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Abstract

How does better exogenous information affect costly signal-

ing? A game of stochastic costly signaling in the presence of

exogenous imperfect information is shown to have a unique equi-

librium. More accurate exogenous information either decreases

or increases equilibrium signaling, depending on whether prior

beliefs are respectively above or below a unique threshold level.

More accurate exogenous information can induce a less informa-

tive signaling equilibrium, and can result in a lower expected

accuracy of the uninformed party’s equilibrium beliefs.
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1 Introduction

Costly signaling models explain ostentatious waste as a way of communi-

cating private information that otherwise cannot be credibly communi-
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cated, and have found numerous applications in recent decades.1 Policy

makers and economists have since long deplored the welfare losses due to

conspicuous waste, and occasionally applauded the welfare gains asso-

ciated with the resulting information transfer (e.g. by solving Akerlof’s

(1970) market for lemons problem).2 But what happens to ostentatious

waste if better information is exogenously provided to the uninformed

parties (the ‘receiver’)? A common (but false) intuition is that better in-

formation about the subject of the informed party’s (the ‘sender’) private

information is generally an effi cient way of reducing wasteful signaling.

Veblen (1899(1994), pp. 53-55) observed that "Conspicuous con-

sumption claims a relatively larger portion of the income of the urban

than of the rural population, and the claim is also more imperative.

[...] So it comes, for instance, that the American farmer and his wife

and daughters are notoriously less modish in their dress, as well as less

urbane in their manners, than the city artisan’s family with equal in-

come. [...] And in the struggle to outdo one another the city population

push their normal standard of conspicuous consumption to a higher point

[...]." Veblen suggested the availability of exogenous information as an

explanation. "The means of communication and the mobility of the pop-

ulation now expose the individual to the observation of many persons

who have no other means of judging of his reputability than the display

of goods [...]. One’s neighbors, mechanically speaking, often are socially

not one’s neighbors, or even acquaintances; and still their transient good

opinion has a high degree of utility." If the exogenous information is per-

fect, Veblen’s intuition is trivially true: if exogenous information resolves

the information asymmetry, one expects no costly signaling. But how

does equilibrium signaling depend on the accuracy of exogenous informa-

tion when both signaling and the exogenous information are imperfect?

And what happens to the expected accuracy of receiver’s equilibrium

1See e.g. Riley (2001) for a survey of the economic literature. Examples include
labor economics (Spence, 1973), advertising (Milgrom and Roberts, 1986), finance
(Myers and Majluf 1984, John and Williams, 1985, Bhattacharya 1979), animal be-
havior and morphology (Zahavi, 1975, Grafen, 1990a,b) and consumption (Frank,
1999; or Truyts (2010) for a recent survey).

2See Truyts (2012) and the references therein for a discussion of various policies
proposed for reducing the welfare costs of signaling.
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beliefs, if exogenous information becomes more accurate?

Real world costly signals are usually imperfect information sources,

and the receiver usually has other information (beyond the sender’s con-

trol) about the subject of asymmetric information. In a job market

example, an academic degree can imperfectly reflect a job candidate’s

productivity because of luck with examination questions, a bad day dur-

ing the exams or an employers’hardship to judge a program’s diffi culty.

Moreover, employers often observe additional information: they often

use psychometric tests during recruitment or learn about the candidate

from social relations. An important distinction is whether the sender

knows the actual realization of exogenous imperfect information when

choosing a signaling strategy. If she does (e.g. ethnic markers in job

market signaling), more accurate exogenous information alters the prior

beliefs in equilibrium. Such marginal changes in prior beliefs were stud-

ied in e.g. Matthews and Mirman (1983) and Jeitschko and Normann

(2012). This article’s focus is on cases in which the sender knows the

accuracy of exogenous information, but not its realization (e.g. psycho-

metric tests during recruitment).

This article develops a stochastic signaling model with exogenous

imperfect information, and thus relates to a small literature on stochas-

tic costly signaling. Matthews and Mirman (1983) introduced noise in

terms of demand shocks in a limit pricing model and demonstrate a

number of advantages of stochastic signaling games: a limited number

of equilibria, smooth comparative statics and a solution that depends

on prior beliefs.3 Carlsson and Dasgupta (1997) develop vanishing noise

as an equilibrium selection criterion for non-stochastic signaling games.

De Haan et al. (2011) and Jeitschko and Normann (2012) test the im-

plications of stochastic signaling models experimentally.

In what follows, a sender has binary private information and chooses

a signal from the real line. The receiver observes this signal distorted

3Note that these three points are major problems of non-stochastic signaling mod-
els (e.g. Spence, 1973, Riley, 1979). See Mailath et al. (1993) for a critique of this
last feature of non-stochastic costly signaling games.
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by random noise, and also sees a binary exogenous imperfect signal. Af-

ter observing both pieces of information, the receiver chooses an action

from a continuum. Next to exogenous information, this constitutes a

second key difference to the models of Matthews and Mirman (1983),

de Haan et al. (2011) and Jeitschko and Normann (2012), who assume

that the receiver makes a binary choice. Under some mild regularity

conditions, the existence and uniqueness of a sequential equilibrium is

established for this setting by means of an elementary application of the

Poincaré-Hopf index theorem. In equilibrium, both sender types engage

in signaling: the high type tries to distinguish herself more, while the

low type tries to restore the receiver’s confusion. The effect of more

accurate exogenous information on the unique signaling equilibrium is

characterized in two ways. First, equilibrium signaling is shown to be

non-monotonic with respect to the accuracy of exogenous information. A

threshold level of prior beliefs separates the cases where costly signaling

increases or decreases with more accurate exogenous information. An

interval of suffi ciently low prior beliefs generically exists at which more

accurate exogenous information makes both sender types signal more.

Second, more accurate exogenous information can result in a lower ex-

pected accuracy of receiver’s equilibrium beliefs, due to the changes it

induces in equilibrium signaling.

The main difference to earlier work on costly signaling in the pres-

ence of exogenous information lies in the imperfect observation of sig-

nals. This implies a smooth dependence of equilibrium signaling on the

accuracy of exogenous information, rather than a discrete shift from sep-

arating to (semi-) pooling equilibria. For non-stochastic signaling with

exogenous information, Feltovitch et al. (2002) show the existence of a

non-monotonic signaling equilibrium: middle types signal while the high

and low types pool at zero signaling, if high types can suffi ciently rely

on exogenous information to separate them from the low types. Daley

and Green (2012) show that separating equilibria do not survive the

common stability-based equilibrium refinements (e.g. D1) in the pres-

ence of suffi ciently informative exogenous imperfect information. Frank

(1985) studies status consumption as an imperfect signal of ability in the
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presence of exogenous imperfect information, and concludes that if unin-

formed parties aggregate both information sources linearly by means of

a minimum variance unbiased estimator, "the ability-signaling rationale

[...] suggests that incentives to distort consumption in favor of observable

goods will be inversely related to the amount and reliability of indepen-

dent information that exists concerning individual abilities".

In the context of costless signaling (as in Crawford and Sobel (1982)),

Chen (2012) shows the receiver’s payoff is non-monotonic in the accuracy

of exogenous information (i.e. it decreases discretely where the sender

shifts from full revelation to babbling), while Blume et al. (2007) and

Blume and Board (2009) introduce noise on the sender’s message and

show that such noise can be welfare enhancing.

Note that all models with exogenous information quoted above, as

well as Veblen’s observations, suggest that more accurate exogenous

information enables the receiver to distinguish more between different

sender types, and thus reduces the sender’s (need for) investments in

costly signaling.

