outcome must be constructed explicitly by choosing specific

biases and network configurations. The network needs to be sparse since each time

an agent communicates with several agents, we need to find biases such that some

interpretation is part of all equilibria. And additionally, we must ensure that these

common interpretations are mutually confirming. In particular, a steady state is

not stable with respect to the biases.
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Remark 2. If conflicts of interest are small enough such that in optimal equilibrium

(some) agents send more than one message (no “babbling”), then outcomes with a

steady state are non-generic, i.e., the belief dynamics process generically fails to

converge almost surely.

Furthermore, in absence of conflicts of interest, i.e., bi = b̄ for all i ∈ N so that

all equilibria are the same, our model leads to mutual consensus among the agents.

Thus, we recover the classical result that a connected social network (and typically

some weak regularity condition) makes society reaching a consensus. In particular,

it follows then from Remark 2 that this result is not stable with respect to conflicts

of interest. When introducing small conflicts, the behavior of the dynamics changes

drastically from approaching a consensus to fluctuations. The following remark

summarizes these observations.

Remark 3. (i) The belief dynamics approaches a consensus value in absence of

conflicts of interest (bi = b̄ for all i ∈ N ), and

(ii) this behavior is not stable with respect to conflicts of interest as introducing

small conflicts generically leads to fluctuations.

Thus, we have identified conflicts of interest as the channel that drives our main

result. The next example shows how the belief dynamics changes when we introduce

small conflicts of interest.

Example 5 (Non-Stability of consensus). Recall that in Example 3, N = {1, 2, 3}
and

P =

 1/2 1/2

1/2 1/2

1/2 1/2

 .

Consider initial beliefs x(0) = (3/20, 1/2, 3/4) and that the agents are not biased,

i.e., bi = 0 for all i ∈ N .19 As there are no conflicts of interest, the agents’ beliefs

quickly approach a consensus value.

Second, consider the vector of biases b = (1/200, 1/2500,−1/200), then agents 1

and 3 use 10 messages in optimal equilibrium when communicating with agent 2, and

7 messages otherwise (as their conflict is larger compared to that each of them has

with agent 2). Already these small conflicts lead to substantial fluctuations. Notice

however that the amplitude of the fluctuations is smaller compared to Example 3 as

the conflicts are smaller.20 Figure 4 depicts how the belief dynamics changes when

19We use a maximum number of messages of L = 20 to compute the optimal equilibria in this

case. Using more messages would not change the outcome qualitatively.
20Nevertheless, the mutually confirming intervals might be larger with small conflicts.
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Figure 4: Long-run belief dynamics before (left) and after (right) the introduction of

small biases in Example 5. The solid line represents agent 1, the dashed line agent

2 and the dashed-dotted line agent 3.

introducing these small biases.

Next, we investigate more closely the pattern of the fluctuations. So far, we have

shown that the beliefs converge almost surely to mutually confirming intervals and

each belief fluctuates on its corresponding interval forever. We find that – although

failing to converge almost surely – the belief dynamics converges in distribution to

a random vector.

Proposition 2. Suppose the belief dynamics {x(t)}t≥0 has minimal mutually con-

firming sets of intervals {I1i }i∈N , {I2i }i∈N , . . . , {Iri }i∈N . For any vector of initial

beliefs x(0) ∈ [0, 1]n,

(i) there exists a probability vector (q1, q2, . . . , qr) such that {x(t)}t≥0 converges to

the minimal mutually confirming set of intervals {Iki }i∈N (henceforth x(t) ⇒
Ik) with probability qk = qk(x(0)), k = 1, 2, . . . , r, and furthermore

(ii) {x(t)}t≥0 converges in distribution, i.e., there exist [0, 1]n-valued stationary

random vectors x̂1, x̂2, . . . , x̂r such that

lim
t→∞
L(x(t) | x(t)⇒ Ik) = L(x̂k), and in particular

lim
t→∞

E[ϕ(x(t)) | x(t)⇒ Ik] = E[ϕ(x̂k)]
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for all bounded and continuous test functions ϕ : [0, 1]n → R.

