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Abstract

We introduce the concept of product complexity in an endogenous growth model with re-
newable energy and expanding product variety à la Grossman-Helpman (1991). We describe
the complexity of a product as an increasing function of the variety of inputs it consists of.
Considering that energy is necessary to all human activities (including research), we highlight
what type of long run growth path is possible according to a) the potential of energy e�-
ciency gains in the various human activities and b) the e↵ect of the product complexity on the
energy intensiveness of its production process. In a finite world, a neoclassical growth path
where economic growth can be both quantitative and non-quantitative (i.e. takes the form
of an increase in the quantity of produced goods and in the product variety) is only possible
if the potential of energy e�ciency gains is unbounded in all human activities. If the energy
intensiveness of the final production is bounded from below by a strictly positive constant,
quantitative growth is not possible in the long run but non-quantitative growth may persist if
(i) the impact of product complexity on the energy intensiveness of production is null or weak
enough and (ii) the energy intensiveness of research activities tends to zero. If these conditions
are not met, no form of long run growth is possible.
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1 Introduction

Since the controversial book of Meadows and al. (2004 for the update of the 1972 edition), the
existence of physical limits to growth in a finite world has remained a debated issue, in particular
between economists. On the optimists’ side, the advocates of the “weak sustainability” postulate
consider that technical progress and substitution possibilities between natural resources and man-
made capital will make long-term growth possible. More pessimistically, ecological economists view
the “weak sustainability” postulate as wishful thinking: they argue that fundamental physical laws
such as the principles of thermodynamics limit both the substitution possibilities between natural
and man-made inputs and the potential of resource e�ciency gains that can be expected from
technical progress. For them, “forever” growth is thus impossible in a finite world.

In theoretical models as in real life, economic growth is multiform. Growth may be purely
quantitative and take the form of an increase in the quantity of produced goods and services, like
in the canonical one-sector growth model; but it may also be non-quantitative and take the form of
an expanding product variety or of a rising product quality (see e.g. chapters 3 and 4 of Grossman-
Helpman, 1991). The debate on the limits to growth has often taken place without distinguishing
explicitly the quantitative and non-quantitative dimensions of growth. Such a distinction may
however matter because the non-quantitative dimension of growth might not be constrained by
physical laws to the same extent as the quantitative one. For instance, in a model with rising
product quality and with a finite but recyclable essential resource, Fagnart and Germain (2011)
show that the principle of matter conservation makes a perpetual quantitative growth impossible
but lets a purely qualitative growth possible in the long run. This paper however ignores any
energy issue although it might influence the debate. Jeanmart and Possoz (2013) argue -without
showing it formally- that a long-term path with a purely qualitative growth is only possible if
the rising quality of human productions is not accompanied by an increasing complexity of these
productions and/or of their production processes. Their argument relies on thermodynamics which
establishes a positive relationship between the complexity of a system and its energy requirements:
if rising quality implied rising complexity, a growth process based on quality improvements would
get increasingly energy consuming and all forms of economic growth might thus come to a halt in
a finite world.

The present article introduces the concept of product complexity into an endogenous growth
model with expanding input variety à la Grossman-Helpman (1991, Chapter 3). It explores what
type of long run growth path is possible according to a) the potential of energy e�ciency gains
in the various human activities and b) the link between complexity and energy intensiveness of
final productions. The expanding variety model o↵ers a framework in which the complexity of a
product may be linked to its composition in a simple and intuitive way: a product is more complex
when it consists of a larger number of di↵erent inputs. So defined, our concept of complexity is
analogous to the one encountered in several disciplines which link the complexity of a system to
the number and variety of its parts or components. In order to remain close to the subject of
the present paper, we shall only make reference to contributions interested in the complexity of
production processes. In Economics, two dimensions of their complexity have been put forward1:
the complexity of the organizational structure in which production operations take place (e.g.
in Becker et Murphy, 1992) and, as in the present paper, the complexity of the product itself
(e.g. in Kremer, 1993). Becker and Murphy consider a production process consisting of a given
number of complementary tasks. Division of labour (i.e. the specialization of teams of workers on
subsets of tasks) raises labour productivity according to the well-known Smithian argument. But it
complexifies simultaneously the organization of the production process by requiring to coordinate
complementary workers’ teams. A more extensive division of labour thus makes the organization
more complex and increases the costs of coordination, communication and supervision2. In his
O-ring theory of development, Kremer (1993) links the complexity of a product to the number

1Note that in Economics, the concept of complexity is also used in the sense of dynamic complexity, i.e. the
complexity of the possible dynamic behaviours of a model (e.g. chaotic dynamics). See e.g. Day (2009).