This paper is structured as follows. The second section introduces the

formal setting and suggests some specific examples. The third section

characterizes equilibrium signaling in the presence of exogenous imper-

fect information. The final section concludes. All proofs are collected in

a mathematical appendix.

2 Setting

A player, the sender, has private information about a quality parameter

θ (‘her type’), which is either high θH or low θL. She cares about the

beliefs of an uninformed player, the receiver, about θ. The receiver has

prior belief p ∈ (0, 1) that θ is high, and deems θ low with probability

1 − p. The sender sends a costly signal s ∈ R̄+. As in Carlsson and

Dasgupta (1997), the receiver observes this signal imperfectly as y, the

sum of s and random noise ε:

y = s+ ε. (1)
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Noise term ε is independently distributed according to a density function

ϕ, with E (ε) = 0 and a variance which is finite and bounded away from

zero. Assume that ϕ satisfies the following properties.

Condition 1 Let ϕ be a C2 probability density function which

1. (symmetry) is symmetric around the mean,

2. (strict monotone likelihood ratio property - MLR) is such that

the ratio ϕ(ε|µ)
ϕ(ε|µ′) strictly increases with ε everywhere for two means

µ > µ′,4

3. (support) has full support on R.

Prominent examples of distributions satisfying condition 1 are the

normal and logistic distributions. Continuous differentiability, full sup-

port and MLR are in line with Matthews and Mirman (1983), Carlsson

and Dasgupta (1997) and de Haan et al. (2011). Full support on R im-
plies that all y have an equilibrium interpretation, such that specifying

out-of-equilibrium beliefs and the resulting multitude of equilibria is no

cause of concern for this model.

The receiver observes two pieces of imperfect information about θ:

distorted signal y and exogenous imperfect information ω, the distri-

bution of which is independent of the sender’s signaling. Assume for

simplicity binary exogenous information

ω ∈ {L,H} ,

of which the accuracy is denoted q ∈
(

1
2
, 1
)
, such that q ≡ Pr

(
ω = H|θH

)
=

Pr
(
ω = L|θL

)
.

The sender’s preferences are represented by a utility function

u (s, y, ω|θ, β) = v (s|θ) + κβ (y, ω) (2)

4Note that this is equivalent to log-supermodularity of ϕ w.r.t. ε and µ, i.e. that
for ε > ε′ and µ > µ′: ϕ (ε|µ)ϕ (ε′|µ′) > ϕ (ε′|µ)ϕ (ε|µ′) . See a.o. Karlin and Rubin
(1956) or Athey (2002).
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in which β (y, ω) represents the receiver’s posterior ‘believed’probability

of the sender being a high type (her ‘beliefs’), given the pair of imper-

fect signals (y, ω) . Parameter κ > 0 represents the sender’s constant

marginal utility of β. I restrict the utility function as follows.

Condition 2 Let v be C2 with v1 (0|.) > 0, v12 (.) > 0 and v11 (.) < η

for an η < 0.

Condition 2 imposes a standard Spence-Mirrlees single crossing con-

dition, and ensures that both sender types have a unique utility maxi-

mizing choice of s in the absence of signaling concerns, denoted s̄H and

s̄L, such that s̄H > s̄L > 0.5 The utility function in (2) departs from

the utility function in Matthews and Mirman (1983), Carlsson and Das-

gupta (1997) and Jeitschko and Normann (2012) in two respects. First,

it takes the receiver’s beliefs directly as an argument. This either rep-

resents a problem in which the sender cares about the receiver’s beliefs

directly, or is shorthand notation by omitting an explicit analysis of the

receiver’s optimal choice of action in function of her beliefs. The re-

ceiver’s choice is easily introduced explicitly, as illustrated at the end

of this section. Second, (2) assumes that the sender’s utility is strictly

increasing with β, which reflects that the receiver’s choice set is a contin-

uum.6 The fact that (2) is linear in β and additively separable in β and v

may seem restrictive at first sight. But other than ensuring tractability,

this formulation also aims to focus on the interaction between imperfect

signaling and imperfect exogenous information by maximally separating

the uncertainty associated with noisy information transmission from at-

titudes towards risk and other particularities in the utility functions of

the sender and receiver.
5The assumption that the myopic choices of both sender types differ and are

unique follows e.g. Mailath (1987), Matthews and Mirman (1983) and Jeitschko and
Normann (2012), and is not crucial for the results and intuitions developped below.
Indeed, a pure costly signaling game with linear signaling costs, in which both sender
types choose sL = sH = 0 in the myopic optimum, is analytically more involved, but
produces similar results.

6In the stochastic signaling models listed above, the receiver has a binary choice,
which results in combination with MLR in a cut-offstrategy as best reply: the receiver
chooses the action most preferred by the sender if y ≥ y∗, with y∗ an optimally chosen
threshold.

7



The sender maximizes expected utility, considering all possible real-

izations of ε and ω for given beliefs β:

Eu (s, y, ω|θ, β) = v (s|θ) + κB̄ (s|θ, β) , (3)

with

B̄ (s|θ, β) ≡
∑

ω′∈{L,H}

∫
Pr (ω = ω′|θ) β (y, ω′)ϕ(y|s)dy.

We consider pure strategy sequential equilibria (S.E.) of the stochas-

tic signaling game.7 Let sL and sH denote respectively the (pure) sig-

naling strategy of the low and high sender type. The receiver’s beliefs

are consistent with pure strategy profile
(
sL, sH

)
if they satisfy Bayes’

rule for each (y, ω):

β (y,H) =
pqϕ

(
y|sH

)
(1− q) (1− p)ϕ (y|sL) + pqϕ (y|sH)

=

(
1 +

1− q
q

1− p
p

ϕ(y|sL)

ϕ (y|sH)

)−1

(4)

β (y, L) =
p (1− q)ϕ

(
y|sH

)
(1− p) qϕ (y|sL) + pqϕ (y|sH)

=

(
1 +

q

1− q
1− p
p

ϕ(y|sL)

ϕ(y|sH)

)−1

(5)

Note in (4) and (5) that MLR imposes consistent posterior beliefs β (y, ω)

to be strictly monotonic with y if sL 6= sH .

If q = 1
2
and V ar (ε) = 0, this game reduces to a standard costly

signaling game with quasilinear preferences and separation in the myopic

optimum. A number of textbook examples in the literature are easily

adapted to this setting of stochastic signaling with imperfect exogenous

7A Sequential Equilibrium (S.E.) is described by a pair of strategy profile and
posterior beliefs

((
ŝL (q) , ŝH (q)

)
, β
)
, such that:

1.
(
ŝL (q) , ŝH (q)

)
maximizes expected utility (3) of each type given β

2. Beliefs β (y, ω) are Bayesian consistent with equilibrium strategies
(
ŝL (q) , ŝH (q)

)
as in (4) and (5) .
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information.

Example 1 (Status Signaling) The sender wishes to signal her in-
come θ to other consumers because she cares directly about their beliefs

and esteem. The sender divides her income between invisible rest con-

sumption and visible status consumption s, such that her utility is repre-

sented by vSS (θ − s, s)+κβ (y, ω) . The ‘intrinsic’utility of consumption,

vSS, is strictly increasing in both arguments and strictly concave. Status

consumption is an imperfect signal because status goods can be bought

at a discount price, second hand or can be cheap imitations, and be-

cause there are far too many visible consumption goods to keep track of

prices. On the other hand, one can typically rely on gossip for additional

information ω about a consumer’s reputability.

