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1 Introduction

There are many situations where agents are part of a network and belong to groups

or coalitions. In labour markets, workers are linked to each other within each firm

through a hierarchy — that is, a network — and, at the same time workers may group

themselves into unions — that is, coalitions. Individuals are living their social interac-

tions in clubs or communities as well as through friendship networks. Countries can

sign bilateral free trade agreements or multilateral free trade agreements and may

belong to customs unions. Criminal gangs often develop contract relationships for

the provision of certain kinds of services, such as transportation, security, contract

killing, and money laundering.

Caulier, Mauleon, Sempere-Monerris and Vannetelbosch (2013) have developed

a theoretical framework that allows to study which bilateral links and coalition

structures are going to emerge at equilibrium. They have proposed the notion

of coalitional network to represent a network and a coalition structure, where the

network specifies the nature of the relationship each individual has with her coalition

members and with individuals outside her coalition.1 They have shown that this

new framework can provide insights that one cannot obtain if coalition formation

and network formation are tackled separately and independently.2

The aim of this paper is to study the allocation of value among players who are

part of a network and belong to coalitions and to assess the strategic position of each

player in a coalitional network. The way the value is allocated matters, not only in

terms of fairness and equity considerations, but also in determining the incentives

players have to form links and coalitions.

One of the central problems tackled by traditional cooperative game theory con-

cerns the way to allocate among players the value generated collectively by the group

1Caulier, Mauleon, Sempere-Monerris and Vannetelbosch (2013) have used the concepts of

strong stability and of contractual stability to predict the coalitional networks that are going to

emerge at equilibrium. Contractual stability imposes that any change made to the coalitional

network needs the consent of both the deviating players and their original coalition partners.

Requiring the consent of coalition members under the simple majority or unanimity decision rule

may help to reconcile stability and eciency.
2Caulier, Mauleon and Vannetelbosch (2013) have considered situations where players are also

part of a network and belong to coalitions. However, each player’s payo only depends on the

network, and so, each player’s coalition only constrains her ability to add or delete links in the

network.
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of players in a fair way. In cooperative games, it is assumed that players cooperate by

forming coalitions and the fruit of cooperation, the worth of a coalition, is achieved

independently of the organization of the other players and can be freely distributed

among the coalition members. In this context, the Shapley value proposes a way to

share the worth of the grand coalition taking into account the marginal contribution

of each player to the worth of each possible subcoalition. Myerson (1977) was first

to augment a cooperative game by a network structure specifying which groups of

players can be formed.3 The feasible groups are the ones whose members can com-

municate via the given network. Myerson (1977) has extended the Shapley value for

this class of cooperative games, called communication games. Myerson (1980) has

modeled the communication possibilities of the players by means of hypergraphs.

Each element of an hypergraph is called a conference. Communication and negoti-

ation between players can only take place within a conference if all players of the

conference participate. Since a conference can consist of several players, an hyper-

graph is a generalization of a network, which has bilateral communication channels

only. Myerson (1980) has generalized the Myerson value to this setting.4 Jackson

and Wolinsky (1996) have introduced a class of games — network games — where the

value generated by a group of players depends directly on the network structure.

They have extended the Myerson value to network games.

In this paper we extend the Shapley value to coalitional networks. The value

generated by the coalitional network is captured by a real-valued function — called a

coalitional network game. Following Jackson (2005), we propose an allocation rule

for coalitional network games that shares the value generated by a given coalitional

network taking into account the contribution of each player not only to the coali-

tional network that actually forms but also to every alternative coalitional network

that could have been formed. We adopt Jackson’s (2005) flexible approach because

the ecient coalitional network is not necessarily the one where all players are linked

to each other and belong to the grand coalition; i.e., the complete coalitional net-

work. This means that we must care about how to allocate value to some coalitional
3Other approaches with restricted cooperation are Amer and Carreras (2005), Aumann and

Dreze (1974), Bergantinos, Carreras and Garcia-Jurado (1993), and Carreras (1991).
4Algaba, Bilbao, Borm and Lopez (2001) have introduced the Myerson value for union stable

structures (i.e. structures where the union of two intersecting feasible coalitions is also feasible) and

have provided an axiomatization for it. Ui, Kojima and Kajii (2011) have provided an extension

of the Myerson value for complete coalition structures defined as sets of feasible coalitions.
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networks that are not the complete coalitional network. In such cases, the allocation

of value may depend on information about the roles of players that require calcula-

tions based on coalitional networks that are not subcoalitional networks of a given

coalitional network.5

Notice that we develop a specific approach to adapt the Shapley value to our

framework. When adapting the Shapley value to bottom-normalized games (i.e.

games where the empty set has null value) defined on particular combinatorial struc-

tures that are partially ordered and form a lattice, it is usually assumed that players

are elements of the lattice structure (i.e. the atoms) that dier from the bottom

elements. In our setting, the set of coalitional networks can be partially ordered and

forms a lattice where the bottom element consists of the empty coalitional network

where all players have no links and are singletons and achieve zero value. In order

to circumvent this diculty, we allocate a value to the atoms of the lattice under

consideration instead of allocating value directly to the players.