Notice that we can obtain the limit of the conditional expected belief of agent

i ∈ N by choosing the projection ϕi : x 7→ xi.

In the above result, the limiting distribution depends on the minimal mutually

confirming set of intervals the belief dynamics converges to. However, when the

number of agents is large and the network dense, it will usually be the case that there

exists a unique set of those intervals. The following corollary states the result for this

case and furthermore, we find that the belief dynamics obeys an ergodic property.

We show that the empirical average of the belief dynamics process approaches its

long-run expected value with probability 1.21

Corollary 2. Suppose the belief dynamics {x(t)}t≥0 has a unique minimal mutually

confirming set of intervals {Ii}i∈N . For any vector of initial beliefs x(0) ∈ [0, 1]n,

(i) {x(t)}t≥0 converges in distribution to a [0, 1]n-valued stationary random vector

x̂, i.e.,

lim
t→∞
L(x(t)) = L(x̂) and lim

t→∞
E[ϕ(x(t))] = E[ϕ(x̂)],

and furthermore, with probability 1,

(ii)

lim
t→∞

1

t

∫ t

0

ϕ(x(u))du = E[ϕ(x̂)],

for all bounded and continuous test functions ϕ : [0, 1]n → R.

To illustrate this result, we revisit Example 3 and look at the empirical averages

of the agents.

Example 6 (Empirical average). Recall the setting of Example 3: N = {1, 2, 3}
and b = (0, 1/25,−1/15). Furthermore, xi(0) = 1/2 for all i ∈ N and

P =

 1/2 1/2

1/2 1/2

1/2 1/2

 .

Although the agents’ beliefs keep fluctuating forever on their corresponding inter-

vals, their empirical averages do converge. Figure 5 depicts one outcome of the

long-run belief dynamics.

21Notice that this result can be extended to the case with several minimal mutually confirming

sets of intervals. Since in this case the long-run expected value is conditional on the minimal mutu-

ally confirming set of intervals the process converges to, the same holds for the empirical averages,

i.e., with probability qk(x(0)), we have limt→∞ 1/t
∫ t

0
ϕ(x(u))du = E[ϕ(x̂k)] for all bounded and

continuous test functions ϕ : [0, 1]n → R.

19



Figure 5: Long-run belief dynamics (left) and its empirical averages (right) in Ex-

ample 6. The solid line represents agent 1, the dashed line agent 2 and the dashed-

dotted line agent 3.

5 Discussion and Conclusion

We study the role of conflicting interests in boundedly rational belief dynamics. Our

analysis is motivated by numerous examples such as political campaigns or court

trials, where conflicts between different individuals are clearly present. We consider

a society represented by a strongly connected network, agents meet (communicate)

pairwise with their neighbors and exchange information strategically.

Agents have different preferences about the action to take with respect to some

issue of common interest. When two individuals communicate, the receiver of infor-

mation would like to get to know the belief of the sender about the issue as precisely

as possible in order to refine her own belief, while the sender wants to spread his

action-belief (about the action to take), i.e., he would like the receiver to adopt his

action-belief.

This conflict of interest prevents the agents from revealing their true belief in

equilibrium, and instead it leads to noisy communication à la CS: the sender sends

one of finite messages that contains information about his belief, which is then

interpreted by the receiver. In optimal equilibrium, communication is as informative

as possible given the conflict of interest, i.e., the sender uses as many messages as

possible. The receiver updates her belief by taking the average of the interpretation
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of the sent message and her pre-meeting belief.

In our main result, we show that the belief dynamics process converges with

probability 1 to a set of intervals that is minimal mutually confirming. Given each

agent’s belief lies in her corresponding interval, these intervals are the convex combi-

nations of the interpretations the agents use when communicating. Furthermore, we

show that the belief of an agent eventually fluctuates on her corresponding interval

whenever the interval is proper. As a consequence, the belief dynamics has a steady

state if and only if there exists a minimal mutually confirming set such that all its

intervals are degenerate.