Example 2 (Job Market Signaling) As in Spence (1973), the sender
is a job candidate of high or low productivity θ. She invests in educa-

tion s at cost − (s− θ)2 . Hence, job candidates intrinsically enjoy some

education up to θ for its own sake.8 The receiver is an employer in a

competitive job market, who sees a noisy educational score y and an ad-

ditional imperfect test result ω and offers in equilibrium a contract with

wage θL + β (y , ω)
(
θH − θL

)
. The expected utility of a job candidate is

then θL−(s− θ)2+
(
θH − θL

)
B̄ (s|θ, β) . Education is an imperfect signal

because the sender may have been lucky with exam questions or have had

a bad day during the exams, or an employer may have diffi culty judging

the diffi culty of a degree. On the other hand, the employer typically has

extra psychometric tests at her disposal during the recruitment stage, or

can ask social relations whether they know more about the job candidate.

Note that the wage does generically not equal the true productivity of

the sender in this stochastic job market signaling game. The return to

education thus only concerns a period needed by employers to learn about

the sender’s true productivity and to alter a possibly rigid contract.

Example 3 (Advertising) As in Milgrom and Roberts (1986) and Hertzen-
dorf (1993), the sender is a monopolist, selling a new product of high or

8As stressed above, this assumption is not crucial for our main results, but sim-
plifies the analysis considerably.
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low quality θ to a continuum of consumers, distributed uniformly on

[0, 1] . For simplicity, we take the commodity price as exogenously fixed.

Before launching the new product, the sender can invest in advertising

s at strictly convex costs −vAD (s|θ) in a first period.9 Advertising is

an imperfect signal because consumers typically fail to observe the total

number of advertisements bought, ignore their costs and have diffi culty

comparing the importance of these advertising costs to the size of the firm

and market. They can often also rely on product tests in magazines or

discussions on the internet. After observing both imperfect signals (y, ω) ,

consumers decide whether or not to buy the product. Consumers buy the

product if they deem the probability of a high quality product higher than

their position on [0, 1] .10 Only consumers who buy the product observe

the true quality θ, and can buy the product again in a second period (they

all do if θ is high). If each consumer draws an independent y and ω, and

profits per unit sold are πθ (with 2πH > πL), then profits of a high and

low quality monopolist are respectively −vAD
(
s|θH

)
+ 2πHB̄

(
s|θH , β

)
and −vAD

(
s|θL

)
+ πLB̄

(
s|θL, β

)
, such that the sender’s preferences are

represented by B̄
(
s|θH , β

)
− vAD(s|θH)

2πH
and B̄

(
s|θL, β

)
− vAD(s|θL)

πL
.

3 Equilibrium analysis

Before presenting the main results, this section first highlights a few

simple features of the stochastic signaling game under consideration.

First, by condition 1, the receiver’s consistent beliefs are never degener-

ate for finite y and s, such that the receiver’s best choice is generically

suboptimal with respect to the sender’s true type. In expectation, the

weighted average of the receiver’s consistent beliefs equals the prior be-

lief, as stated by the following lemma.

9Note that by condition 2, vAD1 (0|.) > 0. This can reflect other advantages of
advertising (informing consumers of the existence of the product, entry deterrence...)
as summarized in Bagwell (2007).
10If a risk neutral consumer’s willingness to pay for a high and low quality product is

resp. λH > λL > 0, she buys at price γ if β (y, ω) 2
(
λH − γ

)
+(1− β (y))

(
λL − γ

)
≥

0, i.e. if β (y, ω) ≥ γ−λL

(λH−γ)+(λH−λL)
≡ ζ.We thus assume ζ uniformly distributed on

[0, 1]. Consumers with ζ negative or greater than 1 never and always buy, respectively.
See also Milgrom and Roberts (1986) and Hertzendorf (1993).
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Lemma 1 If the receiver’s beliefs β are consistent with strategies
(
sL, sH

)
,

1. the stochastic signaling game is zero sum in B:

pB̄
(
sH |θH , β

)
+ (1− p) B̄

(
sL|θL, β

)
= p, (6)

2. B̄ depends only on ∆ ≡ sH − sL and not on actual levels of s.

Using lemma 1, it will be convenient to define the receiver’s expected

beliefs about a high sender type in terms of the difference in signals ∆

and for beliefs consistent with a strategy profile (0,∆), such that

B (∆|p, q) ≡
∫ (

qβ̃ (y,H|p, q) + (1− q) β̃ (y, L|p, q)
)
ϕ(y|∆)dy, (7)

with

β̃ (y,H|p, q) =

(
1 +

1− q
q

1− p
p

ϕ(y|0)

ϕ(y|∆)

)−1

(8)

and

β̃ (y, L|p, q) =

(
1 +

q

1− q
1− p
p

ϕ(y|0)

ϕ(y|∆)

)−1

. (9)

Note then that B̄
(

∆|θH , β̃
)

= B (∆|p, q) , while by (6)

B̄
(

0|θL, β̃
)

=
p

1− p (1−B (∆|p, q)) . (10)

Let B′ (∆|p, q) denote the marginal effect of ∆ on B whilst keeping

beliefs fixed (i.e. consistent with (0,∆) , such that

B′ (∆|p, q) ≡
∫ (

qβ̃ (y,H|p, q) + (1− q) β̃ (y, L|p, q)
)
ϕ2 (y|∆) dy,

and let B1 (∆|p, q) denote the usual first order derivative to ∆. Unless

potentially confusing, the two last arguments p and q are omitted from

B, B′ and β̃ to economize on notation. The next lemma shows that B

increases with ∆.

Lemma 2 If ϕ satisfies condition 1, then ∆ > 0 implies B′ (∆) > 0

and B1 (∆) > 0, while B′ (0) = 0.
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As such, the stochastic signaling game can be understood as an arms

race in which both sender types waste means to secure for themselves

a larger share of a given resource of fixed size: the receiver’s expected

consistent beliefs. The division of this resource depends only on the

difference in signaling efforts ∆. The high sender type can create more

distinction in expectation by increasing sH , while the low sender type

can increase signaling sL to confuse the receiver more and undo the

expected distinction established by the high type. If both sender types

signal, then an amount min
{
sL − s̄L, sH − s̄H

}
is wasted, in the sense

that exogenously reducing the signaling efforts of both sender types by

this much (and adapting beliefs accordingly) improves the welfare of

both sender types without affecting the information transferred to the

receiver in expectation. Note also that B (∆), the expectation of the

receiver’s believed probability that the high sender type is a high type,

measures the expected accuracy of receiver’s consistent beliefs. If the

receiver’s choice of action is strictly monotonic in β, then a higher B

brings the receiver’s choice on average closer to her optimal choice under

full information about θ.

Equilibrium signaling strategies
(
ŝL (q) , ŝH (q)

)
are maximizing the

sender’s expected utility given the receiver’s beliefs, which are in turn

consistent with these strategies. Substituting (7) and (10) in the sender’s

problem (3) and differentiating to s (while taking beliefs as given), one

obtains two standard first order conditions, which equate the marginal

costs and benefits of signaling:

v1

(
ŝH (q) |θH

)
+ κB′

(
∆̂ (q)

)
= 0 (11)

and

v1

(
ŝL (q) |θL

)
+ κ

p

1− pB
′
(

∆̂ (q)
)

= 0. (12)

Equations (11) and (12) characterize an equilibrium if the sender’s prob-

lem is strictly concave for all strategy profiles. An extensive character-

ization of concavity in terms of the model’s primitives is provided in

appendix A.3, but in essence this condition requires that v is suffi ciently
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concave and κ is not too large, as B can be either concave or convex. The

following proposition shows that if this condition is satisfied, a unique

S.E. exists. In this equilibrium, the high sender type signals strictly

more than the low type. As in Jeitschko and Normann (2012) and un-

like in non-stochastic costly signaling games in line with Spence (1973),

signaling causes distortion at the top and bottom. The low sender type

wastes means in equilibrium to confuse the receiver and undo distinction

with the high sender type.

