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Abstract

We develop a theoretical framework that allows us to study which bilateral links and

coalition structures are going to emerge at equilibrium. We define the notion of coalitional

network to represent a network and a coalition structure, where the network specifies the

nature of the relationship each individual has with her coalition members and with indi-

viduals outside her coalition. To predict the coalitional networks that are going to emerge

at equilibrium we propose the concepts of strong stability and of contractual stability.

Contractual stability imposes that any change made to the coalitional network needs the

consent of both the deviating players and their original coalition partners. Requiring the

consent of coalition members under the simple majority or unanimity decision rule may

help to reconcile stability and effi ciency. Moreover, this new framework can provide in-

sights that one cannot obtain if coalition formation and network formation are tackled

separately and independently.
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1 Introduction

The organization of agents into networks and groups has an important role in the determi-

nation of the outcome of many social and economic interactions. For instance, goods can

be traded and exchanged through networks, rather than markets, of buyers and sellers.

Networks also play important roles in providing mutual insurance especially in develop-

ing countries.1 Partitioning of societies into groups is also important in many contexts,

such as the provision of public goods and formation of alliances, cartels and federations.

The understanding of how and why such networks and groups form and the precise way

in which they affect outcomes of social and economic interactions has been apprehended

separately by the coalition theory and the network theory.

One limit of both theories is that it cannot incorporate the existence of bilateral agree-

ments among agents belonging to different coalitions —that is commonly observed in many

situations. A first situation has to do with the formation of R&D joint ventures and of

bilateral R&D collaborations. On the one hand, Bloch (1995) has analyzed the forma-

tion of associations of firms, like R&D joint ventures or groups of firms adopting common

standards, in an oligopolistic industry. On the other hand, Goyal and Moraga-González

(2001) or Goyal and Joshi (2003) have analyzed the incentives for R&D collaboration be-

tween horizontally related firms by considering that collaboration links are bilateral and

are embedded within a broader network of similar links with other firms. However, it may

happen that firms A and B may decide to form an R&D joint venture while firms B and

C sign a bilateral R&D agreement. What is the architecture of the resulting collaboration

network and the structure of associations that are likely to emerge?

A second situation has to do with the formation of communication networks (roads,

railway tracks or waterways) and the provision of public goods. On the one hand, Jackson

and Wolinsky (1996) have studied the incentives for agents to form links, and the strate-

gic stability of communication networks.2 Bramoullé and Kranton (2007) have studied

the incentives to provide goods that are non-excludable along social or geographic links.

On the other hand, Ray and Vohra (2001) have studied the provision of (pure) public

goods when all agents can form coalitions and write binding agreements regarding their

1See Jackson (2008) for a comprehensive introduction to the theory of social and economic networks.

Kranton and Minehart (2000) have analyzed the endogenous formation of networks between input suppliers

and manufacturers while Mauleon, Sempere and Vannetelbosch (2011) have studied the formation of

networks between manufacturers and retailers. Wang and Watts (2006) have examined the formation of

buyer-seller networks when sellers can form an association of sellers to pool their customers. Bloch, Genicot

and Ray (2008) have studied bilateral insurance schemes across networks of individuals.
2Bloch and Dutta (2009) have analyzed the formation of communication networks when agents choose

how much to invest in each link. See also Jackson and Rogers (2005) and Johnson and Gilles (2000).
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contributions toward the provision of a (pure) public good. However, there are situations

where municipalities can form communication links but may belong to different regions,

and costs for providing those links or public services are shared at the regional level.3

What are the incentives for municipalities to form links and coalitions for the provision of

a (pure) public good?

There are many other situations where agents are part of a network and belong to

groups or coalitions. In labour markets, workers are linked to each other within each

firm through a hierarchy — that is, a network — and, at the same time workers may

group themselves into unions. Individuals are living their social interactions in clubs

or communities as well as through friendship networks. Countries can sign bilateral free

trade agreements or multilateral free trade agreements and may belong to customs unions.

Connections among different criminal gangs became a major feature of the organized crime

during the 1990s. Criminal gangs often develop contract relationships for the provision

of certain kinds of services, such as transportation, security, contract killing, and money

laundering.4

The aim of this paper is to develop a theoretical framework that allows us to study

which bilateral links and coalition structures are going to emerge at equilibrium. We define

the notion of coalitional network to represent a network and a coalition structure, where

the network specifies the nature of the relationship each player has with her coalition

members and with players outside her coalition. This new framework forces us to redefine

key notions of theory of networks, value functions and allocation rules, and to redefine

existing solution concepts, strong stability and contractual stability.