We remark that outcomes with a steady state are non-generic as long as conflicts

of interest are not too large. Hence, we can conclude that the introduction of conflicts

of interest generically leads not only to persistent disagreement among the agents,

but also to fluctuating beliefs. And as the belief dynamics approaches a consensus

value in absence of conflicting interests, we identify conflicts of interest as the channel

that drives our results, which hence suggests that the classical consensus result is

not stable with respect to conflicts of interest.

Furthermore, we show that the belief dynamics – although failing to converge

almost surely – converges in distribution to a random vector. And moreover, we

find that the beliefs fluctuate in an ergodic way, i.e., the empirical averages of the

agents’ beliefs converge to their long-run expectations.

Though frequently observed in social science, the phenomenon of fluctuation is

barely studied in the literature on communication in social networks, the only ex-

ception being Acemoglu et al. (2013). While their results are very close to ours, they

achieve them with a different approach. Instead of conflicting interests, they intro-

duce stubborn agents that never change their belief into a model of belief dynamics.

This also leads to fluctuating beliefs when the other agents update regularly from

different stubborn agents. In our model, a stubborn agent would be an agent that

only communicates with herself.

Finally, we would like to comment briefly on some of our model choices. Our

paper presents a first attempt to enrich a model of belief dynamics with a framework

of communication that incorporates conflicting interests. We assume that agents are

rational when communicating, but fail to account for the history of beliefs. This

allows us to identify the role of conflicting interests in boundedly rational belief

dynamics, in particular with respect to the classical result that a consensus emerges

when the social network is connected. However, it would be interesting to see

whether (partially) Bayesian models would generate similar results under conflicting

interests. We leave this issue for future work.
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A Appendix

Proof of Proposition 1

Suppose that agent j uses L′ messages in equilibrium. We know that agent j’s

strategy is given by a partition (Cl)
L′

l=1, where Cl = (mij)−1(ml) = [cl−1, cl) is such

that 0 = c0 < c1 < · · · < cL′ = 1 and

|cl + (bj − bi)− yl| = |cl + (bj − bi)− yl+1| for l = 1, 2, . . . , L′ − 1.

And furthermore, agent i’s strategy is given by interpretations

yl = yij(ml) = argmax
y∈R

min
x∈Cl

ui(x, y) =
cl − cl−1

2
for l = 1, 2, . . . , L′.

Thus, j’s strategy satisfies

|cl + (bj − bi)− yl| = |cl + (bj − bi)− yl+1|
⇔|cl + (bj − bi)− (cl + cl−1)/2| = |cl + (bj − bi)− (cl+1 + cl)/2|
⇔|(cl − cl−1)/2 + (bj − bi)| = |(cl − cl+1)/2 + (bj − bi)|.

By monotonicity of the cl, this yields

cl+1 = 2cl − cl−1 + 4(bj − bi) for l = 1, 2, . . . , L(ij)− 1.

And by the boundary condition c0 = 0, it follows that

cl = lc1 + 2l(l − 1)(bj − bi) for l = 1, 2, . . . , L(ij).

The other boundary condition, cL(ij) = 1, implies that c1 = 1/L(ij) − 2(L(ij) −
1)(bj − bi) and hence,

cl = lc1 + 2l(l − 1)(bj − bi)
= l
(
1/L(ij)− 2(L(ij)− 1)(bj − bi)

)
+ 2l(l − 1)(bj − bi)

= l/L(ij)− 2l(L(ij)− l)(bj − bi). (1)

Hence,

yl = (cl + cl−1)/2

= (2l − 1)/(2L(ij))− l(L(ij)− l)(bj − bi)− (l − 1)(L(ij)− l + 1)(bj − bi)
= (2l − 1)/(2L(ij))−

(
l(2L(ij)− 2l + 1)− (L(ij)− l + 1)

)
(bj − bi)