Proposition 1 If ϕ and v satisfy respectively conditions 1 and 2 and
if the sender’s problem is strictly concave, then a unique S.E. in pure

strategies exists, in which equilibrium strategies
(
ŝH (q) , ŝL (q)

)
are such

that ∆̂ (q) > 0, ŝH (q) > s̄H and ŝL (q) > s̄L.

The existence and uniqueness of such an S.E. was shown byMatthews

and Mirman (1983)) for stochastic signaling games in which the receiver

faces a binary choice set. In the present setting, the proof of proposition

1 establishes first that for any equilibrium, both sender types signal

more than their myopic optimum, i.e. ŝH (q) > s̄H and ŝL (q) > s̄L and

that in any equilibrium ∆̂ (q) ≥ 0. The next step demonstrates that

if the sender’s problem is strictly concave for all strategy profiles, one

can construct for each sender type a continuous function similar to best

response functions in e.g. Cournot games, and that an S.E. is constituted

by a crossing of these functions. For the high sender type, such a function

indicates for each level of sL the unique level of sH which satisfies (11)

for consistent beliefs (8) and (9) if this implies ∆, or sH = sL if the

constraint ∆ ≥ 0 is binding (such that the marginal utility in (11) is

strictly negative for all sH ≥ sL). This function is strictly above s̄H for

sL = s̄L, and equals sL for sL suffi ciently high. A similar function for the

low sender type is shown to take only values in
(
s̄L, sH

)
. Note that this

implies that both functions cross at least once, or that an S.E. exists.

The uniqueness of such crossing is shown by an elementary application

of the Poincaré-Hopf index theorem.

How does more accurate exogenous information affect equilibrium

signaling? I impose an additional technical condition, which bounds the
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accuracy of exogenous information ω from above.

Condition 3 Let q < 2+
√

3
4
∼= 0.933.

The following theorem then shows that equilibrium signaling in-

creases with the accuracy of exogenous information if prior beliefs are

below a threshold.

Theorem 1 If ϕ, v and q satisfy, respectively, conditions 1, 2 and 3
and if the sender’s problem is strictly concave, then a unique threshold

p̄ (q) exists such that:

if p < p̄ (q) , then ŝH1 (q) > 0 and ŝL1 (q) > 0,

if p > p̄ (q) , then ŝH1 (q) < 0 and ŝL1 (q) < 0.

Moreover, p̄ (q) is a continuous function of q.

Hence, an interval of suffi ciently low prior beliefs generically exists

at which the equilibrium signaling of both sender types increases with

the accuracy of exogenous information. Figure 1 displays a numerical

solution of threshold p̄ (q) , for ϕ the normal density function at σ = 2

and for three values of ∆. In an S.E. below p̄ (q) , more accurate exoge-

nous information induces both sender types to signal more, while the

opposite is the case above p̄ (q).

To understand theorem 1, note first that marginal changes in q affect

the first order conditions in (11) and (12) only through B′ (∆) and in a

very similar way, such that an increase in B′ (∆) necessarily increases the

equilibrium signaling efforts of both sender types. If a marginal increase

in accuracy q increases B′ (∆) , both sender types are encouraged to

signal more: the high type to establish more separation, the low type

to undo more separation. A marginal increase in accuracy q affects

B′ (∆) in two ways: by changing the probability density of exogenous

signal ω and by changing the receiver’s equilibrium beliefs:

B′3 (∆|p, q) =

∫ [
β̃ (y,H|p, q)− β̃ (y, L|p, q)

]
ϕ2 (y|∆) dy (13)

+

∫ [
qβ̃4 (y,H|p, q) + (1− q) β̃4 (y, L|p, q)

]
ϕ2 (y|∆) dy.
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Figure 1: p̄ (q) for ϕ the normal density function with σ = 2 at ∆ equal
to 1, 2 and 3.

In general, the sensitivity of B to ∆ is greater if the receiver is more

likely to see imperfect signals (y, ω) which she attributes to a high type

with intermediate probability, while this effect is relatively small if the

most probable imperfect imperfect signals come almost certainly from

one sender type. The first integral in (13) is positive for p and ∆ suffi -

ciently low. In this case, for most y with a nontrivial probability mass

under ϕ (y|∆) , the receiver’s equilibrium beliefs are low if ω = L and

(more) intermediate if ω = H, such that drawing ω = H more often en-

hances the marginal effect of ∆. By the same reasoning, the first effect is

negative for high p or ∆. The change in the receiver’s equilibrium beliefs

is represented in the second integral in (13) , and resembles the effect of

an increase in prior beliefs for ω = H and decrease in p if ω = L. For

ω = H, the marginal effect of ∆ increases for suffi ciently low p or ∆, and

decreases for suffi ciently high p or ∆. If ω = L, the opposite is the case.

Bringing these partial effects together, theorem 1 states that a threshold

p̄ (q) exists, such that the equilibrium signaling increases with q for prior
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beliefs below p̄ (q) , and increases with q for p above p̄ (q) . Note that

a higher ∆ implies a lower p̄ (q) , as illustrated in figure 1: on average

more informative y implies that only for the most pessimistic receivers

more accurate exogenous information is needed to bring imperfect sig-

nals (y, ω) which the receiver attributes to a high sender type with an

intermediate or high probability more within reach of the sender. By

the same logic, p̄ (q) can be seen to decrease with q.

The proof of theorem 1 shows first that ŝH1 (q) and ŝL1 (q) have the

same sign as B′3 (∆|p, q) , then demonstrates that B′3 (∆|p, q) is a contin-
uous function of p, positive for p close to zero and negative for p close

to one, and finally establishes that B′3 (∆|p, q) strictly increases with
p whenever it is zero. The method of proof limits the validity of this

last step to q satisfying condition 3, although numerical solutions, as

illustrated in Figure 1, suggest that theorem 1 is also true for higher q.

Contrary to Veblen’s intuition and previous analyses, theorem 1

shows that more accurate exogenous information can push informed par-

ties to waste more on costly signaling. In example 3, a monopolist is

selling a new product, about which specialized media will publish prod-

uct tests to distinguish between a true innovation and a marketing scam.

If customers deem the chance of a true innovation suffi ciently low, then

an improved reliability of tests increases advertising by both true innova-

tors and imitators selling junk. More reliable tests more often convince

customers that a truly good product might indeed be a true innovation,

whereas without these tests, the advertising needed to convince enough

customers is prohibitively high. By distinguishing better between true

innovators and imitators, more reliable tests also raise the stakes for the

latter, who accordingly increase their equilibrium advertising to restore

confusion with true innovators.

For the status signaling example, the literature often considers the

benefits of information transfers at best as negligible in terms of welfare,

as they merely reallocate status (rank, prestige) among consumers while

status competition is a zero-sum game (see e.g. Frank 1985, 1999).

Therefore, this literature is more concerned with abating conspicuous

waste. Theorem 1 suggests that, contrary to some common intuitions,
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directly revealing information about individual qualities is not necessar-

ily effective in reducing aggregate waste if this revelation is imperfect. If

stronger social networks supply more accurate gossip information about

individual quality, then contrary to Veblen’s intuition stronger social

networks can make all consumers waste more on status signaling if p

is suffi ciently low, e.g. because a community has only few high income

consumers.