2The complexity of the organizational design of a firm is further investigated in Garicano (2000).
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of tasks necessary to its production: a larger number of tasks makes the product more valuable
but also more complex. Moreover, a production requiring more tasks is characterized by more
potential areas for human mistakes that could ruin the value of the product. In order to reduce
this risk, a firm that produces a more complex product must employ higher skilled workers and pay
higher wages. In Becker-Murphy as in Kremer, complexity (of the organization in the former, of
the product in the latter) thus brings benefits and costs and is expected to increase with economic
development3.

In the field of manufacturing systems engeneering, papers like Fujimoto et alii (2004), Hu et alii
(2008) or Modrak and Marton (2013) describe the complexity of production operations in a firm as
a function of the variety of products, the variety of their functions and the variety of intermediary
inputs and equipments. This literature constructs complexity indices based on the computation of
the informational entropy of production operations, which depends on the quantity of information
necessary to describe theses operations. Though highly stylized, our concept of product complexity
is consistent with what is done in this literature or in management science (see e.g. Novak and
Eppinger, 2001).

In all the above mentionned references, the cost of complexity is acknowledged but not expressed
in terms of energy consumption. The step between the two is however easily taken if one considers
that all the activities that managing complexity requires (from coordination to information com-
munication/processing and input manipulation) are in fine energy consuming. Moreover, thermo-
dynamics (as already mentionned) and information theory invite to link positively complexity and
energy4,5. Johansson (2002) makes such a link. In terms analogous to those of thermodynamics,
he defines the complexity of a product as the number of possible combinations of the elements
necessary to its production. He puts forward an increasing mathematical relationship between the
energy content of a product and its complexity measured by the logarithm of the number of its
functional components. Let us mention in passing that a positive relationship beween complexity
and energy is also put forward by the anthropologist Tainter (see e.g. Tainter, 2011) who speaks of
an “energy-complexity spiral” to describe that a positive relationship exists between the evolution
of the organizational complexity of a society and the one of its energy requirements.

In this short article, we propose a model in which all human activities (production of goods and
services, product and technological innovations,...) require energy and we explore the implications
of the energy requirements of these activities on long-term growth possibilities. We do not aim at
“micro-founding” the link between complexity and energy: we admit that a relationship between
the two may exist for the reasons explained hereabove but do not impose any a priori restriction
on this relationship. By doing so, we can examine how the properties of this relationship a↵ect
the type of possible long-term growth. Section 2 presents an expanding product variety model à la
Grossman-Helpman (1991, Chapter 3) where we reinterpret the fixed primary factor of production
as renewable energy (instead of labour in the original model). The final good is the output of the
assembly process of a variety of man-made inputs and its complexity is increasing in the input
variety used in the process. In section 3, we identify three possible types of long-term growth path
according to the potential of energy e�ciency gains in the various human activities and to the
presence and strength of the complexity e↵ect: a mixed (“quantitative” and “non quantitative”)
growth path, a purely “non-quantitative” path and a zero growth path. Section 4 concludes.

3In Becker and Murphy, knowledge accumulation and economic development raise the optimal level of division
of labour and thereby the complexity of the production organization. In Kremer, a development accompanied by
an increase in workers’ skills leads an economy to specialize in more complicated products.

4According to the Second Law of Thermodynamics, any isolated system that is let to itself tends toward the state
of maximum disorder or entropy. This maximum level of entropy is a measure (roughly speaking, the logarithm)
of the number of ways in which the system may be arranged. In order to increase the order of the system (or
to decrease its entropy) to a certain level, energy must be brought to the system from outside and the necessary
quantity of energy is increasing in the maximum level of entropy of the system (in other words, in its complexity).
A product is a system made of its parts and, by analogy, making it more complex may thus require more energy.

5In information theory, the complexity of a system is increasing in its informational content, i.e. in the amount
of information necessary to describe it. As the processing of a bit of information has an energy content, there is
here again a positive relationship between complexity and energy requirements.
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2 The model

There are two main activities: production and research. Production consists of two successive steps
of operations. In a first step, di↵erent elementary goods or “components” (inputs in the sequel)
are processed. In a second step, these inputs are assembled into a final good (FG hereafter).