= (2l − 1)/(2L(ij))−
(
(2l − 1)L(ij)− 2(l2 − l)− 1

)
(bj − bi).
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Next, we show that there is an upper bound on the number of messages induced in

equilibrium under conflict of interest, i.e., bi 6= bj. The equilibrium with L′ messages

exists if the strategy determined by (1) is feasible, which, by monotonicity, is the

case if and only if c1 = 1/L′ − 2(L′ − 1)(bj − bi) ≥ 0

cL′−1 = (L′ − 1)/L′ − 2(L′ − 1)(bj − bi) ≤ 1

⇔1/(2L′) ≥ |(L′ − 1)(bj − bi)|. (2)

Thus,

L̄ = max{l ∈ N | 1/(2l) ≥ |(l − 1)(bj − bi)|} (3)

is the upper bound on the number of messages induced in equilibrium. Note that

(2) has only finitely many positive integer solutions, among them L′ = 1, and thus,

(3) is well-defined.

If bi = bj, then there is no bound due to the biases and thus, the number

of messages in equilibrium is bounded by L̄ = L. Altogether, agent j uses 1 ≤
L(ij) = L̄ messages in optimal (i.e., most informative) equilibrium and moreover,

this equilibrium is essentially unique since i’s interpretations and j’s partition are

unique, which finishes the proof.

Proof of Theorem 1

To prove the theorem, we first construct a homogeneous Markov chain {x̃(s)}s∈N =

{(x̃i(s))i∈N}s∈N in discrete time with finite n-dimensional state space A = ×i∈NAi,

where Ai denotes the set of states for agent i. We know that we can replace the time-

continuous belief dynamics process {x(t)}t≥0 by the time-discrete process {x(s)}s∈N,

where x(s) is the vector of beliefs at time slot s. In the following, we also simplify

the state space of the process. We find a partition of the unit interval such that it

is enough to know in which element of the partition each agent’s belief is.

Let i ∈ N and Ci = ∪j∈Ni
Cij denote the set of points for which some agent j ∈

Ni is indifferent between two messages when communicating with i. Furthermore,

Y i = ∪j∈Ni
Y ij denotes the set of agent i’s interpretations. We assume without loss

of generality that the set Ci∪Y i consists of rational numbers for all i ∈ N .22 Then,

there exists a lowest common denominator d of the set ∪i∈NCi ∪ Y i.

22If some number is irrational, then we can approximate it arbitrarily well by a rational number,

e.g., using the method of continued fractions.
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This allows us to define the partition Cd = {k/d | 0 ≤ k ≤ d} of [0, 1], where

each partition element (without loss of generality) is an interval [(k − 1)/d, k/d),

k = 1, 2, . . . , d. This partition distinguishes the beliefs of the agents finely enough

to keep track of how the belief dynamics process evolves as we will show. Take

i ∈ N , j ∈ Ni and suppose that

xi(s− 1) ∈ [(ki − 1)/d, ki/d) and xj(s− 1) ∈ [(kj − 1)/d, kj/d),

1 ≤ ki, kj ≤ d. By construction of the partition, there exists 1 ≤ l ≤ L(ij) such that

xj(s− 1) ∈ [cl−1, cl), i.e., Cd is fine enough to determine the message mij(xj(s− 1))

sent in equilibrium by agent j. Moreover, also by construction, there exists 1 ≤ k̄ ≤
d− 1 such that the interpretation of this message is yij

(
mij(xj(s− 1))

)
= k̄/d. And

since xi(s− 1) ∈ [(ki − 1)/d, ki/d), it follows that

xi(s) = 1/2(xi(s− 1) + k̄/d) ∈ [(ki − 1 + k̄)/(2d), (ki + k̄)/(2d))

⊆ [(d(ki + k̄)/2e − 1)/d, d(ki + k̄)/2e/d),

i.e., Cd is also fine enough to determine i’s updated belief and altogether, it is fine

enough to keep track of the belief dynamics process.

Therefore, we can identify the continuous state space [0, 1]n of {x(s)}s∈N with

the finite state space A = An = {a1, a2, . . . , ad}n of {x̃(s)}s∈N, where ak ≡ [(k −
1)/d, k/d), k = 1, 2, . . . , d. In other words, a state a ∈ A specifies for each agent the

partition element of Cd her belief is in at time slot s.