How does more accurate exogenous information help the receiver? A

greater accuracy of exogenous information ω affects the expected accu-

racy of the receiver’s equilibrium beliefs, as measured by B, in two ways:

directly by providing more accurate ω, and indirectly by changing the

average informativeness of equilibrium signaling:

Bq

(
∆̂ (q) |p, q

)
=B3

(
∆̂ (q) |p, q

)
︸ ︷︷ ︸+B1

(
∆̂ (q) |p, q

)
∆̂1 (q)︸ ︷︷ ︸ .

direct indirect

The direct effect B3

(
∆̂ (q) |p, q

)
is always positive: given ∆, more ac-

curate exogenous information improves the expected accuracy of the re-

ceiver’s equilibrium beliefs. For the indirect effect, B1

(
∆̂ (q) |p, q

)
> 0

by lemma 2: more separation in signaling helps the receiver in expecta-

tion to distinguish between sender types. Because a marginal increase

in q affects the first order conditions in (11) and (12) similarly through

B′
(

∆̂ (q)
)
, ŝH1 (q) and ŝL1 (q) have the same sign, but the relative size

of both effects depends on p and the relative rate at which the signaling

costs of both sender types increase at equilibrium. Define then

h
(
sL, sH

)
≡ (1− p) v11

(
sL|θL

)
− pv11

(
sH |θH

)
as the weighted difference in the rate at which the marginal utility costs

of signaling increase for either sender type. The next result shows that an

open interval of intermediate prior beliefs generically exists for which a

marginal increase in q induces a decrease in the average informativeness

of costly signaling, and that this decrease can come to dominate the
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direct information benefits of more accurate exogenous information.

Proposition 2 If the conditions of theorem 1 apply, then:

1. ∆̂1 (q) takes the opposite sign of ŝH1 (q) if h
(
ŝL, ŝH

)
> 0

and the same sign as ŝH1 (q) if h
(
ŝL, ŝH

)
< 0,

2. for ϕ the normal distribution, Bq

(
∆̂ (q) |p, q

)
< 0 for a non-empty

part of parameter space.

First, if the high type’s signaling costs increase suffi ciently more

than the low type’s, such that h
(
sL, sH

)
> 0, then the latter reacts

more to changes in signaling incentives (i.e. in B′ (∆)) than the for-

mer. In this case, more accurate exogenous information induces a less

informative signaling equilibrium (∆̂1 (q) < 0) if it enhances signaling

incentives (ŝH1 (q) > 0), and a more informative signaling equilibrium

if it diminishes equilibrium signaling. If p̂ denotes the prior beliefs at

which h
(
sL, sH

)
= 0, 11 then the first part of proposition 2 shows that

∆̂1 (q) < 0 only in an open interval between p̄ and p̂. Second, in this case

the negative indirect effect can outweigh the positive direct effect on the

expected accuracy of the receiver’s equilibrium beliefs.

In example 2, the receiver is an employer estimating a job candidate’s

productivity from her educational achievements and through psychome-

tric tests. Proposition 2 demonstrates that more accurate psychometric

tests can induce a less informative signaling equilibrium, and in some

case reduce the expected accuracy of the receiver’s equilibrium beliefs.

If psychometric tests become more widespread and reliable, if high pro-

ductivity candidates are suffi ciently prevalent and if low productivity

types’signaling costs increase steeply, then job candidates rely more on

psychometric tests and cut on education, and high productivity types re-

duce their education more than low types. In these cases, psychometric

tests can make the employer worse off, by increasing the average mis-

match between the wage and true productivity of her employees, even if

the implementation of such psychometric tests were costless.

11That is: p̂ =
v11(sL|θL)

v11(sL|θL)+v11(sH |θH)
.
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4 Conclusions

The ostentatious waste associated with costly signaling is generally un-

derstood as a necessary cost for a transfer of information which other-

wise cannot be credibly communicated. This paper developed a simple

model of stochastic costly signaling in the presence of exogenous imper-

fect information, and studied how more accurate exogenous information

affects the equilibrium signaling costs as well as the information even-

tually held in expectation by the receiver. Previous literature, mostly

focussing on non-stochastic signaling with imperfect exogenous informa-

tion, has found that better exogenous information can reduce equilibrium

signaling, by offering the receiver more means to distinguish between

the sender types. The present analysis demonstrates that more accurate

exogenous information can generically both decrease and increase equi-

librium costly signaling, depending on the receiver’s prior beliefs. The

intuition for the latter result is generic: for suffi ciently pessimistic prior

beliefs, the signaling levels required to generate with non-negligible like-

lihood noisy signals which the receiver attributes to a high sender type

with intermediate or high probability are prohibitively high. More accu-

rate exogenous information brings these noisy signals more likely within

reach of high sender types, thus increasing their marginal benefits of sig-

naling. More accurate exogenous information can also cause the receiver

to be less well informed in equilibrium. More accurate exogenous infor-

mation, although improving the receiver’s information as a direct effect

(i.e. for fixed signaling strategies), can by changing equilibrium signaling

induce a decrease in the average informativeness of the distorted equilib-

rium signals. The latter effect of more accurate exogenous information

can dominate the former, thus decreasing the expected accuracy of the

receiver’s equilibrium beliefs.

References

Akerlof, G. A. (1970): “The Market for "Lemons": Quality Un-

certainty and the Market Mechanism,”The Quarterly Journal of

Economics, 84(3), pp. 488—500.

19



Athey, S. (2002): “Monotone comparative statics under uncertainty,”

Quarterly Journal of Economics, 117(1), 187—223.

Bagwell, K. (2007): “The Economic Analysis of Advertising,” in

Handbook of Industrial Organization, ed. by M. Armstrong, and

R. Porter, vol. 3 of Handbook of Industrial Organization, chap. 28,

pp. 1701 —1844. Elsevier.

Bhattacharya, S. (1979): “Imperfect Information, Dividend Policy,

and "The Bird in the Hand" Fallacy,”The Bell Journal of Eco-

nomics, 10(1), pp. 259—270.

Blume, A., and O. Board (2009): “Intentional vagueness,”Erkennt-

nis, pp. 1—45.

Blume, A., O. J. Board, and K. Kawamura (2007): “Noisy talk,”

Theoretical Economics, 2(4), 395—440.

Carlsson, H., and S. Dasgupta (1997): “Noise-Proof Equilibria in

Two-Action Signaling Games,” Journal of Economic Theory, 77,

432—460.

Chen, Y. (2012): “Value of public information in sender-receiver

games,”Economics Letters, 114(3), 343—345.

Chenault, L. A. (1986): “On the uniqueness of Nash equilibria,”Eco-

nomics Letters, 20(3), 203 —205.

Crawford, V., and J. Sobel (1982): “Strategic information-

transmission,”Econometrica, 50(6), 1431—1451.

Daley, B., and B. Green (2012): “Market Signaling with Grades,”

unpublished manuscript.

de Haan, T., T. Offerman, and R. Sloof (2011): “Noisy Signaling:

Theory and Experiment,”Games and Economic Behavior, 73(2),

402—428.

Feltovich, N., R. Harbaugh, and T. To (2002): “Too cool for

school? Signalling and countersignalling,”Rand Journal of Eco-

nomics, 33, 630—649.

20



Frank, R. (1985a): Choosing the Right Pond. Human Behavior and

the Quest for Status. Oxford University Press, New York, Oxford.