Research activities allow the economy to create deterministically new varieties of inputs. But
they also enlarge the public knowledge capital and so generate technological progress as a by-
product: the research e↵orts of a period reduce the energy intensiveness of production and research
activities in the next period.

The economy enjoys a constant flow of renewable energy (say solar energy)6. Energy is necessary
to all operations of production as well as research. We thus consider energy as the “ultimate”
resource on which depend all human activities (including human work) and their outputs (including
productive equipment): see e.g. Ayres andWarr (2009). For the sake of brevity, labour and physical
capital are not explicitly present in the model. However, our conclusions linking the possible types
of long run growth to the potential of energy e�ciency gains would remain qualitatively the same
in a model with energy, labour and capital.

Since we only aim at identifying (the feasibility of) di↵erent classes of long-term solutions and
do not want to derive precise trajectories, we do not need neither to make explicit the institutional
organisation of the economy (e.g. whether it is decentralised or not) nor to model all economic
decisions. As a consequence, we do not need to distinguish particular agents (firms, households or
a central planner) and we only speak of “the economy”.

2.1 Production

2.1.1 Intermediate and final goods and technologies

There is a variety of intermediate inputs represented by the interval [0, nt]. Variable nt is thus the
measure (or “number”) of inputs that have been invented until the beginning of period t. It is
possibly increasing through time. An homogenous final good (FG) is produced by assembling the
inputs. Without loss of generality, let [0,mt] (with mt  nt) be the subset of inputs e↵ectively
used in t. The assembly process of quantities yit of each input i 2 [0,mt] into a quantity Ft of FG
is described by the following technology:

Ft = F
⇣
{yit}0imt

,mt

⌘
, (1)

where functional F is positive, monotonically increasing, symmetric and homogenous of degree 1
in {yit}i2[0,mt]

7. The fact that mt is an argument of F describes a positive variety e↵ect in the
FG production process (see also next subsection). A well-known example of F is the functional à
la Dixit-Stiglitz given by

Ft =

Z mt

0
y↵itdi

�1/↵
, where 0 < ↵ < 1. (2)

Producing a quantity yit of input i 2 [0, nt] requires a quantity of energy µtyit, where µt > 0
measures the energy intensity of the process8. By aggregating the energy requirements of input

6By definition, non-renewable energy sources are depletable and can only play a transitory role. Because long-
term growth can only rely on renewable resources and because we only focus on long-term issues, we disregard the
transitory era where non-renewable energy sources are in use.

7This formulation is close to the one in Benassy (1996) and only departs from it because (i) the set of inputs is
continuous and (ii) mt is here a choice variable.

8For the simplicity of the exposition, we assume that µt is identical for all i’s but this assumption is not at all
crucial to our results.
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productions, one writes the total energy consumed by the input sector in period t as

Ept =

Z mt

0
µtyitdi = µt

Z mt

0
yitdi. (3)

The energy intensity µt may decrease through time as a result of technological progress (see
subsection 2.2).

FG production also requires energy: the quantity of energy necessary to the assembly process of
inputs {yit}0imt

is given by:

Eat = E
⇣
{yit}0imt

,mt

⌘
, (4)

where functional E is a positive, monotonically increasing, symmetric and homogenous of degree
1 in {yit}0imt

. The positive relationship between Eat and {yit}0imt
means that assembling

more units of inputs consumes more energy. Any input manipulation or transformation is indeed
an operation that requires energy. So, the energy requirements of the final good production is
increasing in the number of such operations, i.e., in the number of units of inputs to manipulate
and assembly. Functional E may also depend on the variety of inputs used in the process, which
describes the link between complexity and energy intensiveness of the assembly process. We further
describe this point in the next section.

2.1.2 The symetric case

As functionals F and E are symetric in {yit}0imt
, production plans are such that all inputs are

used in equal quantities, i.e. yit = yt, 8i 2 [0,mt]. Following Benassy (1996), one may then rewrite

F
⇣
{yt}0imt

,mt

⌘
= f (yt,mt), where f is homogenous of degree 1 in yt and increasing in its

two arguments. Hence,

Ft = f (1,mt) yt = �(mt)mt yt, where �(mt) =def
f (1,mt)

mt
. (5)

Ft appears as a composite index with two dimensions: (i) a quantitative dimension proportional
to the number of input units mtyt involved in the assembly process and (ii) a non-quantitative
dimension linked to a “variety” e↵ect measured by the term �(mt). This variety e↵ect is an
increasing function of mt if the elasticity of f(1,mt) with respect to mt is larger than 1, what we
will assume. In the Dixit-Stiglitz case (2), �(mt) = m�

t with � = 1
↵ �1 > 0 (since ↵ < 1): a higher

value of parameter � means a bigger variety e↵ect.

