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Abstract

We propose a model of network formation among competitors in a Tullock

contest. Agents �rst form their partnerships and then choose their investment

in the contest. By cooperating with a competitor, an agent increases his

valuation for the prize, but he also increases the valuation of his rival. It is thus

not obvious that competitors decide to cooperate. We �nd that the network

formation process can act as a barrier to entry. The pairwise equilibrium

network features a group of completely interconnected agents and another

group of isolated agents who choose not to participate to the contest. Barriers

to entry may either hurt total surplus as the winner of the prize does not

exploit all the possible network bene�ts, or improves it since the wasted e¤orts

are smaller when competition is less �erce. When networking acts as a barrier

to entry, pairwise equilibrium networks are ine¢ cient.

1 Introduction

In many instances in economics and politics competition takes form in contests

where competing agents spend resources in order to increase their chance of win-

ning a prize. For instance, �rms invest in R&D in order to get a patent and invest

in marketing campaign to increase their market shares, colleagues work hard when

they are competing for a promotion, lobbies exert pressure to in�uence political
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decisions, etc.1 Rivals in contest are often involved in bilateral cooperative relation-

ships. Arzaghi and Henderson (2008) report that small advertising agencies share

innovative ideas and expertise while competing to obtain new accounts. Competing

�rms are increasingly sharing databases concerning detailed customer information

(Liu and Serfers, 2006; Leminen et al., 2008). Universities cooperate in developing

joint IT projects, opening their libraries to each others�students or sharing software

licence.

This paper develops a model of network formation among competitors in a Tul-

lock contest. Agents �rst form their partnerships and then choose their investment

in the contest. By cooperating, two competitors increase their valuation for the

prize, say because they have access to a larger market in case they get the prize, or

because they share information on how to exploit the prize. We assume that the

linking costs are negligible. By forming a link with a competitor, an agent improves

the position of his rival. It is thus not obvious that competitors wish to form links,

even if there is no cost attached to doing it. We have chosen to focus on small costs

of link formation to analyze the case that favors most collaboration, and show that

even in that case, market mechanisms deters collaboration.

For each network structure de�ning the pro�le of valuations of the competitors,

there is a unique Nash equilibrium choice of e¤ort in the second stage. Solving the

game by backward induction, we then characterize the set of pairwise equilibrium

networks of the link formation game. We show that any two unconnected agents

that are participating to the contest are better o¤ by adding a link (Proposition

1). We establish that the only pairwise equilibrium networks are group dominant

networks, where one group of agents is completely linked to the other agents in the

group, and the remaining agents have no links and decide not to participate to the

contest (Proposition 2). Network formation can thus act as a barrier to entry to

the contest. We show that whenever networking acts as a barrier to entry there

is a con�ict between stability and e¢ ciency, as no pairwise equilibrium network

maximizes total surplus (Proposition 3). Finally, we show that the welfare e¤ect of

barriers to entry is not clear. In some cases, endogenous barriers to entry hurt total

surplus because the winner of the prize does not exploit all the possible network

bene�ts. In others it helps improve the welfare because the total wasted e¤orts are

smaller when competition is less �erce.

1See Konrad (2009) for an excellent overview on contest theory and its applications.
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From an empirical point of view, the observed network structures of collaboration

among �rms are never complete. Often times they display asymmetries, clusters of

strongly linked rivals and agents who decide not to cooperate at all (see for instance

Hagedoorn and Schakenraad, 1992 and Powel et al., 2005). Hochberg et al. (2010)

show that strong network ties among venture capitalists in a given market deters

entry. Our theoretical predictions support these observations.

This paper contributes to the literature on competition in networks. That lit-

erature has focused on horizontal cooperation between oligopolists or between rival

�rms in R&D races. Goyal and Moraga (2001) propose a game where competing

�rms in the �nal market form links to cooperate in R&D leading to smaller cost

of production. They show by means of an example that asymmetric networks may

lead to exclusion and if so, it does not necessarily harm total surplus. Goyal and

Joshi (2003) develop a model where each partnership translates exogenously and

linearly into a marginal cost reduction. Assuming that the parameters are such

that all �rms are active in the market, they show that the only stable network is

the complete network when the costs of link formation are small.2 Goyal and Joshi

(2006) introduced a model of patent race in networks, where the period at which a

�rm expect to innovate is positively correlated to its number of links. They show

that the only stable network architecture is the complete network when the cost of

links formation is small. Marinucci and Vergote (2011) show that group dominant

networks where unconnected agents are left out of the competition are the only

pairwise stable networks in an all pay auction in which link formation a¤ects the

value of the prize in a multiplicative way.

Our results about the stable network architecture when partnerships are bilateral

thus con�rm previous ones in a di¤erent framework. There are four main distinctions

between our approach and others in the �eld. First, the competition occurs through

a contest in our model, while in the other papers it occurs through standard quantity

or price competition in the �nal market, or through an auction. Second, the nature of

partnerships di¤ers. In our model, two partners either have a higher valuation for the

prize, or are more e¢ cient in providing e¤orts in the contest when they collaborate.

In other papers, partners reduce their marginal cost of production either directly,

indirectly through R&D collaboration, or through cross licensing. Third, the e¤ort

of the agent is endogenous in our model and a¤ected by the network. Fourth, we

2Notice that we would reach the same conclusion if we assumed participation by Proposition 1.
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do not assume that the parameters are such that each agent participate to the

competition but instead analyze in detail the question of entry and participation.