Let x̄(ak) = (2k − 1)/(2d) denote the average value of [(k − 1)/d, k/d) and fur-

thermore, let ỹij(ak) = yij
(
mij(x̄(ak))

)
denote i’s interpretation of j’s message when

j’s belief is in [(k − 1)/d, k/d). We define the transition probabilities of {x̃(s)}s∈N
as follows:

P[x̃(s) = (a−i, al) | x̃(s− 1) = a] = 1/n
∑
j∈Ni:

(ai,aj)∈Bij(l)

pij (4)

for all a ∈ A and l ∈ {1, 2, . . . , d}, where

Bij(l) = {(ak, ak′) ∈ A2 | 1/2[x̄(ak) + ỹij(ak′)] ∈ [(l − 1)/d, l/d)}

is the set of all pairs of individual states (ai, aj) such that agent i changes from

state ai to state ai
′
= al given that she updates from agent j who is in state aj. All

other transition probabilities (i.e., those where more than one component changes)

are assumed to be equal to zero. By construction, the following result holds.
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Lemma 1. {x̃(s)}s∈N is a homogeneous Markov chain with finite state space A and

transition probabilities given by (4), and, in particular, at any time slot s,

x̃(s) = (ak1 , ak2 , . . . , akn) if and only if x(s) ∈ ×i∈N [(ki − 1)/d, ki/d).

Furthermore, for a set of states Z ⊆ A, let Z|k = {a ∈ A | ∃z ∈ Z : zk = a}
denote the set of all possible values the kth component of states in Z can take. Then,

the following holds.

Lemma 2. If Z ⊆ A is a recurrent communication class of {x̃(s)}s∈N, then {Ii}i∈N
is a minimal mutually confirming set of {x(t)}t≥0, where

(i) Ii =
⋃

k: ak∈Z|i
[(k − 1)/d, k/d] if |Z|i| ≥ 2, and

(ii) Ii = (k − 1)/d or Ii = k/d if Z|i = {ak}.

Proof. Suppose that Z is a recurrent communication class of {x̃(s)}s∈N, i.e., the

Markov chain will never leave this class and each state z ∈ Z is visited infinitely

often by {x̃(s)}s∈N. We show that {Ii}i∈N is a minimal mutually confirming set of

{x(t)}t≥0.
Note that for i ∈ N and each individual state zi ∈ Z|i, it is x̃i(s) = zi for

infinitely many time slots s. Let

Y i
Z =

⋃
j∈Ni

⋃
zj∈Z|j

ỹij(zj)

denote the set of all interpretations of agent i when x̃(s) ∈ Z. Note that if ak, ak′ ∈
Z|i for k < k′, then also ak′′ ∈ Z|i for all k < k′′ < k′. Thus, if |Z|i| ≥ 2,

Ii =
⋃

k: ak∈Z|i

[(k − 1)/d, k/d] = conv(Y i
Z)

since all intervals [(k−1)/d, k/d] in the union are visited by i. On the other hand, if

Z|i = {ak}, then i always uses the same interpretation when in Z, either (k − 1)/d

or k/d. Hence, Ii = (k − 1)/d = conv(Y i
Z) or Ii = k/d = conv(Y i

Z). Altogether, we

have Ii = conv(Y i
Z) for all i ∈ N . And furthermore, note that

Y i
Z =

⋃
j∈Ni

⋃
zj∈Z|j

ỹij(zj) =
⋃
j∈Ni

⋃
ak∈Z|j

ỹij(ak)

=
⋃
j∈Ni

⋃
ak∈Z|j

yij
(
mij(x̄(ak))

)
=
⋃
j∈Ni

⋃
k: ak∈Z|j

yij
(
mij((2k − 1)/(2d))

)
=
⋃
j∈Ni

Y ij
∣∣
Ij
,
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where the last equality follows from the definition of Ij. Hence, we get Ii =

conv
(⋃

j∈Ni
Y ij|Ij

)
for all i ∈ N , i.e., we have shown that {Ii}i∈N is a mutually

confirming set of {x(t)}t≥0 and furthermore, it is also minimal since by assumption

Z is a recurrent communication class of {x̃(s)}s∈N, which finishes the proof.