Let Yt be the quantity index corresponding to the number of input units used in the assembly
process:

Yt = mtyt. (6)

(5) then writes as Ft = �(mt)Yt.

Similarly, one may rewrite Eat as Eat = E
⇣
{yt}0imt

,mt

⌘
= ea (yt,mt), where ea is increas-

ing and homogenous of degree 1 in yt. Hence,

Eat = ea (1,mt) yt = �(mt)Yt, where �(mt) =def
ea (1,mt)

mt
. (7)

The energy requirement of the assembly process thus depends both on the processed quantity of
inputs (Yt = mt yt) and on the number of input types mt via the term �(mt). Function �(mt)
captures the e↵ect of the product complexity on the energy intensiveness of its manufacturing. If
�(mt) is a constant (i.e. if mt is not an argument of function E), the energy intensiveness of the
production process depends on the number of inputs to assembly Yt but not on the number of
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input types: assembling m di↵erent inputs (each in unit amount) is neither more nor less energy
consuming than assembling m units of a single input. If �(mt) is increasing in mt (i.e. if function
E is increasing in mt), manufacturing a more complex product (i.e. a product consisting of a larger
number of input types) is more energy consuming than manufacturing a simpler one, made with
the same number of input units Yt but with a smaller number of input types. The reverse is true
if �0(mt) < 0.

In summary, if the tasks necessary to the production of a more complex product are energy
consuming, �0(mt) > 0. In order to highlight the importance of this complexity e↵ect on the
feasibility of growth, we shall also consider the case where it is absent (i.e. where �0(mt)  0).

Given (3) and (7), the total energy necessary to produce Ft units of final good (i.e. the
production and assembly of Yt = mtyt units of inputs), is given by

Eft = [µt + �(mt)] Yt. (8)

Together (5) and (8) imply:

Ft =
�(mt)

µt + �(mt)
Eft. (9)

The energy intensiveness of final production (i.e. the ratio Eft/Ft) thus depends positively on the
energy intensiveness of input and FG productions (µt + �(mt)) and negatively on the “variety”
e↵ect (�(mt)).

2.1.3 Choice of mt in a given time period

Since we focus on feasibility issues, we are only interested in production plans that 1) do not imply
any resource waste and 2) lie on the frontier of feasible values of Ft in a given period. We thus
consider the variety mt that maximises final good production Ft, given the nt existing input types
and the quantity of energy available for production Eft. For a given Eft and given (9), this value
of mt is the solution to the following problem:

max
0mtnt

Ft =
�(mt)

[µt + �(mt)]
Eft. (10)

The first derivative of Ft with respect to mt is proportional to the following expression9:

@Ft

@mt
⇠ �0(mt) [µt + �(mt)]� �(mt)�

0(mt). (11)

An increase in mt has thus two e↵ects on Ft at given Eft. The first term at the right-hand-side
of (11) captures the variety e↵ect which is unambiguously positive. The other e↵ect follows from
the impact of mt on the energy intensiveness of the final good production process, impact which
depends on the sign of �0(·):

1. If an increase in the variety of inputs mt used in the assembly process decreases (or leaves
unchanged) the energy intensiveness of this process (i.e. if �0(.)  0), (11) is always strictly
positive and the solution to (10) is mt = nt. Intuitively enough, if product complexity brings
benefits but induces no cost, all the existing input types will be used10.

2. If complexity is energy consuming (i.e. if �0(.) > 0), mt has two opposite e↵ects on Ft and
there may exist an interior maximum n̄t of problem (10). Such a n̄t must be the solution of
the first order condition

�0(n̄t)

�(n̄t)
=

�0(n̄t)

µt + �(n̄t)
. (12)

9We use the notation a ⇠ b to mean that a is proportional to b.
10This corresponds to the “standard” solution of Grossman-Helpman (1991, chapter 3) and Benassy (1996).
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In words, when increasing mt makes final production more energy intensive, the optimal n̄t is
the value of mt that equalizes the marginal variety e↵ect of an increase in mt to the marginal
energy cost of this increase. This n̄t will be an interior maximum only if n̄t < nt and if the
objective is concave at nt. This requires that

�00(nt) [µt + �(nt)]� �(nt)�
00(nt) < 0. (13)

A su�cient but not necessary condition for this inequality to hold is (i) a concave variety
e↵ect �(.) and (ii) a convex complexity e↵ect �(.).