The paper is structured as follows. Section 2 provides definitions for coalitional

networks and presents the lattice structure of coalitional networks. Section 3 in-

troduces coalitional network games and establishes some properties for this class of

games. Section 4 presents two allocation rules for coalitional network games: the

atom-based flexible coalitional network allocation rule and the player-based flexible

coalitional network allocation rule. Section 5 provides the relationship with existing

allocation rules.

2 Coalitional networks

Let N = {1, ..., n} be the finite set of players who are connected in some network

relationship and who belong to some coalitions. A coalitional network (g, P ) is a

pair that consists of a network g and a coalition structure or partition P .

A network g is a list of (unordered) pairs of players linked to each other and is

represented by an undirected graph. A link between two players i, j  N , i = j, is

denoted ij or ji. For notational convenience, when the identities of linked players are

5Notice that in traditional cooperative games it is assumed that the grand coalition forms and

the Shapley value decomposes the grand coalition in various ways to evaluate players’ contributions.

Hence, in the decomposition of the grand coalition, the value of every other coalition is taken into

account in the computation of players’ contributions.
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not needed, we use the generic symbol l to designate a link. The set of all possible

networks is denoted G = {g | g  gN}, where gN denotes the set of all subsets of

N of size 2; i.e. the complete network. Let gS denote the complete network among

players in S  N .6 Thus, g is the empty network where all players are isolated. For

any network g, let N(g) = {i | j such that ij  g} be the set of players who have

at least one link in the network g. Let n(g)  |N(g)|. As it is implicitly stated in the

definition of G, a network is considered as a set of links and the set of all possible

networks is partially ordered by inclusion. A network g  G is a subnetwork of a

network g  G if the set of links in g is weakly included in g, g  g. The infimum

(meet) and supremum (join) of any two networks g, g  G exist and are respectively

written g  g and g  g, and (G,) is a lattice with bottom element g and top

element gN . A network g covers a network g if g  g and there is no network g

such that g  g  g. The set of networks that cover the bottom element g, the

set of atoms A(G,), are the one-link networks l  gN . A maximal decomposition

of a network g in terms of atoms is the expression of g as the supremum of all atoms

included in g. Formally,

g =


lA(g)
l with A(g) = {l  A(G,) | l  g}

where A(g) is the set of atoms (one link networks) included in g.

The lattice (G,) is ranked and each element g  G has rank r(g) = |g|. The

rank of a network g is precisely the number of links in g and corresponds to the

number of atoms included in the network. Hence, we identify the number of atoms

in g with the degree of g. Observe that if a network g covers a network g then there

exists a network a  A(G) such that g  a = g and the network g has one more

link than g, r(g) = r(g) + 1. For any two networks g, g  G, the rank function

satisfies the following identity: r(g) + r(g) = r(g  g) + r(g  g). Hence (G,) is

a distributive lattice.7

A coalition is a subset S  N and a coalition structure (or partition) is a

collection of nonempty mutually disjoint coalitions whose union is N . We denote a

coalition structure P = {S1, ..., Sm} such that Sk =  for k = 1, . . . ,m, SkSk = ,

k = k and

k S

k = N . A k-partition is a partition P that consists of k coalitions;

6Throughout the paper we use the notation  for weak inclusion and  for strict inclusion.
7A lattice (L,,) is distributive if for all x, y, z  L we have x (y  z) = (x y) (x z) and

x  (y  z) = (x  y)  (x  z).
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i.e., |P | = k. The set of possible coalition structures (or partitions) on N is denoted

P and is partially ordered under the refinement ordering . Let P, P  be partitions

of N . We say that P is a refinement of P  or is finer than P , denoted P  P ,

if any coalition of P is a subset of a coalition of P . Strict refinement is denoted

. The dual relation of the refinement is the coarsening relation. The infimum
and supremum between any two partitions P and P  exist and are respectively

P  P  and P  P . The poset (P ,) is thus a lattice. The bottom element of

the partition lattice (P ,) is the finest partition P = {{1}, . . . , {n}}. The top

element, i.e. the coarsest partition, is the grand coalition P = {N}. The atoms

A(P ,) are the elements that cover the finest partition and are partitions whose

only non-trivial coalition is a two-element coalition. That is, Qij  A(P ,) if there

exist i, j  N such that {i, j}  Qij and all other coalitions of Qij are singletons.