Marinucci and Vergote (2011) were the �rst to explain the formation of asym-

metric groups without assuming prohibitive cost of link formation leading to market

exit. Market exit is not only the consequence but also the cause of the formation

of asymmetric networks. Indeed, insiders always want to form as many links as

possible. On the other hand outsiders that are facing a strong group of completely

connected competitors do not want to add a new link, even if this link is not costly.

We show in this paper that their result are also valid in the Tullock contest, where

the value of link formation is linear rather than multiplicative. Contrary to Mar-

inucci and Vergote (2011), the total surplus is not necessarily reduced when some

agents are left out of the market. More competition between stronger agents does

not always lead to higher surplus in our model because as the network becomes more

dense, the sum of wasted e¤orts may increase more than the expected valuation of

the winner of the contest.

Westbrock (2010) studied e¢ ciency in the model of Goyal and Joshi (2003). He

found that strongly e¢ cient networks must either be group dominant or have the

interlinked star architecture. In our model, we show that group dominant networks

never maximize total surplus, but the smallest group dominant networks may lead

to higher surplus than others pairwise equilibrium network.

Other papers have also introduced contests in networks. Jost (2007) studies a

Tullock patent contest where �rms choose their R&D investment to win the competi-

tion. When �rms form a link they share their R&D capacities, leading to free-riding

and underinvestment in R&D. In equilibrium all players are active and have ex-

actly one link. Hiller (2012) proposes a model of signed network formation, where

agent extend positive links to others in order to extract rents from enemies. He

�nds that the network structure that emerges features asymmetric groups of agents,

with members from bigger group extracting rents from those in the smaller. Franke

and Ozturk (2009) propose a model where the network exogenously determines the

con�ictive relations among agents, and relate the network structure to the con�ict

intensity.

We equally contribute to the theoretical literature on Tullock contests. Stein

(2002) has shown that when the valuation of a player increases, his expected payo¤

increases provided no player leaves the contest. We show that this remains valid
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when the valuation of two players increases by the same amount, even if some player

is initially in a better position in the contest, and if some players decide to leave the

contest. Eggert and Kolmar (2006) analyze a contest model where the total prize

depends on the number of participants. In our model, the value of the prize depends

on the number of links of the player that wins the contest.

The paper is organized as follows. In Section 2 we present the model. In Sec-

tion 3 we characterize pairwise equilibrium networks. Section 4 analyzes e¢ ciency

and contrast the e¢ cient networks to the pairwise equilibrium networks. Section 6

concludes.

2 Model and notation

2.1 Networks

Let N = f1; 2; :::; ng be the �nite set of agents. Each agent announces the set of
links he would like to form, and the links that forms are those where both agents

have announced their intention to form that link. We let �i;j = 1 if player i intends

to form a link with player j while �i;j = 0 if he does not. The strategy of player i

is �i = ff�i;jgj2Nnfigg 2 Si. When �i;j = �j;i = 1, a link between i and j is formed.
We write gi;j = 1 when a link between i and j exists and gi;j = 0 otherwise. A

network g = f(gij)g is the list of which pairs of individuals are linked to each other.
Let gN be the collection of all subsets of N with cardinality 2, so gN is the complete

network. The set of all possible networks on N is denoted by G and consists of all
subsets of gN . A strategy pro�le � = (�i)i2N therefore induces a network g(�) 2 G.
The network obtained by adding the link ij to an existing network g is denoted g+ij

and the network that results from deleting the link ij from an existing network g

is denoted g � ij. For any network g, let N(g) = fi 2 N j 9 j such that ij 2 gg
be the set of agents who have at least one link in the network g. Let Ni(g) be the

set of agents that are linked to i : Ni(g) = fj 2 N j ij 2 gg. The degree of agent
i in a network g is the number of links that involve that agent: di(g) = #Ni(g).

A path in a network g 2 G between i and j is a sequence of agents i1; : : : ; iK such
that ikik+1 2 g for each k 2 f1; : : : ; K � 1g with i1 = i and iK = j. A network g is
connected if for each pair of agents i and j such that i 6= j there exists a path in g
between i and j. A component h of a network g is a nonempty subnetwork h � g
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satisfying (i) for all i 2 N(h) and j 2 N(h)nfig, there exists a path in h connecting
i and j, and (ii) for any i 2 N(h) and j 2 N(g), ij 2 g implies ij 2 h. Given a
set of players S  N , a network gS is such that the agents in S are connected to

each other agents in S and the agents in NnS have no link. A network with that
structure is called a dominant group network. We sometimes say that members in

S are completely connected when every link is formed among these agents.

2.2 Model

We consider a society of n ex-ante identical individuals who �rst form links of collab-

oration and then choose their level of e¤ort in order to win a prize in a contest. The

prize is allocated to the individuals according to the pro�le of e¤orts of all agents.

We assume that agent i�s probability of winning the prize pi is given by the ratio

of his e¤ort (ei) and the sum of all e¤orts pi(ei; e�i) = ei=
P

j2N ej. The cost of

providing e¤ort is assumed to be equal to the level of e¤ort. The valuation of agent

i for the good is decomposed into a �xed component v and a variable component

that depends on the degree of the agent vi(g) = v+di(g)�. Both the �xed valuation

v and the impact of a link on the valuation of a player � is common to each agent

and does not depend on the number of links the agent has. Assuming that each link

between agents increases linearly their value of winning the contest is equivalent in

our framework to assuming that the marginal cost of e¤ort in the contest decreases

linearly with additional links.3 Our setup thus �ts both the situation where coop-

eration increases the value of the prize and the situation where it reduces the cost

of contest e¤ort. We restrict our analysis in this paper to the case where the cost

of link formation c is positive but close to 0. Forming cross-licensing agreements,

establishing joint R&D programs or sharing valuable information certainly involves

costs in terms of organization, administration, layers, etc. However, we believe that

in many applications we have discussed in the introduction the value of the prize is

so important that these costs do not explain the partnership choices of the agents.