2.2 Research activities and technological spillovers

Research activities allow the economy to invent new input types. This process is deterministic and
consumes energy. The energy consumption of research activities in t, Ert, is assumed proportional
to the research e↵ort measured by the number of new inputs invented during the period:

Ert = "t [nt+1 � nt] . (14)

"t(� 0) measures the energy required to invent a new type of input. Because Ert � 0, the inequality
nt+1 � nt holds necessarily. This formulation thus assumes (as in Grossman-Helpman, ch. 3) that
there is no input obsolescence: once created, a given input variety remains available forever.

Moreover, we assume that research made to increase nt enlarges the “stock” of public knowledge.
This feeds in turn a process of technological progress which di↵uses in the economy and improves
the energy e�ciency of production and research activities. Following Grossman-Helpman (1991,
section 3.2), public knowledge in t is measured by nt, and we suppose

µt = µ(nt) and "t = "(nt), with µ0(.) and "0(.)  0, (15)

i.e. technological progress makes input production and research activities less energy intensive.

2.3 Frontier of the possible production and research activities

The economy enjoys a constant flow of energy E, which can be freely captured. This optimistic
assumption is made in the perspective of identifying the frontier of production and research ac-
tivities. Along this frontier, E is always fully used and shared between production and research:
E = Eft + Ert. Given (8) and (14), this implies that

E = [µ(nt) + �(mt)]Yt + "(nt) [nt+1 � nt] , (16)

where Yt = mt yt.

In period t, the frontier of feasible combinations of production and research is thus given by (16)
and

Ft = �(mt)Yt (17)

mt =

8
<

:

nt if �0(·)  0

min{n̄t, nt} if �0(·) > 0,
(18)

where n̄t is given by (12).
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3 Possible long-term trajectories

We analyse now the possibility of long-term growth, i.e. the feasibility of long-term trajectories with
non-decreasing final output Ft. In this model where final output growth may be non-quantitative
as well as quantitative, we identify what type of long-term growth is sustainable according to the
long-term properties of energy intensities µ(·) and "(·) and complexity e↵ect �(·). We structure
this discussion in function of the sign of �0(mt). Although this analysis could be held in more
general terms, it is more reader-friendly to assume the following isoelastic functional forms for the
variety and complexity e↵ects:

�(mt) = m�
t , (19)

�(mt) = c�m
�
t , (20)

where c� is a strictly positive constant. As mentioned in the discussion following (5), (19) corre-
sponds to the expression of �(mt) in the Dixit-Stiglitz case (2) and � > 0. According to the sign
of parameter �̄, complexity is energy consuming (if �̄ > 0) or not (if �̄  0).

Under assumptions (19) and (20), the derivative (11) is always strictly positive if �̄  � but
admits a unique root if �̄ > �. Hence, (18) becomes:

mt =

8
<

:

nt if �̄  �

min{n̄t, nt} if �̄ > �,
(21)

where n̄t is the unique solution of (12): under assumptions (19) and (20),

nt =


�

�� �

µ(nt)

c�

� 1

�

. (22)

It is decreasing in nt.

Hereafter, we define a balanced growth path (BGP) as a long-term trajectory with (i) a constant
and strictly positive growth rate of Ft, (ii) constant positive growth rates of variables mt and nt,
(iii) constant (possibly negative) growth rate of yt and (iv) constant shares of energy allocated
to production and research (constant ratios Ejt/E, j = f, r or equivalently constant flows Ejt,
j = f, r).

Given (15) and property (iv) of a BGP, (14) may be rewritten as follows along a BGP:

Er = "(nt)nt


nt+1

nt
� 1

�
.

Since property (ii) of a BGP implies a constant growth rate of n, the above equation implies that
the product "(nt)nt must be constant (say c" > 0) along a BGP, i.e.