The lattice (P ,) is ranked and each element P has rank r(P ) = n |P |. For any

P, P   P such that P covers P , we have that P  has one more coalition than P ,

r(P ) = r(P ) + 1.8 For any two partitions P, P   P, the rank function satisfies

r(P ) + r(P )  r(P  P ) + r(P  P ), hence (P ,) is a semimodular lattice.9

A maximal decomposition of a partition P in terms of atoms is the expression

of P as the supremum of all atoms finer than P . Formally,

P =


QijA(P )

Qij with A(P ) = {Qij  A(P ,) | Qij  P} ,

where A(P ) is the set of atoms (partition with only one nontrivial two-element

coalition) finer than P . The class of a partition P  P is defined by the collection of

integers cP =

cP1 , . . . , c

P
n


such that cPk is the number of coalitions of P consisting

of exactly k players. Thus
n

k=1 c
P
k k = n and

n
k=1 c

P
k = n r(P ) = |P |. The size

sP of a partition P  P is the number of atoms finer than P . That is,

sP =
n

k=1

cPk


k

2


= |{{i, j}  A(P )}| . (1)

A coalitional network consists of a pair (g, P )  G P. We define the ordering

relation  on (GP) (GP) such that (g, P )  (g, P ) if and only if g  g in G
8Any partition P  covered by P have the same coalitions as P except one that is divided in two

coalitions in P .
9A lattice (L,,) is (upper) semimodular if for all x, y  L we have that x  y  x and

x y  y imply x  x y and y  x y. A distributive lattice is semimodular, while the converse
is not necessarily true.
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and P  P  in P. Since (GP ,) is defined as the Cartesian product of two lattices,

it has also a lattice structure. Moreover, it inherits the semimodularity property of

the partition lattice. The bottom and top elements of the lattice (G  P ,) are

(g, P) and (gN , {N}) respectively. Atom elements in A(GP ,) take one of the

following two forms, (l, P) or (g, Qij) with l  G being a one-link network and

Qij  A(P ,). From direct calculations we have

|A(G P ,)| = (n(n 1)/2) +

n

2


= n(n 1).

Each element (g, P ), with P = {S1, . . . , Sk} being a k-partition, is covered by

k
2


+


|gN | |g|


elements and covers


SP 2

|S|1  |P | + |g| elements. The number of

atoms in a maximal decomposition of any (g, P ) is |A(g, P )| = sP + |g| with sP

defined in (1). Let |A(g, P )| be the degree of the coalitional network (g, P ) and

denote it by d(g, P ). For any player i  N and (g, P )  G  P, we denote by

di(g, P ) the degree of player i in the coalitional network (g, P ). The degree di(g, P )

is the number of atoms to which i belongs, that is the number of links player i has

in g and the number of two-player coalitions in atoms finer than P to which player

i belongs. Finally, we denote by n(g, P ) the number of players that have at least

one link in g or that are not singletons in P . That is, n(g, P ) = |N(g, P )| with

N(g, P ) = N(g)  {i  N | {i} / P}.

We now present some properties fulfilled by the lattice of coalitional networks

that are of interest for the sequel.

Proposition 1. The lattice (GP ,) is ranked. The rank function r : (GP) N

is such that r(g, P ) = n |P |+ |g| for all (g, P )  G P.

Proposition 2. The lattice (G P ,) is semimodular.10

3 Coalitional network games

Knowing the lattice structure of coalitional networks ordered by , we can now

study games on coalitional networks that are bottom-normalized real-valued lattice

functions.
10A lattice (L,,) is semimodular if and only if its rank function r : L N satisfies r(x)+r(y) 

r(x  y) + r(x  y).
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Definition 1. A coalitional network game is a function v : G  P  R such that

v(g, P) = 0.

A coalitional network game assigns a real value to each possible pair consisting

of a network g and a partition P that represents the total value generated by the set

of players when organized under (g, P ). The set of all possible coalitional network

games is denoted V and can be identified with the vector space R|G||P|1.

A coalitional network game is a richer object than a cooperative network game or

a classical coalitional game because it allows the value generated to depend both on

the network structure and on the organization of players into partitions. Coalitional

network games can be seen as network games with externalities, where the value

generated by a network depends on the organization of the set of players into mutu-

ally disjoint coalitions, and converge to classical network games in case of absence of

externalities (i.e. when the partition organization of players does not influence the

worth). To emphasize the richness of coalitional network games, we can compare

the vector space associated to them to the corresponding space of classical network

games. Classical network games take values only on the set of possible networks G.

The number of possible networks in N is |G| = 2n(n1)/2. Network games consid-

ered as real-valued functions on |G| can be identified with R|G|1. The number of

possible partitions on N is the Bell number Bn.11 Thus, coalitional network games

considered as real-valued functions on G P can be identified with R|G|Bn1.

Definition 2. A coalitional network (g, P )  G  P is ecient relative to a coali-

tional network game v if v(g, P )  v(g, P ) for all (g, P )  G P.

The ecient coalitional network represents the best way to organize the set of

players in terms of networks and groups. The ecient coalitional network is the one

generating the maximum value.

Definition 3. For any coalitional network game v  V, its monotonic cover v̂ is

defined by

v̂(g, P ) = max
(g,P )(g,P )

v(g, P ).

11Bell numbers are defined recursively, using the Stirling numbers of the second kind, and no

close form expression exists to express them.
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Two dierent interpretations can be oered to monotonic covers of coalitional

network games. The first one corresponds to the one presented by Jackson (2005).