There are other costs to link formation that are related to the competitive e¤ect

of collaboration since by forming a link with a competitor, an agent improves the

3Firms that are more connected may have more information on how to conduct a successful

marketing campaign, they may share the costs of an investment, they may sign cross-licensing

agreements, etc. See Corchon (2007) for the equivalence between the two formulations of the

model.
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position of its rival. It is thus not obvious that competitors wish to form a link, even

if there is no cost attached to doing it. The purpose in this paper is to analyze in

detail this question. We however assume that links are not free to avoid a situation

where �rms are involved in some partnership but do not plan to participate to the

contest and as a result do not derive any bene�t from these collaborations.

Given a network g, the expected payo¤ of agent i is given by

�i(ei; e�i; g) = pi(ei; e�i)(v + di(g)�)� ei � cdi(g), (1)

2.3 Contest stage

Given a network g, an agent i chooses a nonnegative e¤ort ei in order to maximize

his payo¤ �i(ei; e�i; g). We do not exclude corner solutions to this problem. There

are network architectures and parameters con�gurations such that the optimal e¤ort

of an agent is nil at the Nash equilibrium of the contest stage. Let us introduce the

ordering function � : N�G! N to rank the players according to their valuation

in the network so that the players with a higher valuation have a lower index in the

reordering. When multiple players have the same valuation, the players with lower

indices in the player set have a lower rank in the ranking. It follows that �(k; g) = 1

if vk(g) � vl(g) for all l 2 N and k < l for all l such that vk(g) = vl(g).

From Hillman and Riley (1989), the number of participating agents is the largest

�(k; g) such that vk(g) > (�(k; g)� 1)=(
P

j:�(j;g)��(k;g) 1=vj(g)). We let �(g) be the

value of �(k; g) that solves this problem, and note the set of agents participating

to the contest in the network g by K(g). Thus, the �(g) players with the highest

valuation at the network g participate in the contest, while the remaining agents do

not. In particular, for k such that �(k; g) � (>)�(g), we have

vk(g) > (�)
(�(g)� 1)P

j:�(j;g)��(g) 1=vj(g)
= h�(g)(g)

(�(g)� 1)
�(g)

;

where h�(g)(g) = �(g)=(
P

j:�(j;g)��(g) 1=vj(g)) is the harmonic mean of the largest

�(g) valuations.

Following Stein (2002), in a network g, the Nash equilibrium level of e¤orts is

given by:
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e�i (g) =

��(g)�1
�(g)

h�(g)(g)(1� �(g)�1
vi(g)

h�(g)(g)

�(g)
) if �(i; g) � �(g)

0 if �(i; g) > �(g)
, (2)

so that the probability that agent i wins the contest is

p�i (g) =

�
1� �(g)�1

vi(g)

h�(g)(g)

�(g)
if �(i; g) � �(g)

0 if �(i; g) > �(g)
, (3)

and the equilibrium payo¤ is

�i(e
�
i ; e

�
�i; g) =

�
vi(g)pi(g)

2 � cdi(g) if �(i; g) � �(g)
�cdi(g) if �(i; g) > �(g)

: (4)

When the number of participants is �xed , Stein (2002) has shown that both the

equilibrium probability of getting the prize and the equilibrium payo¤ of an agent is

increasing in his valuation. In our framework, the agents have the ability to increase

their valuation by forming links. However, when they create a new link, both their

valuation and the valuation of a competitor increase so that the net e¤ect on the

payo¤ of the agent is unclear. In addition, by forming cooperative links, rivals may

obtain an indirect bene�t through the reduction of e¤ort or the exclusion of less

connected agents. We analyze the formation of networks of collaboration in the

following section.

3 Pairwise equilibrium networks

For each network structure de�ning the pro�le of valuations of the competitors, there

is a unique Nash equilibrium choice of e¤ort in the second stage. Solving the game

by backward induction, we characterize the set of pairwise equilibrium networks of

the link formation game.

Let �i(e�i (g(�)); e
�
�i(g(�)); g(�)) be the payo¤ of agent i in the network g(�)

induced by the strategy pro�le � = f�1; �2; :::; �ng when the agents chose their
optimal contest e¤ort e� in the second stage.
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A strategy pro�le �� = f��1; ��2; :::; ��ng is a Nash equilibrium of the link formation
game if�i(e�i (g(�

�)); e��i(g(�
�)); g(��)) � �i(e�i (g((�i; ���i))); e��i(g((�i; ���i))); g((�i; ���i)))

for all �i 2 Si, for all i 2 N . As is standard in the theory of network formation
since the seminal paper by Jackson and Wolinsky (1996), we add to the notion of

Nash equilibrium the requirement that there does not exist a pair of agents that

would like to form a link. Pairwise equilibrium are Nash equilibrium satisfying this

additional requirement. Let �i(g) = �i(e
�
i (g(�)); e

�
�i(g(�)); g(�)) for some � such

that g = g(�).

De�nition 1. A network g is a pairwise equilibrium network if

1. there is a Nash equilibrium �� that induces g.

2. for all ij =2 g, if �i(g) < �i(g + ij) then �j(g) > �j(g + ij).

We show in Proposition 1 that every network g such that two agents participate

but are not connected is not a pairwise equilibrium.