"(nt) = c"/nt. (23)

Furthermore, when mt = nt (which is certainly the case when �̄  � (see (21)), (8) and (15) can
be rewritten as

Yt =
Ef

µ(nt) + c�n�
t

(24)

Ft = n�
t Yt. (25)

Let us analyse now the di↵erent possible cases according to the value of �̄.
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3.1 No positive e↵ect of complexity on energy consumption

3.1.1 �(m) is strictly decreasing, i.e � < 0

If the elasticity of �(.) is strictly negative, a BGP characterised by the positive growth of the two
dimensions of Ft is possible: economic growth may be both (i) quantitative through the increase of
Yt and (ii) non quantitative through the increase of the variety nt. As neoclassical growth theory
has (more or less explicitly) a very broad interpretation of what economic growth can be, we label
neoclassical a BGP along which “all forms” of growth are possible in the long run.

Proposition 1 In an economy endowed with a renewable but finite energy flow, a neoclassical
BGP (i.e. a BGP with a strictly positive growth of Ft, mt and Yt) is only possible if the potential
of energy e�ciency gains in all human activities (production and research) is unbounded:

1. Quantitative growth (i.e. growth of Yt) requires that the energy intensity of intermediary and
final productions, µt + �t, tends to zero when nt ! +1.

2. Non-quantitative growth (i.e. growth of nt (or mt)) requires that the energy intensity of
research activities, "t, tends to zero as nt ! +1.

Point 1 follows straightforwardly from (24): the denominator of its right-hand-side must tend
toward zero for a perpetual growth of Yt to be possible with a constant Ef . Point 2 is a direct
consequence of (23).

The above proposition makes explicit a key assumption on which relies the weak sustainability
postulate. In a finite world, quantitative growth could only be sustained in the long run if the
energy content of a unit of final output tended progressively toward zero. Even though some might
argue that research activities are more immaterial and less energy intensive than the production
of material goods, note that the feasibility condition of a long-run non-quantitative growth is also
very strong : Point 2 means indeed that the energy content of the invention of a new variety should
tend toward zero in the long run.

3.1.2 �(m) is independant of m, i.e. �̄ = 0

Since �̄ = 0 implies that �(mt) = c� (a strictly positive constant), µt + �t � c� > 0 and Point
1 of Proposition 1 makes clear that no long-run quantitative growth is then possible. The next
proposition11 follows straigthforwardly as a corollary to Proposition 1:

Proposition 2 In an economy where the energy intensity of production activities (�t + µt) is
bounded from below by a strictly positive constant, a BGP with a strictly positive growth of final
output can only rely on non-quantitative growth: it is a growth path along which Yt is constant
and where nt, and thus Ft, grow at a strictly positive rate. Such a non-quantitative growth path is
possible only if the energy intensiveness of the research process tends to zero as nt ! 1.

The asymptotic value of Yt it then equal to

Y1 =
Ef

µ1 + c�
,

where µ1 = limt!+1 µ(nt) � 0. Then, Ft = n�
t Y1 (see (25)), the long run growth of Ft being

purely non quantitative. As recalled in Proposition 2, this non-quantitative growth path will be
possible only if Point 2 of Proposition 1 is satisfied.

11Note that it also holds if �̄ < 0 but µ(nt) is bounded from below by a positive constant, i.e. if the energy
content of an input unit remains strictly positive in the long run.
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This purely non-quantitative growth path is very close to the one obtained by Grossman-
Helpman (1991, section 3.2). It is also similar to the long-run growth path described in Fagnart-
Germain (2011) in a model where non-quantitative growth is the result of rising product quality
instead of expanding product variety as here12.

3.2 Positive e↵ect of complexity on energy consumption

A positive e↵ect of complexity (�0(mt) > 0) implies that µt + �t cannot tend toward zero (with a
strictly positive mt): no quantitative long-term growth is thus possible. But may non-quantitative
growth remain possible?

3.2.1 Weak complexity e↵ect: 0 < � < �

In this case, the equality mt = nt remains but the denominator of the right-hand-side of (24) is
increasing in nt. Yt thus follows a decreasing trend along a BGP with an increasing variety:

Proposition 3 In an economy where the increasing complexity of final production has a positive
but su�ciently weak impact on the energy intensiveness of final production (i.e. if the elasticity of
�(mt) is positive but smaller than the elasticity of �(mt)), a BGP with a strictly positive growth of
final output relies on non-quantitative growth (growth of nt) and quantitative de-growth (negative
growth of Yt). Such a non-quantitative growth path is possible only if the energy intensiveness of
the research process tends to zero as nt ! 1.