The idea is that at the time of building a coalitional network, players consider all

the available possibilities, and, if there is still some possibility to modify the coali-

tional network, then it is useful to consider which structure generates the maximum

possible value. This approach is called flexible by Jackson in the context of network

games without externalities. Another interpretation is the following. In classical

coalitional games, it is usually assumed that the grand coalition generates the max-

imum value and is thus formed. In the coalitional network games context, this is a

too strong assumption, since it is often the case that forming or maintaining links

induces costs and the grand coalition is not necessarily the one that maximizes the

worth. Instead, we assume here that the complete network and the grand coalition

form, but only activate or declare some links and groups in order to generate the

maximum value. The complete network and the grand coalition have all links and

subgroups at their disposal but only use some of them to cooperate. A set of players

with communication links gN can use any network g  gN to cooperate. A set of

players forming a unique group {N} are free to group themselves into smaller groups

to achieve higher values.12 Hence, the complete network and the grand coalition al-

ways get the maximum value under its monotonic cover.

Definition 4. A coalitional network game v  V is monotonic if

(g, P )  (g, P ) v(g, P )  v(g, P ).

Notice that if a coalitional network game is monotonic, then v = v̂. A monotonic

coalitional network game attributes to a coalitional network a higher value than the

value it attributes to its subcoalitional networks. This may not be a very natural

property in coalitional network games since the top coalitional network structure is

not always ecient. Nevertheless, we can draw some useful information about how

allocation rules perform on monotonic coalitional network games.

A special family of monotonic coalitional network games consists of the unanim-

ity coalitional network games. For a coalitional network (g, P )  GP, let ug,P  V

denote the unanimity coalitional network game satisfying

12This is similar to essential superadditivity in coalitional games (see Wooders, 2008).
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ug,P (g
, P ) =


1 if (g, P )  (g, P )

0 otherwise.
(2)

Proposition 3. The set

ug,P | (g, P )  G P , (g, P ) = (g, P)



of all unanimity coalitional network games forms a linear basis for V.

This proposition is a particular case of a general result on lattice functions by

Gilboa and Lehrer (1991).

Corollary 1. Each coalitional network game v  V can be written as

v =


(g,P) =(g,P )GP

g,P (v)ug,P . (3)

Since (ug,P )(g,P )GP forms a basis for V, for each v  V, the collection of scalars

(g,P (v))(g,P )GP is unique. Each g,P (v) is called the Harsanyi dividend (see

Harsanyi, 1959). The dividend of a given element (g, P ) of the lattice (G  P ,)

represents the value that is left to (g, P ) once all (g, P ) included in (g, P ) have

received their corresponding dividends. Formally, let v  V and (g, P )  G  P.

From (2) and (3), we have

v(g, P ) =


(g,P )(g,P )

g,P (v). (4)

By applying the Möbius inversion formula (see Rota, 1964), we have

g,P (v) =


(g,P )(g,P )

v(g, P )µ ((g, P ), (g, P )) (5)

where µ ((g, P ), (g, P )) is the Möbius function associated to the lattice (GP ,).

Definition 5. The Möbius function associated to the lattice (G P,) is defined

recursively by

µ ((g, P ), (g, P )) = 1 (g, P )  GP

µ ((g1, P1), (g2, P2)) = 


(g1,P1)(g,P )(g2,P2)

µ ((g1, P1), (g, P )) (g1, P1)  (g2, P2)  GP

µ ((g1, P1), (g2, P2)) = 0 otherwise.
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Definition 5 gives a recursive way to derive the Möbius function µ. We now

give a general expression for µ associated to the lattice (G  P ,). The next two

propositions are useful to determine µ. Let µP(·, ·) be the Möbius function associated

to the partition lattice ordered by refinement and let µG(·, ·) be the Möbius function

associated to the network lattice (G,). Remind that |g| is the number of links in

network g  G.

Proposition 4 (Grabisch, 2010). Let P, P   P such that P   P . Then the Möbius
function on (P ,) is given by

µP(P
, P ) = (1)|P

||P |(n1  1)! . . . (n|P |  1)! (6)

where nk is the number of coalitions of P  contained in coalition Sk  P , for each

k = 1, . . . , |P |.

Proposition 5 (Caulier, 2010). Let g, g  G such that g  g. Then the Möbius

function on (G,) is given by

µG(g
, g) = (1)|g||g

|. (7)

From µ ((g, P ), (g, P )) = µG(g
, g)µP(P

, P ) and expressions (6) and (7) we

obtain the following proposition.

Proposition 6. Let (g, P ), (g, P )  G  P such that (g, P )  (g, P ). Then the

Möbius function on (G P ,) is given by

µ ((g, P ), (g, P )) = (1)|P
||P |(n1  1)! . . . (n|P |  1)!(1)|g||g

| (8)

From (3), we know that the coecients of any coalitional network game expressed

in terms of unanimity coalition network games are given by the Harsanyi dividends

(i.e. the Möbius inversion formula). To obtain the value taken by each dividend, we

only have to plug (8) into (5):

g,P (v) =


(g,P )(g,P )

v(g, P )(1)|P
||P |(n1  1)! . . . (n|P |  1)!(1)|g||g

|.