Proposition 1. Every network g � gN such that i; j 2 K(g) and ij =2 g is not a
pairwise equilibrium.

All the proofs are in the appendix.

We decompose the proof of the proposition in 4 steps. In Step 1, we show that the

set of participating agents in the network g+ ij is a subset of the set of participating

agents in the network g. In Step 2, we show that the agents i and j participate in

g + ij. In Step 3, we show that the players i and j are better o¤ by adding the link

ij if the set of participating agents is the same under the networks g and g + ij.

Finally, in Step 4, we show that if the set of participating agents is smaller under

the network g + ij than under g, then either the players i and j are better o¤ by

adding the link ij, or some player k is connected to i in the network g but does not

participate to the contest and is thus better o¤ by deleting the link ik.

In a pairwise equilibrium, we thus have a group of players who are connected

among themselves and participate to the contest and another group of agents who

are isolated and are better o¤ by not participating to the contest. Hence the pair-

wise equilibrium networks are dominant group networks gS for some S � N . We

characterize the set of pairwise equilibrium in Proposition 2.
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Proposition 2. A network g is a pairwise equilibrium if

(i) g = gN ,

(ii) g = gS for all S � N such that 3=2 +
p
5=4 + v=� � s � n� 2,

(iii) g = gNnfig for all i 2 N when either (v+�)(n�2)
v+(n�2)� + (v+�)

(v+(n�1)�) � n � 2, or
n � (v=�)1=2 + 2 and (v + (n � 2)�)(1=(n � 1))2 > (v + (n � 1)�)(1 �

(n�1)
(n�2)(v+(n�1)�)

v+(n�2)� +1+
(v+(n�1)�)

v+�

)2.

The complete network is always a pairwise equilibrium. If an agent deviates

from the complete network by cutting links, he either reaches a network g0 where

he is not participating or where he is participating but not connected to some par-

ticipating agents. In both cases he is better o¤ by maintaining his links. Smaller

group dominant networks are also pairwise equilibria if the the relative weight of

partnerships in determining the valuation of agents for the prize is su¢ ciently high

(v=� is small) or if the population size is high. The higher the relative importance of

collaboration in determining the valuation, the smaller the dominant group can be

in a pairwise equilibrium. In a group dominant network, the higher the size of the

group, the smaller the incentives of unconnected agents to participate because as the

size of the group increases, there are more competitors and they each have a higher

valuation for the prize. When the size of the group is larger than the threshold value

(3=2 +
p
5=4 + v=�), no pair of unconnected players would participate by adding a

link. If the group dominant network gS is a pairwise equilibrium, each group domi-

nant network gT is a pairwise equilibrium as long as #T � #S. If not and the group
S is composed of n�2 agents, then the condition to determine whether the network
gT that connects n� 1 agents is a pairwise equilibrium changes. The network gT is

a pairwise equilibrium either if the isolated agent would not participate by adding

a link with a participating agent, or if an agent from the group prefers not to add

the link with the isolated agent.

4 E¢ ciency

A network is e¢ cient if it maximizes the sum of payo¤s of the agents when they

choose their optimal e¤ort in the second stage. In this section, we discuss the re-

lationship between the network architecture and the total surplus. Notice that the
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total surplus is increasing in the expected valuation of the player getting the prize

and decreasing in the total wasted e¤orts: W (g) = �i2Np
�
i (g)vi(g) � �i2Ne�i (g).

Ine¢ ciencies may arise because the network bene�ts are not totally exploited, be-

cause the prize is allocated with some probability to agents that do not have the

maximal valuation for the good, and because resources are wasted to in�uence the

allocation of the prize. Using (3), the expected bene�ts of the agents in the contest

is given by �i2Np�i (g)vi(g) = �i2K(g)vi(g)� (�(g)� 1)h�(g)(g). It is increasing in the
number of links of the participating agents and decreasing in the harmonic mean of

the valuation of the participating agents. Using (2), the sum of e¤orts is given by

�i2K(g)e
�
i (g) = (�(g)� 1)h�(g)(g)=�(g). It is increasing in the harmonic mean of the

valuation of the participating agents.

It follows that for a �xed number of links and given a set of participating agents,

the higher the harmonic mean of the valuation of the participating agents, i.e. the

more equal the distribution of links among participating agents, the higher the sum

of e¤orts and the lower the expected valuation of the agent getting the prize. For

instance, if the set of participating agents is equal in two networks g and g0 and the

valuation pro�le of the participating agents in the network g0 is a mean preserving

spread of the valuation pro�le of the participating agents in the network g, then the

sum of payo¤s is higher under the network g0 than under the network g.

The pairwise equilibria can be ranked in terms of total surplus (see Lemma 3

in the appendix). In smaller group dominant networks, the valuation of the agent

getting the prize is smaller but the sum of wasted e¤ort is also reduced since fewer

agents compete for the prize and they each value less the good. When the com-

mon valuation of agents for the good is important relative to the network bene�ts

(v=� > 1), smaller group dominant networks produce more surplus than bigger ones.

Endogenous barriers to entry enhance wlefare in that case. If the valuation of agents

for the prize mainly depends on their connections in the network (v=� < 1), then the

sum of payo¤s increases with the size of the group dominant network. Endogenous

barriers to entry then hurt welfare.

We show in Proposition 3 that a pairwise equilibrium is not e¢ cient if the com-

plete network is not the only pairwise stable network.

Proposition 3. Every pairwise equilibrium gS 6= gN is not e¢ cient. In addition,

gN is not e¢ cient if gS 6= gN is a pairwise equilibrium.