(1999): Luxury Fever. Money and Happiness in an Era of Ex-

cess. Princeton University Press, Princeton.

Frank, R. H. (1985b): “The Demand for Unobservable and other Non-

positional Goods,”American Economic Review, 75, 101—116.

Grafen, A. (1990a): “Biological Signals As Handicaps,” Journal of

Theoretical Biology, 144, 517—546.

(1990b): “Sexual Selection Unhandicapped by the Fisher

Process,”Journal of Theoretical Biology, 144, 473—516.

Guillemin, V., and A. Pollack (1974): Differential Topology. En-

glewood Cliffs, N.J.: Prentice Hall.

Hertzendorf, M. N. (1993): “Im Not A High-Quality Firm - But I

Play One on Tv,”Rand Journal of Economics, 24, 236—247.

Jeitschko, T. D., and H.-T. Normann (2012): “Signaling in deter-

ministic and stochastic settings,” Journal of Economic Behavior

& Organization, 82(1), 39 —55.

John, K., and J. Williams (1985): “Dividends, Dilution, and Taxes:

A Signalling Equilibrium,” The Journal of Finance, 40(4), pp.

1053—1070.

Karlin, S., and H. Rubin (1956): “The Theory of Decision Procedures

for Distributions with Monotone Likelihood Ratio,”The Annals of

Mathematical Statistics, 27(2), 272—299.

Mailath, G. (1987): “Incentive Compatibility in Signaling Games with

a Continuum of Types,”Econometrica, 55, 1349—1365.

Mailath, G. J., M. Okunofujiwara, and A. Postlewaite (1993):

“Belief-Based Refinements in Signaling Games,” Journal of Eco-

nomic Theory, 60, 241—276.

Matthews, S. A., and L. J. Mirman (1983): “Equilibrium Limit

Pricing: The Effects of Private Information and Stochastic De-

mand,”Econometrica, 51(4), 981—96.

21



Milgrom, P., and J. Roberts (1986): “Price and Advertising Signals

of Product Quality,”Journal of Political Economy, 94(4), 796—821.

Myers, S. C., and N. S. Majluf (1984): “Corporate financing and

investment decisions when firms have information that investors

do not have,”Journal of Financial Economics, 13(2), 187 —221.

Riley, J. G. (1979): “Informational Equilibrium,”Econometrica, 47,

331—359.

(2001): “Silver signals: Twenty-five years of screening and

signaling,”Journal of Economic Literature, 39, 432—478.

Spence, M. A. (1973): “Job Market Signaling,”Quarterly Journal of

Economics, 87, 355—374.

Truyts, T. (2010): “Social Status in Economic Theory,” Journal of

Economic Surveys, 24(1), 137—169.

(2012): “Signaling and Indirect Taxation,” Journal of Public

Economics, 96(3-4), 331—340.

Veblen, T. (1899): The Theory of the Leisure Class: an economic

study of institutions. MacMillan, New York-London.

Zahavi, A. (1975): “Mate Selection - Selection for A Handicap,”Jour-

nal of Theoretical Biology, 53, 205—214.

A Mathematical Appendix: Proofs

It will be convenient to write

c (y, q) ≡ qβ̃ (y,H) + (1− q) β̃ (y, L) ,

and to denote

FH
(
sH , sL|q

)
≡ v1

(
sH |θH

)
+ κB′ (∆)

FL
(
sL, sH |q

)
≡ v1

(
sL|θL

)
+ κ

p

1− pB
′ (∆) .
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A.1 Proof of lemma 1

To see the first part, write

pB̄
(
sH |θH , β

)
+ (1− p) B̄

(
sL|θL, β

)
=

∫
β (y,H)

[
pqϕ

(
y|sH

)
+ (1− q) (1− p)ϕ

(
y|sL

)]
dy

+

∫
β (y, L)

[
q (1− p)ϕ

(
y|sL

)
+ (1− q) pϕ

(
y|sH

)]
dy

= pq + (1− q) p = p.

The second part follows from the assumption that the distribution of ε

is independent of s, such that ϕ (y + a|s+ a) = ϕ (y|s) for all a ∈ R,
and the integral in B being indefinite.

A.2 Proof of lemma 2

By condition 1, β̃ is strictly increasing with y if ∆ > 0 and constant if

∆ = 0, such that

B′ (∆) = q

∫ +∞

∆

(
β̃ (y,H)− β̃ (2∆− y,H)

)
|ϕ′(y|∆)| dy (14)

+ (1− q)
∫ +∞

∆

(
β̃ (y, L)− β̃ (2∆− y, L)

)
|ϕ′(y|∆)| dy > 0

if ∆ > 0 and B′ (0) = 0. Next, use lemma 1 to write

B (∆) = 1− 1− p
p

∫
c (y, q)ϕ(y|0)dy,

such that

B1 (∆) = −
∫ (

q2

1− q

(
1− β̃ (y,H)

)2

+
(1− q)2

q

(
1− β̃ (y, L)

)2
)
ϕ2(y|∆)dy,

in which, by condition 1, −
(

1− β̃ (y, ω)
)2

is strictly increasing with y

if ∆ > 0 and constant if ∆ = 0. Use condition 1 to write B1 (∆) as an

integral over [∆,∞) , as in (14) , to obtain B1 (∆) > 0 for ∆ > 0 and

B1 (0) = 0.
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A.3 Proof of proposition 1

Define the second order derivative of B, taking β̃ as given,

B′′ (∆) ≡
∫
c (y, q)ϕ22(y|∆)dy,

while differentiating B′ (∆) to ∆ (including the ∆ in β̃) gives

B′1 (∆) = B′′ (∆) +
p

1− p

∫  q2

1−q

(
1− β̃ (y,H)

)2

+ (1−q)2

q

(
1− β̃ (y, L)

)2

 (ϕ2(y|∆))2

ϕ(y|0)
dy,

(15)

in which the second term is always positive. In general, B′1 (∆) can be

both positive and negative, such that condition 2 must be strengthened

with an additional strict concavity condition.

Condition 4 Let u and ϕ be such that for all
(
sL, sH

)
with ∆ ≥ 0:

v11

(
sH |θH

)
+ κB′1 (∆)< 0

v11

(
sL|θL

)
− κ p

1− pB
′′ (∆)< 0.

This condition encompasses two sets of second order conditions. First,

a solution to (11) and (12) is a maximum for given beliefs (8) and (9) if

for all
(
sL, sH

)
with ∆ ≥ 0:

v11

(
sH |θH

)
+ κB′′ (∆) < 0 (16)

v11

(
sL|θL

)
− κ p

1− pB
′′ (∆) < 0. (17)

On the other hand, for a given level of signaling of the other type, an in-

terior solution to (11) and (12) defines a unique interior level of signaling

consistent with an S.E. if for all
(
sL, sH

)
with ∆ ≥ 0:

SH
(
sH
)
≡ v11

(
sH |θH

)
+ κB′1 (∆) < 0 (18)

SL
(
sL
)
≡ v11

(
sL|θL

)
− κ p

1− pB
′
1 (∆) < 0. (19)
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Because the second term in (15) is always nonnegative, (16) is implied

by (18) and (19) is implied by (17).

Proof. i)Any S.E. strategy profile
(
ŝL (q) , ŝH (q)

)
must be above

(
s̄L, s̄H

)
.