Using recurrence ((g,P)(v) = 0) and (4), we have

(g,P )(v) = v(g, P )


(g,P )(g,P )

(g,P )(v). (9)

From (9) we have now a clear interpretation of a dividend. The dividend of a

coalitional network (g, P ) is the part of the value v(g, P ) that is not generated by

proper subcoalitional networks of (g, P ).

10



4 Flexibility and equal treatment

In order to keep track of how the value generated by a coalitional network is allocated

to players, we adopt the flexible approach of Jackson (2005). Two dierent allocation

rules are proposed. The atom-based allocation rule focuses on the role played by the

minimal forms of cooperation among players in generating the value. The player-

based allocation rule emphasizes the role of the players in achieving the value.

Definition 6. An allocation rule for a coalitional network game v  V is a function

 : G P V  RN such that


i i(g, P, v) = v(g, P ) for all v, g and P .

It is important to note that an allocation rule depends on g, P and v. This

allows an allocation rule to take full account of a player i’s role in the network and

in the coalition structure. This includes not only what the network configuration

and coalition structure are, but also and how the value generated depends on the

overall network and coalition structure.

Definition 7. An allocation rule  is a flexible coalitional network rule if  (g, P, v) =



gN , {N}, v̂


, for all v and ecient coalitional network (g, P ) relative to v.

The allocation rule only depends on the monotonic cover of the coalitional net-

work game and distributes the value taken by the ecient configuration. This is

consistent with the perspective that the coalitional network is being formed and

that it can still be modified, or that the complete network together with the grand

coalition are formed but only use a subnetwork and a partition ecient relative

to v. The idea from the flexible perspective is that inecient coalitional network

structures should not be reached.

Note in the definition that the equivalence is only required on ecient structures,

as the value that accrues to other coalitional networks might not even be the same

(i.e. v(g, P ) = v̂(g, P ) for inecient (g, P )).

The next property is a kind of separable consistency. The property states the

behavior followed by the players concerning the distribution of the value generated

when confronted to dierent games.13

13Jackson (2005) uses the term additivity instead of linearity. Since the definition imposes both

additivity and homogeneity, we prefer to name it linearity.

11



Definition 8. An allocation rule  is weakly linear if for any monotonic coalitional

network games v and v, and scalars a  0 and b  0,

(gN , {N}, av + bv) = a(gN , {N}, v) + b(gN , {N}, v),

and if av  bv is monotonic, then

(gN , {N}, av  bv) = a(gN , {N}, v) b(gN , {N}, v).

Again, the weakly linearity condition only applies to monotonic covers, the only

relevant information if we consider the coalitional network as flexible.

As a matter of equity, Jackson (2005) proposes to share the value in a unanimity

game equally between essential players or, for link-based allocation rules, between

essential links, whichever you consider as vital in generating value. In coalitional

network games, basic ingredients are not the players. The mathematical structure

in terms of lattice shows that the minimal aggregation form in a coalitional network

is an atom, which takes the form of either a link between two players together with

the trivial partition or a partition whose unique non-singleton coalition is a pair

of players together with the empty network. In order to assess the contribution to

cooperation of players in this context, we argue that the role played by each atom

must first be assessed. In the network game setting, the contribution of a player

may be computed in terms of the links she controls. In coalitional network games,

the contribution of a player may be computed in terms of the atoms controlled by

the player; that is, either the links controlled by the player in the existing network

or the partitions with only one nontrivial two-element coalition to which the player

belongs that are finer than the existing partition.

Hence we propose the following property:

Definition 9. An allocation rule  satisfies equal treatment of vital atoms if ug,P 

V is a unanimity coalitional network game for some (g, P ), then

i(ug,P ) =







(ga,Pa)A(g,P ),

i(ga,Pa)

1
2|A(g,P )| if i belongs to at least one atom,

0 otherwise.

Recall that unanimity coalitional network games of (g, P ) are such that all atoms

of (g, P ) are members of the decomposition of (g, P ), and then, the join of all

these atoms is the (only) configuration that generates some value. Formally, for

12



each (g, P )  G  P with A(g, P )  A(G  P ,), the set of atoms such that

(ga, Pa)  A(g, P )  (ga, Pa)  (g, P ), and (g, P ) =

(ga,Pa)A(g,P ) (ga, Pa). In a

unanimity coalitional network game ug,P , all atoms of (g, P ) are identical, in the

sense that they are vital in the generation of worth, while the other atoms are not

part of the structures generating worth. We thus propose to distribute equally the

value generated among these vital atoms. The 1/2 reflects the fact that the value

of a given vital atom, either a link or the unique nontrivial two-element coalition of

the partition, is controlled by two players.

The properties described above are enough to characterize a unique solution,

that we call the atom-based flexible coalitional network allocation rule.