A strongly stable coalitional network is a coalitional network which is stable against

changes in links and coalition structures by any coalition of players. The idea of contractual

stability is that adding or deleting a link needs the consent of coalition partners. For

instance, in the context of R&D alliances, firms may decide to have a common laboratory

with some partners, while developing bilateral R&D agreements with other partners. The

3Basque Y is the name given to the Spanish high-speed rail network being built since 2006 between the

three cities of the Basque Country Autonomous Community (Bilbao, Vitoria and San Sebastian). Since the

Basque Y will connect Spain with the European high-speed network, the decision of linking the three cities

and of the Y-shaped layout required the consent of the Basque Parliament and the Spanish authorities.

In addition, The Spanish government manages the construction of the stretches in the provinces of Alava

and Bizkaia while the Basque government takes care of the stretches in the province Gipuzkoa. See

http://www.euskalyvasca.com/en/home.html
4Colombian-Sicilian networks brought together Colombian cocaine suppliers with Sicilian groups pos-

sessing local knowledge, well-established heroin distribution networks, extensive bribery and corruption

networks, and a full-fledged capability for money laundering. Italian and Russian criminal networks have

also forged cooperative relationships. See Williams (2001).
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signing of a bilateral R&D agreement may need the consent of those partners within the

common laboratory or joint venture. Moreover, the formation of new coalition structures

may need the consent of original coalition partners.5 Thus, once a coalition has been

formed, the consent of coalitional partners may be required in order to add or delete links

that affect some coalition partners, or to modify the existing coalition. As in Drèze and

Greenberg (1980) the word "contractual" is used to reflect the notion that coalitions are

contracts binding all members and subject to revision only with consent of coalitional

partners. Two different decision rules for consent are analyzed: simple majority and

unanimity.6

Looking at two models of coalitional network formation (a connections model with cost

sharing among municipalities and a R&D model where firms form R&D bilateral agree-

ments and belong to alliances), we observe that requiring the consent of coalition members

under the simple majority or unanimity decision rule may help to reconcile stability and

effi ciency.7 We also show that this new framework provides us results that one cannot

obtain if coalition formation and network formation are tackled separately and indepen-

dently. In general, contractually stable coalitional networks may fail to exist. We show

that under the component-wise egalitarian or majoritarian allocation rules, there always

exists a contractually stable coalitional network under the simple majority decision rule.

However, if the component-wise dictatorial allocation rule is adopted, then a contractually

stable coalitional network always exists only under the unanimity decision rule.

Our paper is related to Myerson (1980) who has studied situations in which communi-

cation is possible in conferences that can consist of an arbitrary number of players. Hence,

Myerson (1980) has modeled the communication possibilities of the players by means of hy-

pergraphs. Each element of an hypergraph is called a conference. Communication between

players can only take place within a conference if all players of the conference participate.

Since a conference can consist of several players, an hypergraph is a generalization of a

network, which has bilateral communication channels only. In our paper, coalitions do not

restrict how players can communicate to each other. Each player’s payoff depend both on

5Rules of exit in alliances (R&D joint ventures, partnerships) are either exit at the will of the larger

party subject to forewarning (simple majority rule) or exit without breach via a deadlock implemented by

the contractual board where only unanimous decisions are taken (unanimity rule). See Smith (2005).
6All individuals who are part of a criminal organization like the Hells Angels are sponsored by an offi cial

member and have to gain the approval of 100 percent of members in order to climb the hierarchy. See

Morselli (2009). Rules governing entry and exit in labor cooperatives may require the consent of partners.

A new partner will enter the cooperative only if (i) she wishes to come in; (ii) her new partners wish to

accept her; and (iii) she obtains from her former partners permission to withdraw (only if she was before

member of another cooperative). See Drèze and Greenberg (1980).
7Notice that strongly stable coalitional networks are not strongly effi cient in general.
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the network and the coalition structure.8 In addition, coalitions can represent contracts

where each coalition member is entitled to one’s say when coalition partners add or delete

links to the network.9

The paper is organized as follows. In Section 2 we introduce the framework of coali-

tional networks and we define the concepts of strong stability and of contractual stability.