If the valuation of agents for the prize mainly depends on their connections
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in the network (v=� < 1), the complete network is the pairwise equilibrium that

maximizes the sum of payo¤s. Even if the prize is allocated to an agent with the

maximal possible valuation in the complete network, it generates less surplus than

the star network. In the star network, the gap between the valuation of the center

of the star and of the other agents is so important that most of the e¤ort is done

by the center of the star. He gets the prize with high probability while the sum of

e¤orts is relatively small. If on the other hand, the valuation of the agents for the

prize mainly depends on their �xed valuation for the good (v=� > 1), the pairwise

equilibrium network that generates the highest sum of payo¤s is the one with the

smallest group of completely connected agents gS. If gS is not the complete network,

it is not e¢ cient since the sum of payo¤s is higher in the adjacent network gS + ij

where the link added involve an agent in the group and another outside the group

(see Lemma 4 in the appendix).

In a model of cost-reducing network formation in an oligopolistic market, West-

brock (2010) �nds that e¢ cient networks must either be group dominant or have the

interlinked star architecture. In the Tullock contest, we show that group dominant

networks other than the complete network never maximize total surplus.

5 Conclusion

This paper develops a model of network formation among competitors in a Tul-

lock contest. We establish that the only pairwise equilibrium networks are group

dominant networks. Agents in the group are completely connected to each other

while those outside the group are not connected and are excluded from the market.

Network formation thus acts as a barrier to entry to the contest. We show that

whenever networking acts as a barrier to entry, no pairwise equilibrium network is

e¢ cient. Endogenous barriers to entry may hurt total surplus because the winner

of the prize does not exploit all the possible network bene�ts. It may also improve

surplus because e¤orts are smaller when competition is less �erce.

References

[1] Arzaghi, M. and J. Vernon Henderson, 2008. "Networking o¤Madison Avenue",

Review of Economic Studies, vol. 75(4), 1011-1038.

12



[2] Corchón, L., 2007. "The theory of contests: a survey", Review of Economic

Design, vol. 11(2), 69-100.

[3] Goyal, S. and S. Joshi, 2003. "Networks of collaboration in oligopoly," Games

and Economic Behavior, vol. 43(1), 57-85.

[4] Goyal, S. and J. Moraga-Gonzalez, 2001. "R&D Networks", RAND Journal of

Economics, vol. 32(4), 686-707.

[5] Goyal, S. and S. Joshi, 2006. "Unequal Connections", International Journal of

Game Theory, vol. 34(3), 319-349.

[6] Hagedoorn, J. and J. Schakenraad, 1992. "Leading companies and networks

of strategic alliances in information technologies," Research Policy, vol. 21(2),

163-190.

[7] Hiller, T. 2012. "Friends and Enemies: A Model of Signed Network Formation",

mimeo.

[8] Hillman, A.L. and J.G. Riley, 1989. "Politically contestable rents and transfers",

Economics and Politics, vol. 1, 17-39.

[9] Hochberg, Y. V., A. Ljungvist and Y. Lu, 2010. "Networking as a Barrier to

Entry and the Competitive Supply of Venture Capital".The Journal of Finance,

vol. 65, 829�859.

[10] Jackson, M. and A. Wolinsky, 1996. "A strategic model of social and economic

networks", Journal of Economic Theory, vol. 71 (1), 44-74.

[11] Konrad, K., 2009. "Strategy and Dynamics in Contests". Oxford University

Press.

[12] Leminen, S., M. Westerlund and M. Raulas, 2008. "Customer sharing: a new

driver of strategic networks in the contemporary retail industry", mimeo.

[13] Liu, Q. and K. Serfes, 2006. "Customer information sharing among rival �rms",

European Economic Review, vol. 50(6), 1571-1600.

[14] Marinucci, M. and W. Vergote, 2011. "Endogenous network formation in patent

contests and its role as a barrier to entry", The Journal of Industrial Economics,

vol. 59(4), 529-551.

13



[15] Powell, W., K. Koput, D. White, and J. Owen-Smith, 2005. "Network Dynamics

and Field Evolution: The Growth of Interorganizational Collaboration in the

Life Sciences", American Journal of Sociology, Vol. 110(4), 1132-1205.

[16] Stein, W. E, 2002. "Asymmetric rent-seeking with more than two contestants",

Public Choice, 113 (3-4), 325-36.

[17] Tullock, G., 1980. "E¢ cient rent-seeking". In J. M. Buchanan (Ed.), Toward a

theory of the rent-seeking society, 97-112. College Station, Texas: Texas A&M

University Press.

[18] Westbrock, B., 2010. "Natural concentration in industrial research collabora-

tion", RAND Journal of Economics, Vol. 41(2), 351-371.

6 Appendix

Lemma 1 establishes that the harmonic mean of the valuation of the x players

with the highest valuation, weighted by (�(g)�x� 1=�(g)�x) is a function that is
increasing in x as long as x is smaller than the number of participating agents. Notice

in particular that this function is equal to 0 for x = 1 and to 1=((1=vk)+(1=vl)) < vl
for x = 2 where �(k; g) = 1 and �(l; g) = 2. It follows that in every network, there

are always at least two agents participating to the contest.

Lemma 1. For all x 2 f1; 2; :::; �(g)� 1g, we have

(x� 1)
x

hx(g) <
x

x+ 1
hx+1(g) (A1)

Proof. Let x 2 f1; 2; :::; �(g) � 1g. Let player l be such that �(l; g) = x + 1 and

player k be such that �(k; g) = �(g). Then (A1) can rewritten as

vl(g) >
x� 1
x

hx(g) (A2)

The participation constraint of player k may be written as

vk(g) >
�(g)� 1�

P
i2N :x+1��(i;g)��(g) vk(g)=vi(g)

x=hx(g)
.
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Since vk(g)=vi(g) � 1 for i 2 N such that �(i; g) � �(g), it follows that vk(g) >
x�1
x
hx(g). Since vl(g) � vk(g); (A2) is satis�ed.