Theorem 1. An allocation rule for coalitional network games satisfies equal treat-

ment of vital atoms, weak linearity and is a flexible coalitional network rule if and

only if for all v  V and (g, P )  G P ecient relative to v, it is the atom-based

flexible coalitional network allocation rule, a, defined as follows:

ai (g, P, v) =


(g,P )GP






(ga,Pa)A(g,P ):
i(ga,Pa)

g,P (v̂)

2|A(g, P )|



 (10)

The idea is first to calculate the dividends for the monotonic cover of the game

under consideration, next, to distribute them equally among the atoms of the coali-

tional networks corresponding to these dividends and, finally, to the players essential

to these atoms. This allocation rule thus stress the importance of minimal forms

of cooperation among players that can take the form of links or coalitions, before

sharing the global worth to individuals.

If on the contrary, we think that the emphasis should be set directly on the players

rather than indirectly, we propose to adapt the equity condition in Definition 9 as

follows.

Definition 10. An allocation rule  satisfies equal treatment of vital players if

ug,P  V is a unanimity coalitional network game for some (g, P ), then

i(ug,P ) =


0 if i is isolated in g and a singleton in P ,
1

n(g,P )
otherwise.

with n(g, P ) the number of players that have at least one link in g or that are not

singletons in P .
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In a unanimity coalitional network game, players not isolated in g or in P are

all vital to the functioning of the coalitional network, in the sense that the value is

generated by their cooperation and no other player contribute in any sense. It is not

to say that a stand-alone player is not able to accomplish some valuable worth in

a coalitional network, but our focus is on the worth generated through cooperation

and how to share this value among cooperating players. In this case, players not

isolated are considered as equals and isolated players contribute nothing. Hence, this

equal treatment condition allocates the worth equally among the n(g, P ) players in

N(g, P ).

Before presenting our player-based flexible allocation rule, we need the following

definition :

Definition 11. The modular elements Pmod of the partition lattice (P ,) over N

are the partitions P  Pmod containing a unique non-trivial coalition as well as P.

The finest partition P and the coarsest partition {N} are modular elements.

Any other P  Pmod consists in a coalition {S}  2N \ together with the singletons

{{i}|i  N \ S}. Hence, each P  Pmod can be uniquely characterized by its non-

trivial coalition {S}  2N \  and we may thus write with some abuse of notation

the modular partition as {S}  Pmod. Note that the only one modular partition

corresponding to all singleton coalitions

{i}|{i}  2N


, is the trivial partition P.

Hence the number of distinct modular partitions on N is |Pmod| = 2n  n, since P
has multiplicity n in Pmod.

We now present the player-based flexible allocation with its characterizing prop-

erties.

Theorem 2. An allocation rule for coalitional network games satisfies equal treat-

ment of vital players, weak linearity and is a flexible coalitional network rule if and

only if for all v  V and (g, P )  GP ecient relative to v, it is the player-based

flexible coalitional network allocation rule p, defined by

pi (g, P, v) =


Si,
{S}Pmod,
SN(g,P )

gS ,{S}(v̂)

|S|
. (11)

The proof of this theorem is a direct analog of the proof of Theorem 1, which

appears in the appendix. This allocation rule is close to the classical Shapley value

14



(where Harsanyi dividends are shared equally among players). However, in this

setting, we first deal with the monotonic cover of the value function as prescribed

by our flexible approach and, second, players are involved in much more complicated

structures consisting in both a network and a partition. To stress the similarities, let

us express equation (11) in the following equivalent way, closer to the better known

expression for the Shapley value :

pi (g, P, v) =


{S}Pmod,
SN(g,P )

i/S


v̂

gSi, {S  i}


 v̂


gS, {S}

 |S|!(n |S| 1)!
n!


. (12)

From this expression, we can more clearly see how the worth of an ecient coalitional

network is allocated among players in a marginalistic Shapley-style fashion.

Example 1. Take N = {1, 2, 3}. Let v({12}, {12|3}) = 1, v({23}, {1|23}) = 1,

v({12, 23}, {123}) = w  1 and v(g, P ) = 0 for all other coalitional networks.14

We also define v(g, P ) = w for all (g, P ) such that g has at least two links and

P = P and v(g, P ) = 1 for all (g, P ) such that g has one link and P contains one

two-element coalition. Then, the link- and player-based flexible coalitional network

allocation rules provide dierent allocations if the coalitional network that realizes

is {{12, 23}, P}

a

{{12, 23}, P}, v


=
w
4
,
w

2
,
w

4



p

{{12, 23}, P}, v


=


w

3

1

6
,
w

3
+
1

3
,
w

3

1

6



a

{{12, 23}, P}, v


=
w
3
,
w

3
,
w

3



p

{{12, 23}, P}, v


=
w
3
,
w

3
,
w

3



Under the game v, both allocation rules reflect correctly the importance of player

2 which is more “central” than players 1 and 3. Player 2 participates to both the

one link networks and in both two-element coalitions in the partitions generating a

value of 1. The presence of player 2 is also necessary in the structure achieving a

value of w. The importance of player 2 is thus reflected under both allocation rules

and the dierence between the shares she receives pertains to whether we stress the

role of the atoms to which player 2 belongs (player 2 participates to twice more

14A partition P = {{a, b}, {c}} is denoted {ab|c} for conveniance.
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important atoms than player 1 or 3, and receives thus twice their shares), or if we

stress directly the role played by player 2 under the player-based allocation rule.