Since the state space of {x̃(s)}s∈N is finite, there exists an almost surely finite

stopping time τ such that for any initial state x̃(0) ∈ A,

x̃(s) ∈ {a ∈ A | ∃Z 3 a recurrent communication class of {x̃(s)}s∈N}23

under the event {τ = s}. So, suppose that x̃(s) ∈ Z. We show that this implies

that the original chain converges almost surely to the minimal mutually confirming

set {Ii}i∈N defined in Lemma 2.

If |Z|i| ≥ 2, then part (i) of Lemma 2 implies that xi(s) ∈ Ii almost surely.

Furthermore, since Z is a recurrent communication class of {x̃(s)}s∈N, the boundaries

of Ii are used infinitely often as interpretations by i and thus, xi(τ) fluctuates on

Ii. On the other hand, if Z|i = {ak}, agent i uses only a single interpretation

when updating since (k − 1)/d and k/d cannot be both interpretations by choice

of the partition Cd. This implies that, without loss of generality, almost surely

xi(t) → k/d = Ii for t → ∞, and hence, almost surely x(t) → {Ii}i∈N for t → ∞,

which finishes the proof.

Proof of Proposition 2

Recall from the proof of Theorem 1 that {x̃(s)}s∈N is a homogeneous Markov chain

in discrete time and with finite state space A that keeps track of how the belief

dynamics process {x(t)}t≥0 evolves (Lemma 1). Notice that for each minimal mutu-

ally confirming set of intervals {Iki }i∈N of {x(t)}t≥0, there exists a unique recurrent

communication class Zk of {x̃(s)}s∈N such that {x(t)}t≥0 converges to {Iki }i∈N if

and only if {x̃(s)}s∈N converges to Zk. Therefore, the following result proves part

(i).

Lemma 3. (Brémaud, 1999, p. 157, Theorem 6.2)

Suppose {x̃(s)}s∈N has recurrent communication classes Z1, Z2, . . . , Zr. Then,

for any initial state a ∈ A, there exists a vector of probabilities (q1, q2, . . . , qr) such

that {x̃(s)}s∈N converges to Zk with probability qk = qk(a), k=1,2,. . . ,r.

In order to prove part (ii), let us first introduce some notation. Recall from

the proof of Theorem 1 that d denotes the lowest common denominator of the set

23We refer, e.g., to Brémaud (1999) for this result.
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∪i∈NCi∪Y i. Let {dl}∞l=0 denote a sequence of common denominators of ∪i∈NCi∪Y i

such that d0 = d and dl →∞ for l→∞ and denote {x̃(dl; s)}s∈N the corresponding

finite state Markov chain and A(dl) its state space (see Theorem 1).24 Notice that if

xi(s) ∈ [(k − 1)/dl, k/dl) (and thus x̃i(dl; s) = ak ∈ A(dl)|i), i ∈ N , k = 1, 2, . . . , dl,

then

|xi(s)− x̄[dl](ak)| ≤ 1

2dl
→ 0 for l→∞,

where x̄[dl](ak) = (2k−1)/(2dl) denotes the average value of [(k−1)/dl, k/dl). Thus,

we can approximate the belief dynamics process arbitrarily well by the finite state

Markov chains.

We know from part (i) that, for each dl, {x̃(dl; s)}s∈N converges to the recurrent

communication class Zk(dl) with probability qk = qk(a) if x̃(dl; 0) = a. Notice that

the probabilities are independent of dl and that these classes are aperiodic since

the agent updating her belief is chosen randomly. It follows from the latter that

{x̃(dl; s)}s∈N has a unique stationary distribution Πk[dl] on Zk(dl), i.e., Πk[dl](a) > 0

if and only if a ∈ Zk(dl).

Suppose that {x̃(dl; s)}s∈N converges to Zk(dl) (henceforth x̃(dl; s) ⇒ Zk(dl)).

This implies that its distribution converges to Πk[dl], i.e.,

lim
s→∞
L(x̃(dl; s) | x̃(dl; s)⇒ Zk(dl)) = Πk[dl].