Assume otherwise. First, if ŝL (q) ≤ ŝH (q) , then B′
(

∆̂ (q)
)
≥ 0 and

either v1

(
ŝH (q) |θH

)
> 0 or v1

(
ŝL (q) |θL

)
> 0, such that (11) and (12)

cannot both be satisfied. Second, if ŝL (q) > ŝH (q) and ŝL (q) ≤ s̄H ,

then at ŝH (q) = ŝL (q) we have v1

(
ŝH (q) |θH

)
≥ 0 and B′ (0) = 0,

which implies in combination with condition 4 that (11) cannot be sat-

isfied. If ŝL (q) > ŝH (q) and ŝL (q) > s̄H , then v1

(
ŝL (q) |θL

)
< 0 and

B′
(

∆̂ (q)
)
< 0, such that (12) cannot be satisfied.

ii) In any equilibrium, ∆̂ (q) ≥ 0. If ∆̂ (q) < 0 (and ŝL (q) ≥ s̄H by the

previous point), then the low sender type can strictly improve herself by

signaling less, because v1

(
ŝL (q) |θL

)
< 0 and B′

(
∆̂ (q) ∆

)
< 0.

iii) Existence of response functions. Let bL
(
sH
)
represent for each value

of sH ≥ s̄H the sL for which (12) is satisfied. Let bH
(
sL
)
represent for

each value of sL the unique value of sH for which FH
(
sH , sL|q

)
∆ = 0,

such that bH
(
sL
)
≥ sL satisfies (11) or bH

(
sL
)

= sL if the constraint

∆ ≥ 0 is binding. These functions are well defined, as condition 4 im-

plies that v11 is everywhere suffi ciently concave and κ is suffi ciently small

to guarantee κ < −maxs{v11(s|θH)}
max∆{B′1(∆)} and κ < 1−p

p

maxs{v11(s|θL)}
min∆{B′′(∆)} . One can

easily verify that lim∆→∞B
′ (∆) = 0, such that lim∆→∞B

′
1 (∆) = 0 and

lim∆→∞B
′′ (∆) = 0. By conditions 1 and 2, bL and bH are continuously

differentiable.

iv) Existence of an S.E. A crossing of bH
(
sL
)
and bL

(
sH
)
constitutes

an S.E. Note then that bL
(
sH
)
∈
(
s̄L, sH

)
, because for sH ≥ s̄H by

construction v1

(
s̄L|θL

)
= 0 and B′

(
sH − s̄L

)
> 0 while v1

(
sH |θL

)
< 0

and B′ (0) = 0 at sL = sH . On the other hand, bH
(
s̄L
)
> s̄H because

v1

(
s̄H |θH

)
= 0 and B′

(
s̄H − s̄L

)
> 0 by construction. Moreover, a

threshold ζ ≥ s̄H exists such that bH
(
sL
)

= sL for all sL ≥ ζ, because in

this case FH
1

(
s, sL|q

)
< 0 for all s > sL. This implies that bH

(
sL
)
and

bL
(
sH
)
cross at least once, and at such crossing∆ > 0, bL

(
sH
)
> s̄L and

bH
(
sL
)
> s̄H .

v) Uniqueness. This is shown by an elementary instance of the Poincaré-
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Hopf index theorem (Guillemin and Pollack, , p. 134), as exemplified

in a.o. Chenault (1986). Construct the auxiliary function d
(
sL
)
≡

bH
(
sL
)
−
(
bL
)−1 (

sL
)
,measuring the distance between bH

(
sL
)
and bL

(
sH
)
.

Then

d1

(
sL
)

= bH1
(
sL
)
− 1

bL1 (sH)
= −

FH
2

(
sH , sL|q

)
SH (sH)

+
SL
(
sL
)

FL
2 (sL, sH |q) > 0

⇔FH
2

(
sH , sL|q

)
FL

2

(
sL, sH |q

)
− SL

(
sL
)
SH
(
sH
)

= − p

1− p (κB′1 (∆))
2 − SL

(
sL
)
SH
(
sH
)
< 0,

which is always satisfied under condition 4. Because d
(
sL
)
crosses 0 at

most once, the S.E. is unique.

A.4 Proof of theorem 1

This proof proceeds in 3 steps.

Claim 1 ŝH1 (q) and ŝL1 (q) have the same sign as B′3
(

∆̂ (q) |p, q
)
.

Claim 2 B′ (∆|p, q) is continuously differentiable w.r.t. q for q ∈
(

1
2
, 2+

√
3

4

)
.

B′3 (∆|p, q) is strictly positive for p suffi ciently close to 0, and strictly
negative for p suffi ciently close to 1.

Claim 3 B′3 (∆|p, q) is continuous w.r.t. p, and at the p̄ (q) (where

B′3 (∆|p̄ (q) , q) = 0), it must be that B′23 (∆|p̄ (q) , q) < 0.

Claims 1, 2 and 3 together imply theorem 1.

A.4.1 Proof of claim 1

Proof. Write FH
q

(
ŝH (q) , ŝL (q) |q

)
= 0 and FL

q

(
ŝL (q) , ŝH (q) |q

)
= 0

as a system

A ·
(
ŝL1 (q)

ŝH1 (q)

)
=

 −κB′3
(

∆̂ (q) |p, q
)

−κ p
(1−p)B

′
3

(
∆̂ (q) |p, q

) , (20)

with

A =

 −κB′1
(

∆̂ (q)
)

v11

(
ŝH (q) |θH

)
+ κB′1

(
∆̂ (q)

)
v11

(
ŝL (q) |θL

)
− κp

(1−p)B
′
1

(
∆̂ (q)

)
κp

(1−p)B
′
1

(
∆̂ (q)

)  .
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System (20) has a unique solution if |A| 6= 0 everywhere, which is satis-

fied under condition 4 as:

|A| = − p

(1− p)

(
κB′1

(
∆̂ (q)

))2

− SL
(
ŝL (q)

)
SH
(
ŝH (q)

)
< 0.

The system is solved for ŝL1 (q) and ŝH1 (q) by Cramer’s rule, such that

ŝL1 (q) =
κB′3(∆̂(q)|p,q)v11(ŝL(q)|θL)

|A| and ŝH1 (q) =
κ p

(1−p)
B′3(∆̂(q)|p,q)v11(ŝH(q)|θH)

|A| .

This implies that ŝL1 (q) and ŝH1 (q) take the same sign asB′3
(

∆̂ (q) |p, q
)
.

A.4.2 Proof of claim 2

It will be convenient to define z (y, p) ≡ (1−p)
p

ϕ(y|0)
ϕ(y|∆)

, such that z (y, p) ∈
R+ and z1 (y, p) < 0.Whenever obvious, the arguments of z are omitted.

Further, I denote P 1 (y, ω) ≡
(

1− β̃ (y, ω)
)
β̃ (y, ω) and P 2 (y, ω) ≡(

1− β̃ (y, ω)
)(

β̃ (y, ω)
)2

.

Proof. Write B′3 (∆|p, q) =
∫
f (z|p, q)ϕ2 (y|∆) dy, with

f (z|p, q)≡ c2 (y, q) = β̃ (y,H) +
P 1 (y,H)

1− q − β̃ (y, L)− P 1 (y, L)

q

=
z2 (2q − 1) (z + 1)

((q + (1− q) z) ((1− q) + qz))2 .

Note that f (z|p, q) > 0 for all z ∈ R+. By condition 1, f (z|p, q) is
continuous and bounded, such that B′ (∆) is differentiable w.r.t. q.

Moreover, it is easily verified that f (0, q) = 0 and lim
z→+∞

f (z|p, q) = 0.