Under the game v, all players receive the same share which is consistent with the

equity principle fulfilled by the rules.

5 Relationship with existing allocation rules

The allocation rules presented in this paper are generalizations of the Jackson (2005)

player-based and link-based flexible allocation rules for network games to coalitional

network games in which players may also form coalitions. The fact that we opt

for a presentation in terms of Möbius transforms is mainly to avoid cumbersome

notation or lengthy expression and should not confuse the reader to remark the strict

equivalence of the Jackson allocation rules and the ones presented in this paper when

coalition structures play no role, i.e. if v(g, P ) = v(g, P ) for all (g, P )  G  P,

(g, P )  G  P, P = P . In this case, partitions don’t aect the value and the

coalitional network game v is equivalent to a value function for network games and

our player-based and atom-based flexible allocation rules for coalitional network

games correspond to the player-based and link-based flexible allocation rules for

network games introduced by Jackson (2005).

We could also relate the player-based flexible coalitional network allocation rule

p with the classical Shapley value for cooperative game (with characteristic func-

tion). A cooperative game is a function c : 2N  R that assigns a worth c(S) to each

possible coalition S  2N . The set of possible cooperative games is denoted C. A

cooperative game c is additive if c(S T ) = c(S)+ c(T ) for all S, T  N , S T = .

The set of additive cooperative games is denoted C. A solution (or allocation rule)

is a map  : C  Rn. The Shapley value S is a solution that satisfies Eciency,

Dummy Player, Symmetry and Linearity.

Eciency c(N) =


iN 
S
i (c).

Dummy Player If for all S  N \ i we have that c(S  i) = c(S), then Si (c) = 0.

Symmetry S(c) = S(c) with  a bijection from N to N .

Linearity S(c+ cS(c) + (c),   R, c, c  C.
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The Shapley value S is an additive cooperative game, i.e.



iST

Si (c) =


iS

Si (c) +


iT

Si (c)

for all c  C, S, T  2N , S  T = . This amounts to write that for all c  C :

S(c)  C and S is thus a projection from C to C. For all c  C,S(c) = c.15

By Eciency, the Shapley value is the orthogonal projection to the manifold C =

{c  C |


iN c({i}) = c(N)}. It can be proved that Eciency and Dummy Player

together imply that the Shapley value is a projection.

Proposition 7. If a solution  for cooperative games satisfies Eciency and Dummy

Player, then it is a projection.

c  C,(c) = c.

The set of additive cooperative games appears to be the subspace consisting of

fixed points for solutions. One could apply this property (that a solution for an

additive game should be this game itself) to allocation rules for coalitional network

games and identify the set of fixed point games that are trivially their own solutions.

We can define an allocation rule  : V  V, with V the set of additive coalitional

network games. A coalitional network game v is additive if v(g  g, P  P ) =

v(g, P )+v(g, P ) for all (g, P ), (g, P )  GP such that gg =  and P P  = P.

However, due to the semimodularity of (G P ,), an additive coalitional network

game would convey the same value to each and every element of the lattice.

Proposition 8. If a coalitional network game v is additive, then

v(g, P ) = v(g, P ) for all (g, P ), (g, P )  GP, (g, P ) = (g, P ).

In our setting, additive games are not the set of games whose trivial allocation

rule is the game itself, due to the semimodularity structure of (G  P,). The

relationship of our player-based flexible allocation rule to the Shapley value for

coalitional games is direct, provided two dierent adaptations. The first one relates

to our flexible approach. The complete or top structure being not necessarily the

most ecient one, we have to deal with monotonic covers of games, which are

identical to the original game when this one is monotonic. Hence the relationship

15This property is also called the inessential game property.
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to Shapley value bares on monotonic games. The second adaptation needed is

simply the expression of the Shapley value in terms of its Möbius transform or

Harsanyi dividends : Si (c) =


S:iS 
S(c)/|S| with S(c) the Harsanyi dividend

defined recursively by S(c) = 0 if S =  and S(c) = c(S)


TS 
T (c), S = .

Dividends are shared equally across the members of the coalition, which is exactly

the case for our player-based flexible allocation rule. Hence the correspondence is

clear.

Appendix
Proof of Proposition 1.

We have r(g, P) = n n+ 0 = 0 and for any (g, P )  A(G P) : r(g, P ) = 1

since r(l, P) = n n+ 1 and r(g, Qij) = n (n 1) + 0.

Assume that the proposition holds for (g, P ) = (gN , {N}), i.e. r(gN , {N}) =

n  1 + n(n  1)/2. The elements (g, P ) covered by (gN , {N}) have one of the

following two forms : (gN \ l, {N}) or (gN , {N \ {i, j}, {i, j}}). In the first case,

r(gN \ l, {N}) = n  1 + n(n  1)/2  1 = r(gN , {N})  1 and in the second case

r(gN , {N \ {i, j}, {i, j}}) = n 2+ n(n 1)/2 = r(gN , {N}) 1. 