25

To simplify the notation, we omit in the following the condition x̃(dl; s) ⇒ Zk(dl).

For x ∈ [0, 1]n, define

A(dl;x) := {(ak1 , ak2 , . . . , akn) ∈ A(dl) | ki/dl ≤ xi ∀i ∈ N} and

A(dl;x) := {(ak1 , ak2 , . . . , akn) ∈ A(dl) | (ki − 1)/dl < xi ∀i ∈ N}.

Notice that, for all x ∈ [0, 1]n,

Πk[dl](A(dl;x))− Πk[dl](A(dl;x))→ 0 as l→∞.

Therefore, let x̂k be a random belief vector with cumulative distribution function

Fx̂k(x) := lim
l→∞

Πk[dl](A(dl;x)) = lim
l→∞

Πk[dl](A(dl;x)), x ∈ [0, 1]n. (5)

24For simplicity, we write P = Pdl
for the corresponding probability measure. This is without

loss of generality since the state space A(dl) can be identified with the continuous state space of

the belief dynamics process, see Theorem 1.
25We say that the distribution of {x̃(dl; s)}s∈N converges to the distribution Πk[dl] if

lims→∞ P(x̃(dl; s) = a) = Πk[dl](a) for all a ∈ A(dl).
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Next, we show that the belief dynamics process converges in distribution to x̂k. By

construction, we have

P(x̃(dl; s) ∈ A(dl;x)) ≤ Fx(s)(x) ≤ P(x̃(dl; s) ∈ A(dl;x)), for all s, l ∈ N,

where Fx(s) denotes the cumulative distribution function of the belief dynamics

process at time slot s. And thus, for all l ∈ N,

Πk[dl](A(dl;x)) = lim
s→∞

P(x̃(dl; s) ∈ A(dl;x)) ≤ lim
s→∞
Fx(s)(x)

≤ lim
s→∞

P(x̃(dl; s) ∈ A(dl;x))

=Πk[dl](A(dl;x)).

Hence, together with (5), it follows that

lim
s→∞
Fx(s)(x) = lim

l→∞
Πk[dl](A(dl;x)) = lim

l→∞
Πk[dl](A(dl;x)) = Fx̂k(x),

i.e., lims→∞ L(x(s) | x(t)⇒ Ik) = L(x̂k) for all k = 1, 2, . . . , r. In particular, this is

equivalent to

lim
s→∞

E[ϕ(x(s)) | x(s)⇒ Ik] = E[ϕ(x̂k)]

for all k = 1, 2, . . . , r and for all bounded and continuous test functions ϕ : [0, 1]n →
R (see Klenke (2007, p. 257, Corollary 13.24)), which finishes the proof.

Proof of Corollary 2

The first part follows immediately from Proposition 2. For part (ii), notice first

that the sequence of the lengths of intervals between meetings, {ts+1 − ts}∞s=0, is

independent and identically distributed with mean 1/n. Therefore, by the strong

law of large numbers, with probability 1,

lim
u→∞

1

u
tu = lim

u→∞

1

u

u−1∑
s=0

(ts+1 − ts) =
1

n
.

This implies that

lim
u→∞

E
[
ts+1 − ts
1/u · tu

− 1

]
= 0.
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It follows that, for any bounded and continuous test function ϕ : [0, 1]n → R and

any ε > 0, using the continuity of P with respect to monotonous sets,

lim
v→∞

P

(
sup
u≥v

∣∣∣∣∣ 1

tu

u−1∑
s=0

(ts+1 − ts)ϕ(x(ts))−
1

u

u−1∑
s=0

ϕ(x(ts))

∣∣∣∣∣ > ε

)

= lim
v→∞

P

(
sup
u≥v

∣∣∣∣∣1u
u−1∑
s=0

(
ts+1 − ts
1/u · tu

− 1

)
ϕ(x(ts))

∣∣∣∣∣ > ε

)
(6)