From (25) indeed,

Ft =
n���
t

µ(nt)n
��
t + c�

Ef ! n���
t

c�
Ef

when nt becomes su�ciently large. If �  �, nt ! 1 implies that Ft ! 1. Moreover,

Yt =
Ef

µ(nt) + c�n�
t

! 0.

In very intuitive terms, 0 < �̄ < � means that complexity brings more benefits (via the variety
e↵ect) than costs (via the increased energy intensiveness of final output). In spite of the negative
growth of Yt, the economy may thus be able to sustain a long run growth of Ft based on the variety
e↵ect (and an increasing complexity of final productions). If � = � (variety and complexity e↵ects
of equal strenth), long run final output growth extinguishes.

3.2.2 Strong complexity e↵ect: � > �

With functions (19)-(20) and � < �̄, problem (10) admits a unique interior maximum n̄t given by
(22). As µ(nt) is by assumption a positive decreasing function of nt, it is also the case of nt. As
the variety used in the assembly process is mt = min {nt, nt}, mt is thus determined as follows:

mt =

8
<

:

nt if nt  !


�µ(nt)

c�[���]

� 1

�

if nt � !
with ! =

"
�µ(!)

c�
⇥
�� �

⇤
# 1

�

. (26)

Figure 1 illustrates (26) and shows that the threshold value ! is determined by the intersection
between the two curves mt = nt and mt = n̄t.

12One may outline a di↵erence beween the two frameworks: in the one with expanding variety, the production
of each input declines through time (a constant Yt implies a decreasing yt if nt is rising). In the framework with
constant variety but rising product quality, the production of each input type remains constant in the long run.
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Suppose a trajectory characterised by a monotoneous increase of nt. As long as nt  !, mt

grows as nt. But once nt gets larger than !, mt decreases as nt rises: research e↵orts create
an increasing variety of inputs but a decreasing variety of the same inputs is used in the final
production process. Such a trajectory with an increasing nt but decreasing mt does not satisfy
our definition of a BGP and seems unreasonable anyway. There is no possible long run trajectory
with rising nt and mt and thus no possible form of long-term balanced growth.

Proposition 4 In an economy where the increasing complexity of final production has a positive
and su�ciently strong impact on the energy intensiveness of production activities (i.e. the elasticity
of �(mt) is larger than the elasticity of the variety e↵ect), neither quantitative nor non-quantitative
growth is possible in the long-term. The most favourable long-term trajectory is a zero-growth path
characterised by stationnary levels of variables Ft, mt, nt, yt.

Figure 1 
  
 
 

€ 

nt  
   
 
 
 
 
 
 
 
 
  
 

 

€ 

n t =
βµ(nt )

cλ λ −β[ ]
% 

& 
' 

( 

) 
* 

1
λ 
  

 
  
 
 

€ 

nt  
 
 
 
 
 
 
 
 
 
 
  
 

In such a scenario, research activities vanish and the whole energy flow E is allocated to
production activities. The stationary final output is thus given by

F = m� E

µ(n) + c�m�
,

with m  n. In the particular case where the economy uses the maximum number of inputs in the
assembly process, n = m = ! where ! is given in (26).

When � < �̄, an increasing complexity eventually brings more costs than benefits and a perpet-
ual increase in mt would be too costly. All forms of growth thus stop. This steady state solution
described in Proposition 4 is similar to the long-term solutions obtained by Ayres and Miller (1980)
and, more recently, by Germain (2012, section 2.1). This steady-state equilibrium could also corre-
spond to the type of long run equilibrium favoured by the so-called degrowth literature: as Kallis
et al. (2012, p.173) outline, [no]body in [this shool of thought] (...) is preaching degrowth forever:
for its advocates, degrowth would be a transition path toward a lower steady-state with desirable
properties (...)”.