Proposition 1. Every network g � gN such that either i; j 2 K(g) and ij =2 g
or dk(g) > 0 for some k =2 K(g) is not a pairwise equilibrium.

Proof. Let g � gN with ij =2 g for some i; j 2 K(g). Suppose �rst that dk(g) > 0
for some k =2 K(g), then g is not a pairwise equilibrium since player k would be

better o¤ by deleting his links. Suppose then that �(g) = 2. Since K(g) = fi; jg
and ij =2 g, i and j are connected to other agents because if it was not the case, we
would have vi(g) = vj(g) = v and K(g) = N , a contradiction. Then, a player who

has some connections but does not participate is better o¤ by deleting his links.

Thus g is not a pairwise equilibrium. In the rest of the proof, we show that the

network g such that �(g) � 3 and dk(g) = 0 for all k =2 K(g) is not a pairwise
equilibrium. We decompose the proof into 4 steps. In Step 1, we show that the set

of participating agents in the network g + ij is a subset of the set of participating

agents in the network g. In Step 2, we show that both players i and j participate

in g + ij when the set of participating agents is smaller in g + ij than in g. In

Step 3, we show that the players i and j are better o¤ by adding the link ij if the

set of participating agents is the same under the networks g and g + ij. Finally, in

Step 4, we show that if the set of participating agents is smaller under the network

g + ij than under g, then there always exists two players k; l that are better o¤ in

the network g + kl than in the network g.

Step 1. K(g + ij) � K(g).
Notice that hx(g + ij) � hx(g) for all x 2 f1; 2; :::; ng, a property of the com-

parison between (harmonic) means of two series of numbers ((vk(g + ij))k2N and

(vk(g)k2N) where the �rst series has higher numbers than the other. Since i; j 2
K(g), vk(g) = vk(g+ij) for all k =2 K(g). It follows that the no participation of player
k under the network g implies the no participation of player k under the network

g+ij: vk(g) < h�(g)(g)(�(g)�1)=�(g) implies vk(g+ij) < h�(g)(g+ij)(�(g)�1)=�(g)
for all k =2 K(g). Thus, K(g + ij) � K(g).
Step 2. i; j 2 K(g + ij).
Using Lemma 1, we know that
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vi(g) >
�(g + ij)� 1P

l2N :�(l;g)��(g+ij) 1=vl(g)

Suppose i; j =2 K(g + ij), then vk(g + ij) = vk(g) for all k2 K(g + ij). It

follows that vi(g + ij) > vi(g) >
�(g+ij)�1P

l2N :�(l;g)��(g+ij) 1=vl(g)
, a contradiction. Suppose

i =2 K(g + ij) and j 2 K(g + ij), then vi(g + ij)
P

l2N :�(l;g)��(g+ij) 1=vl(g + ij) >

vi(g)
P

l2N :�(l;g)��(g+ij) 1=vl(g) > �(g+ ij)� 1, where the �rst inequality holds since
vi(g+ ij)=vj(g+ ij) > vi(g)=vj(g) and the second is Lemma 1. Then i 2 K(g+ ij),
a contradiction.

Step 3. �i(g + ij) > �i(g) and �j(g + ij) > �j(g) if K(g + ij) = K(g). We show

hereafter that p�i (g+ij)�p�i (g) > 0 both when vi(g) > vj(g) and when vi(g) � vj(g).
As a consequence, we conclude that p�j(g+ij)�p�j(g) > 0, and that �k(g+ij) > �k(g)
for k = ij.

Using �(g+ij) = �(g) = �, notice that p�i (g+ij)�p�i (g) = [(��1)=�][(h�(g)=vi(g))�
h�(g + ij)=vi(g + ij)].

Thus p�i (g + ij)� p�i (g) > 0 if h�(g)=vi(g) > h�(g + ij)=vi(g + ij), that is if

X
k:�(k;g)��

vi(g + ij)

vk(g + ij)
>

X
k:�(k;g)��

vi(g)

vk(g)
(A3)

Using vk(g + ij) = vk(g) for k 6= i; j and vk(g + ij) = vk(g) + � for k = i; j,

and noting that
P

k:�(k;g)��(g) 1=vk(g+ ij) =
P

k:�(k;g)��(g)[1=vk(g)]+ [1=vi(g+ ij)]+

[1=vj(g + ij)]� [1=vi(g)]� [1=vj(g)], let us rewrite Condition (A3) as

�
X

k:�(k;g)��

1

vk(g)
� �( 1

vi(g)
+

1

vj(g)
) >

vi(g)

vj(g)
� vi(g) + �

vj(g) + �
, (A4)

Notice that the left-hand side of Condition (A4) (hereafter LHS) is positive while

the right-hand side (RHS) is negative when vi(g) � vj(g). Let us show that Con-

dition (A4) is also satis�ed when vi(g) > vj(g). From the participation constraint

of player j in the network g, we know that vj(g) > (�(g) � 1)=(
P

k:�(k;g)��(g)
1

vk(g)
).