Proof of Proposition 2.

From Proposition 1 we have that (GP ,) is ranked by r(g, P ) = n |P |+ |g|

for all (g, P )  G P. Take any (g, P ), (g, P )  (G P). Then,

r(g, P ) + r(g, P )  r(g  g, P  P ) + r(g  g, P  P )

since |g| + |g| = |g  g| + |g  g| and 2n  |P |  |P |  2n  |P  P |  |P  P |

because of the semimodularity of the partition lattice. 

Proof of Theorem 1.

First we show that the atom-based flexible coalitional network allocation rule

defined by (10) satisfies all the properties. From (9) we have



(g,P )

g,P (v̂) = v̂(gN , {N}) = max(g,P )GPv(g, P )

and thus



iN

i(g, P, v) = v̂(g
N , {N})
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since each atom consists of two players.

The atom-based flexible coalitional network allocation rule satisfies weak-linearity.

Consider any monotonic coalitional network games v and v in V, and scalars a  0

and b  0. Then av + bv is monotonic and coincides with its monotonic cover.

Hence,

i(g
N , {N}, av + bv) =



(g,P )GP



(ga,Pa)A(g,P )
i(ga,Pa)

g,P (av̂ + bv̂)

2 |A(g, P )|

=


(g,P )GP



(ga,Pa)A(g,P )
i(ga,Pa)

ag,P (v̂) + bg,P (v̂)

2 |A(g, P )|

=a(gN , {N}, v) + b(gN , {N}, v).

Where the second equality holds from (9). By a similar argument if av  bv is

monotonic, we have that i(av  bv) = ai(v) bi(v).

Equal treatment of vital atoms is easily checked to hold in (10).

Second, we verify that any allocation rule satisfying equal treatment of atoms,

weak linearity, and flexible coalitional network must coincide with the atom-based

flexible coalitional network allocation rule  on ecient coalitional networks. Let

v  V and  : G  P  V  RN an allocation rule satisfying the claimed prop-

erties. Given that  is a flexible coalitional network allocation rule implies that

(g, P, v) = (gN , {N}, v̂) on ecient (g, P ) relative to v, and so it is enough to

show that (gN , {N}, v̂) is uniquely determined on an ecient coalitional network.

By Corollary 1 we have that

v̂ =


(g,P )GP

g,P (v̂) ug,P

Let G =

(g, P ) | g,P < 0


and G+ = (G P) \G. Hence,

v̂ =


(g,P )G+
g,P (v̂) ug,P 



(g,P )G

g,P (v̂)
 ug,P .

By weak linearity, we have that 

gN , {N}, v̂


is equal to





gN , {N},


(g,P )G+
g,P (v̂)ug,P



 



gN , {N},


(g,P )G

g,P (v̂)
ug,P




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By weak linearity again, we obtain



gN , {N}, v̂


=



(g,P )GP

g,P (v̂)(gN , {N}, ug,P ).

Since  is a flexible coalitional network allocation rule then (gN , {N}) and (g, P )

take both the same value under the monotonic cover of ug,P for each (g, P )  GP.

Finally, by equal treatment of vital atoms, the value is uniquely determined and thus,

 = . 

Proof of Proposition 7.

We show by induction on the number of non-dummy players that for all c  C,

i(c) = c({i}) for all i  N and  satisfying the properties Eciency and Dummy

Player. Assume that the number of non-dummy players is 0. Then, by the Dummy

Player property we have 0 = Si (c) = c({i}) for all i  N . Assume now that the num-

ber of non-dummy players is 1. By the property Dummy Player, 0 = Si (c) = c({i})

for each dummy player i and by the property Eciency Sj (c) = c(N) = c({j})

for the non-dummy player j. Assume now that the number of non-dummy play-

ers is 1 < k < n. By the property Dummy Player, 0 = Si (c) = c({i}) for

each dummy player i. If Sj (c) = c({j}) for k  1 non-dummy players, then by

the property Eciency, c(N) =


jK 
S
j (c) =

k1
j=1 c({j} + c({k} where K is

the set of non-dummy players. Hence, k(c) = c({k} by the induction hypothe-

sis. 

Proof of Proposition 8.

We first show the following lemma that applies to general semimodular lattices.

Lemma 1. Let (L,,) be a lattice and v : L  R be an additive function such

that v(x) + v(y) = v(x  y) + v(x  y) for all x, y  L. If (L,,) is semimodular,

then v is constant.

Proof. If L is semimodular with cardinality at least 5, it must contain 5 elements

a, b, c, e, f  L such that

a  b = b  c = e

a  b = b  c = f

a < c.
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Then for every t  [a, c], an additive function v has to satisfy

v(t) + v(b) = v(t  b) + v(t  b) = v(f) + v(e).

Hence v(t) is constant on the interval [a, c]

Since the lattice of coalitional networks is semimodular, any additive function

defined on it has to be constant by the previous lemma. 
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