=P

(
lim sup
u→∞

∣∣∣∣∣1u
u−1∑
s=0

(
ts+1 − ts
1/u · tu

− 1

)
ϕ(x(ts))

∣∣∣∣∣ > ε

)
= 0

since {x(ts)}s∈N is independent of {ts+1 − ts}∞s=0 and converges in distribution and

almost surely sups≥0‖x(ts)‖1 ≤ 1. Notice that (6) is equivalent to

lim
u→∞

∣∣∣∣∣ 1

tu

u−1∑
s=0

(ts+1 − ts)ϕ(x(ts))−
1

u

u−1∑
s=0

ϕ(x(ts))

∣∣∣∣∣ = 0 almost surely. (7)

Furthermore, recall from the proof of Proposition 2 that for all i ∈ N ,

|xi(ts)− x̄[dl](x̃i(dl; s))| ≤
1

2dl
→ 0 for l→∞.

Hence, also

‖x(ts)− (x̄[dl](x̃i(dl; s)))i∈N‖∞ ≤
1

2dl
→ 0 for l→∞.

And thus, by continuity of ϕ, there exists a sequence {εl}∞l=0, εl → 0 for l → ∞,

such that

|ϕ(x(ts))− ϕ
(
(x̄[dl](x̃i(dl; s)))i∈N

)
| ≤ εl.

This implies that

lim
u→∞

∣∣∣∣∣1u
u−1∑
s=0

ϕ(x(ts))−
1

u

u−1∑
s=0

ϕ
(
(x̄[dl](x̃i(dl; s)))i∈N

) ∣∣∣∣∣
≤ lim

u→∞

1

u

u−1∑
s=0

∣∣ϕ(x(ts))− ϕ
(
(x̄[dl](x̃i(dl; s)))i∈N

) ∣∣ (8)

≤εl.

Next, recall from the proof of Proposition 2 that the distribution of {x̃i(dl; s)}s∈N
converges to its unique stationary distribution Π[dl]. Therefore, the ergodic theorem

for finite state Markov chains (see Brémaud (1999, p. 111, Theorem 4.1)) yields,

with probability 1,

lim
u→∞

1

u

u−1∑
s=0

ϕ
(
(x̄[dl](x̃i(dl; s)))i∈N

)
=

∑
a∈A(dl)

ϕ((x̄[dl](a
i))i∈N )Π[dl](a). (9)
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Applying (7)–(9), we get, with probability 1,

lim
t→∞

∣∣∣∣∣1t
∫ t

0

ϕ(x(t))− E[ϕ(x̂)]

∣∣∣∣∣
= lim

u→∞

∣∣∣∣∣ 1

tu

u−1∑
s=0

(ts+1 − ts)ϕ(x(ts))− E[ϕ(x̂)]

∣∣∣∣∣
≤ lim

u→∞

∣∣∣∣∣ 1

tu

u−1∑
s=0

(ts+1 − ts)ϕ(x(ts))−
1

u

u−1∑
s=0

ϕ(x(ts))

∣∣∣∣∣
+ lim

u→∞

∣∣∣∣∣1u
u−1∑
s=0

ϕ(x(ts))−
1

u

u−1∑
s=0

ϕ
(
(x̄[dl](x̃i(dl; s)))i∈N

) ∣∣∣∣∣
+ lim

u→∞

∣∣∣∣∣1u
u−1∑
s=0

ϕ
(
(x̄[dl](x̃i(dl; s)))i∈N

)
− E[ϕ(x̂)]

∣∣∣∣∣
≤εl +

∣∣∣∣∣ ∑
a∈A(dl)

ϕ((x̄[dl](a
i))i∈N )Π[dl](a)− E[ϕ(x̂)]

∣∣∣∣∣.
Finally, since liml→∞

∣∣∑
a∈A(dl) ϕ((x̄[dl](a

i))i∈N )Π[dl](a)−E[ϕ(x̂)]
∣∣ = 0 by definition

of x̂, letting l→∞ finishes the proof.
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López-Pintado, D. (2008). Diffusion in complex social networks. Games and Eco-

nomic Behavior 62 (2), 573–90.

32
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