Furthermore, f (z|p, q) has a unique extremum in terms of z, a maximum,
because

f1 (z|p, q) = z (2q − 1)
(−z3a+ z2 (1− 4a) + 3za+ 2a)

((q + (1− q) z) ((1− q) + qz))3 ,

with a ≡ q (1− q) , has for q ∈
(

1
2
, 1
)
and z > 0 a strictly positive

denominator which is finite for finite z. Then f1 (z|p, q) = 0 only where

−z3a+z2 (1− 4a)+3za+2a = 0, which has a unique real root because its

discriminant is δ = −a (−1088a3 + 564a2 − 105a+ 8) < 0 for q ∈
(

1
2
, 1
)
.

This root, denoted ξ, is strictly positive and finite for q bounded away
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from 1 (while only q < 2+
√

3
4

is considered):

ξ =
(1− 4a)

3a
+

1

3a
3

√
1

2

(
X +

√
−27a2δ

)
+

1

3a
3

√
1

2

(
X −

√
−27a2δ

)
> 0,

with

X ≡
(
2 (1− 4a)3 + 27a2 (1− 4a) + 54a3

)
.

Hence, c2 (y, q) is unimodal with a unique maximum at yξ (p) , which

solves z (yξ (p) , p) = ξ, such that c2 (y, q) is strictly increasing with y for

y < yξ (p) and strictly decreasing with y for y > yξ (p) .

Note that ξ is independent of p, and that by taking p suffi ciently close

to 0, f (z|p, q) is strictly increasing with y for almost all mass under

|ϕ2 (y|∆)| such that B′3 (∆|p, q) > 0. Similarly, for p suffi ciently close

to 1, f (z|p, q) is strictly decreasing with y for almost all mass under
|ϕ2 (y|∆)| such that B′3 (∆|p, q) < 0.

A.4.3 Proof of claim 3

Proof. First, B′23 (∆|p, q) = − 1
p(1−p)

∫
(zf1 (z|p, q))ϕ2 (y|∆) dy exists

everywhere because zf1 (z|p, q) is continuous w.r.t. y and bounded for
q ∈

(
1
2
, 2+

√
3

4

)
.Note also that lim

z→0
zf1 (z|p, q) = 0 and lim

z→+∞
zf1 (z|p, q) =

0.

Consider thenB′23 (∆|p, q) =
∫
f2 (z|p, q)ϕ2 (y|∆) dy with β̃3 (y, ω|p, q) =

P 1(y,ω)
p(1−p) such that

p (1− p) f2 (z|p, q) =P 1 (y,H)− P 1 (y, L)

+
P 1 (y,H)− 2P 2 (y,H)

1− q − P 1 (y, L)− 2P 2 (y, L)

q

= f (z|p, q)− g (z|p, q) ,

with

g (z|p, q)≡
(
β̃ (y,H)

)2

−
(
β̃ (y, L)

)2

+ 2

(
P 2 (y,H)

1− q − P 2 (y, L)

q

)
=
z2 (2q − 1) (5q2z2 − 2q2z − 3q2 − 5qz2 + 2qz + 3q + 2z2 + z)

((q + (1− q) z) ((1− q) + qz))3 ,
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such that

p (1− p)B′23 (∆|p, q) = B′3 (∆|p, q)−
∫
g (z|p, q)ϕ2 (y|∆) dy

Define

r (z) ≡ g (z|p, q)
f (z|p, q) =

(5q2z2 − 2q2z − 3q2 − 5qz2 + 2qz + 3q + 2z2 + z)

((q + (1− q) z) ((1− q) + qz)) (z + 1)
.

One can verify that

r1 (z) = −2(1−q)q
(
(q + (1− q) z)−2 + (q(z − 1) + 1)−2

)
+(z+1)−2 < 0

(21)

for all z ∈ R+ if q < 2+
√

3
4
∼= 0.93301. At p̄, we have by definition

B′3 (∆|p̄, q) =
∫ +∞

∆
[−f (z (2∆− y, p̄) |p̄, q) + f (z (y, p̄) |p̄, q)] |ϕ2 (y|∆)| dy =

0, which implies for all q < 2+
√

3
4

that

−p̄ (1− p̄)B′23 (∆|p̄, q) =

∫ +∞

∆

[
−g (z (2∆− y, p̄) |p̄, q)

+g (z (y, p̄) |p̄, q)

]
|ϕ2 (y|∆)| dy > 0,

because by (21) we have

−g (z (2∆− y, p) |p, q)+g (z (y, p) |p, q) > −f (z (2∆− y, p) |p, q)+f (z (y, p) |p, q)

for all y ∈ (∆,∞) . Hence, B′23 (∆|p, q) < 0 at p̄, and this implies that

p̄ (q) is unique for all q ∈
(

1
2
, 2+

√
3

4

)
. The continuity of p̄ (q) follows from

the differentiability of B′3 (∆|p, q) w.r.t. p.

A.5 Proof of proposition 2

First, from the proof of claim 1 we obtain ∆̂1 (q) = ŝH1 (q) − ŝL1 (q) =
κB′3(∆|p,q)h(ŝL(q),ŝH(q))

|A|(1−p) , which establishes the first part of proposition 2.

The second part of proposition 2 is shown by constructing a nu-

merical example for which B3

(
∆̂ (q) |p, q

)
+B1

(
∆̂ (q) |p, q

)
∆̂1 (q) < 0.

Consider ∆̂ (q) = 3
2
, p = 0.9, q = 0.91 and ϕ the normal density

function with σ = 2. In this case, we seek to construct an S.E. where
κh(ŝL(q),ŝH(q))
|A|(1−p) <

B3(∆̂(q)|p,q)
B1(∆̂(q)|p,q)B′3(∆̂(q)|p,q)

' −395.095. For these parameter
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values we also have max
∆
{|B′1 (∆)|} < 0.008052 ≡ C, max

∆
{|B′′ (∆)|} <

0.0104 ≡ D and B′′
(

3
2

)
' 0.00612. Choose a utility function for which

−v11

(
.|θH

)
is minimal at ŝH (q) and for which v

(
.|θL
)
is suffi ciently con-

cave to guarantee
−v11(.|θL)

−v11(ŝH(q)|θH)
> 9D

C
= 15.289. Note that this implies

h
(
ŝL (q) , ŝH (q)

)
< 0 and ∆̂1 (q) < 0 and that condition 4 is satisfied if

we choose

κ =
−v11

(
ŝH (q) |θH

)
C

.

Thus, we obtain

κh
(
ŝL1 (q) , ŝH1 (q)

)
|A| (1− p) =

 −C(
1− p

(1−p)
v11(ŝH(q)|θH)
v11(ŝL(q)|θL)

) +B′1 (∆)


−1

=

 −0.008052(
1− 9

v11(ŝH(q)|θH)
v11(ŝL(q)|θL)

) + 0.00612


−1

which is smaller than −395.095 if
v11(ŝH(q)|θH)
v11(ŝL(q)|θL)

/ 7.720 × 10−3, i.e. if

−v11

(
ŝL (q) |θL

)
> 129.53

(
−v11

(
ŝH (q) |θH

))
.

Finally, an S.E. is constructed which satisfies the above restrictions.

First, B′
(

∆̂ (q)
)
' 0.0111 for the given parameter values, such that (11)

can be written
v1(ŝH(q)|θH)
v11(ŝH(q)|θH)

= 0.0111
0.008052

= 1.3748 and likewise (12) becomes

v1(ŝL(q)|θL)
v11(ŝH(q)|θH)

= 9 (0.0110702)
0.008052

= 12.374. No other restrictions impede the

construction of such a function v.

30