Notice that the RHS is decreasing in vj(g) while LHS does not depend on vj(g). We

show that Condition (A4) holds even if vj(g) = (�(g)�1)=
P

k:�(k;g)��(g)
1

vk(g)
. Indeed,

we then have LHS = �(�(g)� 1)=vj(g)� �=vi(g)� �=vj(g) > �(�(g)� 3)=vj(g) >
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�(vi(g) � vj(g))=vj(g)(vj(g) + �) = RHS, where the �rst inequality holds since

vi(g) > vj(g), while the second holds if

(�(g)� 2)vj(g) + (�(g)� 3)� � vi(g): (A5)

Suppose that dj(g) � 1. Since ij =2 g, and dk(g) = 0 for all k =2 K(g), we have
di(g) � �(g) � 2. It then follows that vi(g) � vj(g) � (�(g) � 3))� implying that
Condition (A5) is satis�ed since �(g) � 3. If on the other hand, dj(g) = 0. It then
follows that �(g) = n, and Condition (A5) becomes (n� 3)v+(n� 3� di(g))� � 0,
which is satis�ed when di(g) � n� 3. When di(g) = n� 2, the condition becomes

(n� 3)v � �: (A6)

Notice that dk(g) � 1 for each player k 6= j since dj(g) = 0 and di(g) = n � 2.
The participation constraint of player j in the network g then implies that n� 1 <P

k2N
v

vk(g)
� 1 + v

v+(n�2)� +
(n�2)v
v+�

< 1 + (n�1)v
v+�

. We thus �nd that v > (n � 2)�,
establishing that condition (A6) holds as long as n � 4. When N = fi; j; kg so that
n = 3, the only network g such that di(g) = n � 2 and dj(g) = 0 is g = fikg. In
that case, p�i (g + ij) > p

�
i (g) if v > �, which is satis�ed as otherwise player j would

not participate in the contest in the network g.

Step 4. IfK(g+ij) ( K(g), then there always exists a pair of players k; l 2 K(g)
such that �k(g + kl) > �k(g) and �l(g + kl) > �l(g)

Step 4.a. Suppose that �(g + ij) � 3. We show that �i(g + ij) > x > �i(g),

where

x = vi(g)(1�
(�(g + ij)� 1)h�(g+ij)(g)

�(g + ij)vi(g)
)2

Indeed, from Lemma 1, we have x > �i(g), while from step 2 in this proof, we

know that �i(g + ij) > x when �(g + ij) � 3. Following the same argument, we

have �j(g + ij) > �j(g).

Step 4.b. Suppose thatK(g+ij) = fi; jg. Notice that �(g)�1 > minfdi(g); dj(g)g
since i and j are not connected to nonparticipating agents, nor among themselves in

g. In addition minfdi(g); dj(g)g � dl(g) for all l 2 Nnfi; jg since K(g+ ij) = fi; jg.
Suppose there exists a pair of players k; l 2 K(g), with kl =2 g such that �(g+kl) � 3.
Then, we know that k; l 2 K(g + kl) (step 3), and that k and l are better o¤ by
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adding a link between them (steps 2 or 4.a). If on the other hand K(g+kl) = fk; lg
for all k; l 2 K(g) such that kl =2 g, it follows that minfdl(g); dk(g)g � dm(g) for all
m 2 Nnfl; kg, for all k; l 2 K(g). Then, dk(g) = dl(g) for all k; l 2 K(g), implying
that the payo¤of each participating agent k 2 K(g) is given by �k(g) = vk(g)=�(g)2.
It then follows that �i(g + ij) = (vi(g) + �)=4 > �i(g) = vi(g)=�(g)2.

Lemma 2 determines the relationships between the value of v=� and the set of

participating agents in a group dominant network gS and in the adjacent networks

network gS � ij and gS + ij. First, it is shown that the isolated agents of the group
dominant network gS participate if and only if the size of the group s is smaller than

(v=�)1=2+1. Second, if a link is removed from the network gS, the set of participating

agents may either be the the set of agents with s � 1 links, or those with at least
s�2 links, or the entire population. Finally, if only the members of S participate in
the group dominant network gS, then two isolated agents do not increase su¢ ciently

their valuation by forming a link in order to participate in the contest as long as the

size of the group is greater than the threshold 3=2 +
p
5=4 + v=�:

Lemma 2. Let i; j 2 S and k; l =2 S

(i) K(gS) =

(
S if s � (v=�)1=2 + 1
N if s < (v=�)1=2 + 1

,

(ii) K(gS � ij) 2 fSnfijg; S;Ng
(iii) Suppose (v=�)1=2 + 1 � s � n� 2 so that K(gS) = S, then

K(gS + kl) =

(
S if 3=2 +

p
5=4 + v=� � s

S [ fk; lg if s > 3=2 +
p
5=4 + v=�

Proof. (i) K(gS) = S if for k =2 S, we have vk(gS) � n�1
n
hn(g

S), that is if v �
s�1

s=(v+(s�1)�) , or s � (v=�)1=2 + 1. Otherwise if s < (v=�)1=2 + 1, then vk(gS) >
n�1
n
hn(g

S) so that every agent gets a positive payo¤ by participating.