3.3 A few remarks on the purely non-quantitative BGPs

A purely non-quantitative BGP has been shown to be a possible intermediary case between the
neoclassical BGP and a no-long-run-growth scenario: if the e↵ect of complexity on energy consump-
tion is weak (a fortiori if it is negative or nil), non-quantitative growth may persist (under certain
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conditions) in an economy where no long run quantitative growth is possible. In our framework
where product di↵erenciation is only horizontal, non-quantitative growth is exclusively driven by a
variety e↵ect. Alternatively (or complementarily), it could be the result of a rising product quality.
It is thus worth outlining that conclusions very similar to those of section 3 can be obtained in a
model with rising product quality à la Grossman-Helpman (2011, chapter 4): the same typology
of growth paths and the same feasibility conditions appear mutatis mutandis in a model where
rising product quality may be accompanied by an increased complexity of these products and/or
of their production processes. But if the idea of a positive relationship between the complexity of
a product (or more broadly of a system) and the variety of its components is consistent with the
literature in various disciplines, we do not know any argument that establishes a systematic link
between the quality of a product and its complexity. Products like cars, computers, phones,... are
certainly of better quality and higher complexity today than in the past. But they are examples
and not necessarily the rule.

Whatever the form of non-quantitative growth, the result of a purely non-quantitative long-
term growth is fragile in three respects. We mention them here below on the basis of the model with
expanding variety but we enlarge our comments to the case of a model with rising product quality.
First, as already outlined, non-quantitative growth requires an unbounded energy e�ciency in the
research activities13 that allow men to create new input varieties or to improve product quality.
Next and more obviously, the positive variety e↵ect (or the positive quality e↵ect) on final output
must itself be unbounded: if �(mt) was bounded from above, a BGP with a positive growth of Ft

could only rely on quantitative growth and would only be possible under the condition stated in
Point 1 of Proposition 1.

Finally, a non-quantitative BGP would neither be possible if there was a weak substitutability
between input variety (or input quality) and input quantity in the final good production process.
For example, consider the assembly technology given by

F↵
t =

Z mt

0


1� ↵+

↵

y�it

�� 1
�

di, where ↵ 2 [0, 1] and � � 0. (27)

Contrary to the functional defined by (1), Ft is no more homogenous of degree 1 in yit, i 2 [0,mt].

With symmetric inputs yit = yt, 8i, (27) writes as F↵
t =

⇥
[1� ↵]m��

t + ↵Y ��
t

⇤� 1
� . Final good

production thus writes as a CES function of input varietymt and input quantity Yt (with increasing
returns-to-scale)14. If � > 0, i.e. if the substitutability between input variety and input quantity
is weak, then a purely non-quantitative BGP is impossible: because E � Eft = [µt + c�]Yt

and µt � 0, Yt is necessarily bounded from above, so that Ft is also bounded even if mt ! +1.
Equivalently, in a model with rising product quality, a purely qualitative BGP would be impossible
if the substitution possibilities between input quality and input quantity was weak.

4 Conclusion

This note has reconsidered what type of long-term growth is possible in a model with expanding
product variety à la Grossman-Helpman (1991) where all human activities require energy. In this
framework, we have linked the complexity of final production to the number of di↵erent components
(or inputs) entering into its assembly process. We have considered two cases, whether complexity
is costly or not, i.e. whether product complexity increases the energy requirements of produc-
tion operations or not. A balanced growth path combining “quantitative” and “non-quantitative”
growth has appeared possible only if the potential of energy e�ciency gains is unbounded in all
(production and research) activities. This requires in particular a decrease (toward zero) of the

13This requirement is trivially satisfied if one assumes -as often in the endogenous growth literature- that research
activities do not require energy.

14This CES reduces to the Cobb-Douglas defined by (17) (with mt = nt) when � ! 0.
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energy intensiveness of final production in spite of its increased complexity. Less optimistic assump-
tions unavoidably lead to less favourable long-term growth scenarii. If the energy intensiveness
of intermediate and/or final productions is bounded from below by a strictly positive constant,
quantitative growth is not sustainable in the long-run but a purely “non-quantitative” growth path
may remain possible (i) if the impact of complexity on energy consumption is nil or not too strong
and (ii) if the energy intensiveness of the innovation process (the research activities in the present
model) tends toward zero. If either one of these two conditions is not met, zero-growth is the most
favourable long-run scenario.

It is not obvious to assess the realism of the conditions under which long-term growth (even
limited to its “non quantitative” dimension) is possible. First, even though common perception
suggests an increasing complexity of human productions and processes, and of the economy as a
whole, we do not have at our disposal an “objective” index of the complexity of our economies.
A fortiori, we do not have a quantification of the link between complexity and energy intensive-
ness at the aggregate level. However, the present note tends to reinforce the pessimistic view of
ecological economics with respect to the feasibility of long-term growth: in a finite world, even
the intermediary case of a purely non-quantitative long-term growth is only feasible under rather
restrictive conditions, as discussed above.
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