(ii) For all m 2 N , we have vm(gS � ij) 2 fv; v + (s� 2)�; v + (s� 1)�g. Thus,
either K(gS � ij) = fm 2 N j vm(gS � ij) � vg = N or K(gS � ij) = fm 2
N j vm(gS � ij) � v + (s � 2)�g = S, or K(gS � ij) = fm 2 N j vm(gS � ij) �
v + (s� 1)�g = Snfi; jg.
(iii) Given K(gS) = S, we have K(gS + kl) = S if vk(gS + kl) � s�1

s
hs(g

S + kl)

and K(gS + kl) = S [ fk; lg otherwise.
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Proposition 2. A network g is a pairwise equilibrium if

(i) g = gN ,

(ii) g = gS for all S � N such that 3=2 +
p
5=4 + v=� � s � n� 2,

(iii) g = gNnfig for all i 2 N when either (v+�)(n�2)
v+(n�2)� + (v+�)

(v+(n�1)�) � n � 2, or
n � (v=�)1=2 + 2 and (v + (n � 2)�)(1=(n � 1))2 � (v + (n � 1)�)(1 �

(n�1)
(n�2)(v+(n�1)�)

v+(n�2)� +1+
(v+(n�1)�)

v+�

)2.

Proof. Let

8>>>>>>>><>>>>>>>>:

E1 = 3=2 +
p
5=4 + v=�

E2 =
(v+�)(n�2)
v+(n�2)� +

(v+�)
(v+(n�1)�)

E3 = (v=�)
1=2 + 2

E4 = (v + (n� 2)�)(1=(n� 1))2

E5 = (v + (n� 1)�)(1� (n�1)
(n�2)(v+(n�1)�)

v+(n�2)� +1+
(v+(n�1)�)

v+�

)2

;

Notice that K(gS) = N for s < E3 by Lemma 2 so that gS is not pairwise stable

by Proposition 1 if S 6= N . Also, for all S � N , we have �i(gS) > �i(gS � ij) for all
i; j 2 S since from Lemma 2, either K(gS � ij) = Snfi; jg and 0 = �i(gS � ij) <
�i(g

S) = v+(s�1)
s2

, or K(gS � ij) 2 fS;Ng and the result holds by Proposition 1.

(i) gN is a pairwise equilibrium since �i(gN � ij) < �i(gN).

(ii) Let gS for some S � N be such that E1 � s � n � 2. By Lemma 2, we
have K(gS) = S since E3 � s. Notice that �k(gS + kl) = 0 for k; l =2 S if
v + � � (s � 1)=(

P
j2S 1=vj(g)), while �k(g

S + ik) = 0 for i 2 S, k =2 S if
v+� � (s�1)=(

P
j2S 1=vj(g+ ik)). Thus, a necessary and su¢ cient condition

for gS to be a pairwise equilibrium when K(gS) = S is that 2 agents without

links in gS are not better o¤ by adding a link, i.e. E1 � s (see Lemma 2).

(iii) Take gNnfig for some i 2 N . We show that gNnfig is a pairwise equilibrium if

either K(gNnfig + ij) = Nnfig or if K(gNnfig) = Nnfig and �j(gNnfig + ij) <
�j(g

Nnfig). If E2 � n � 2, we have K(gNnfig + ij) = Nnfig so that player i
is better of by not adding the link. If E2 > n � 2 so that K(gNnfig + ij) =
N , then two cases should be considered. First suppose that n � E3 so that

K(gNnfig) = Nnfig, then �j(gNnfig + ij) < �j(g
Nnfig) if E4 � E5. Second,

suppose that n < E3 so that K(gNnfig) = N . Then, the network gNnfig is not

pairwise stable by Proposition 1.
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Lemma 3. W (gS) > W (gT ) when s > t and K(gT ) = T if and only if v < �.

Proof. The total surplus in a group dominant network gX where X � N and

K(gX) = X is given by

W (gX) = v=x+ ((x� 1)=x)�:

Notice that K(gT ) = T and t < s imply K(gS) = S. Then W (gS) > W (gT )

when v < �.

Lemma 4. Suppose g0 = g + ij, i 2 K(g); j =2 K(g) and K(g + ij) = K(g), then
W (g0)�W (g) > 0 if vi(g) � vk(g) for all k 2 N .

Proof. Let g0 = g + ij, i 2 K(g); j =2 K(g) and K(g + ij) = K(g). We then have
W (g0)�W (g) = � + (�(g)2�1)

�(g)
(h�(g)(g)� h�(g)(g + ij))

W (g0)�W (g) = � + (�(g)2 � 1)(�
�

(vi(g)+�)vi(g)P
k2K(g)(1=vk(g))

P
k2K(g)(1=vk(g+ij))

)

W (g0)�W (g) = �(1� (�(g)2�1)P
k2K(g)((vi(g)+�)=vk(g+ij))

P
k2K(g)(vi(g)=vk(g))

)

Using vi(g) � vk(g) for all k 2 N , we have that
P

k2K(g)(vi(g)=vk(g)) � �(g)

and
P

k2K(g)((vi(g) + �)=vk(g + ij)) � �(g). It follows that W (g0)�W (g) � �(1�
(�(g)2�1)
�(g)2

) > 0.

Proposition 3. Every pairwise equilibrium gS 6= gN is not e¢ cient. In addition,
gN is not e¢ cient if gS 6= gN is a pairwise equilibrium.

Proof. Suppose �rst that v=� � 1. Then, simple calculations show that W (g�) >

W (gN) > W (gS) for all pairwise equilibrium gS, where g� is the star network.4 If

on the other hand, v=� > 1, then, W (gS + ij) > W (gS) > W (gN) for i 2 S and
j 2 NnS. Indeed, j =2 K(gS+ij) as otherwise gS would not be a pairwise equilibrium.
In addition, k 2 K(gS + ij) for k 2 Snfig since the participation constraint of the
player k such that �(k; g) = 2 is always satis�ed. Thus K(gS + ij) = S and Lemma

4 applies.

4Every agent participate both in the complete and in the star network. We have W (g�) >

W (gN )() v=� < n2 � 3n+ 1.
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