In Section 3 we consider two models to illustrate both the framework of coalitional net-

works and the concepts of strong stability and of contractual stability. In Section 4 we

derive some results about the existence of contractually stable coalitional networks and

we look whether effi cient coalitional networks are likely to be stable or not. In Section 5

we comment upon some of the features of the framework showing that it is general enough

to study the emergence of community structures. Section 6 concludes.

2 Coalitional networks

2.1 Notations and definitions

Let N = {1, ..., n} be the finite set of players who are connected in some network rela-
tionship and who belong to some coalitions or communities. A coalitional network (g, P )

consists of a network g ∈ GN and a coalition structure P ∈ P. A network g is simply

a list of which pairs of players are linked to each other with ij ∈ g indicating that i

and j are linked under the network g. Let GN = {g | g ⊆ gN} denote the set of all
possible networks on N , where gN denotes the set of all subsets of N of size 2.10 A coali-

tion structure P = {S1, S2, ..., Sm} is a collection of coalitions satisfying: Sa ∩ Sb = ∅
for a 6= b, ∪ma=1Sa = N and Sa 6= ∅ for a = 1, ...,m. Let S(i) ∈ P be the coali-

tion to which player i belongs. Let P denote the finite set of coalition structures. A
sub-coalitional network of (g, P ) is (h,Q) with h ⊆ g and Q a sub-collection of coali-

tions of P (possibly Q = P ). A sub-coalitional network (h,Q) of (g, P ) is nonempty if

both h contains at least one link and Q contains at least a coalition. For instance, if

N = {1, 2, 3, 4, 5, 6, 7, 8}, then (g, P ) = ({12, 23, 45, 56, 78}, {{1}, {2, 3, 4, 5}, {6, 7, 8}}) is
the coalitional network in which there is a link between players 1 and 2, a link between

8Caulier, Mauleon and Vannetelbosch (2011) have also considered situations where players are part of

a network and belong to coalitions. However, each player’s payoff only depends on the network, and so,

each player’s coalition only constrains her ability to add or delete links in the network.
9Modeling club structures as bipartite directed networks, Page and Wooders (2010) have formulated

the problem of club formation with multiple memberships as a noncooperative game of network formation.

See also Bloch and Dutta (2011) for a discussion of some recent literature on the endogenous formation of

coalitions and networks.
10Throughout the paper we use the notation ⊆ for weak inclusion and  for strict inclusion. Finally, #

will refer to the notion of cardinality.
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players 2 and 3, a link between players 4 and 5, a link between players 5 and 6, and a

link between players 7 and 8, and players 2, 3, 4 and 5 are in the same coalition while

players 6, 7 and 8 are in another coalition and player 1 is alone. This coalitional network

(g, P ) = ({12, 23, 45, 56, 78}, {{1}, {2, 3, 4, 5}, {6, 7, 8}}) is depicted in Figure 1.
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Figure 1: A coalitional network

For any network g, let N(g) = {i | ∃j such that ij ∈ g} be the set of players who
have at least one link in the network g. For any given sub-collection Q of coalitions of P ,

N(Q) = {i ∈ S | S ∈ Q} is the set of players that belong to some coalition S ∈ Q. Let
N(g+Q) = N(g)∪N(Q). Finally, let N(g, P ) be the set of players who have at least one

link in the network g or that belong to a coalition S ∈ P such that at least one member

of S has a link in the network g.

Definition 1. A nonempty sub-coalitional network (h,Q) is connected if for each i ∈
N(h + Q) and j ∈ N(h + Q) there exists a sequence of coalitions S1, S2, ..., SK with

i ∈ S1 ∈ Q and j ∈ SK ∈ Q (K > 1) such that for any l ∈ {1, ...,K − 1}, Sl ∈ Q and

there exists ilil+1 ∈ h with il ∈ Sl and il+1 ∈ Sl+1.11

Under this definition of a connected sub-coalitional network, a coalition whose members

have no links is not considered as a connected sub-coalitional network.

Definition 2. A component of a coalitional network (g, P ) is a nonempty sub-coalitional

network (h,Q), with h ⊆ g and Q a sub-collection of coalitions of P , such that

(i) h = {ij ∈ g | ∃ S, S′ ∈ Q (possibly S = S′) such that i ∈ S and j ∈ S′},

(ii) for all S, S′ ∈ Q there exists a sequence of coalitions S1, S2, ..., SK with S1 = S and

SK = S′ such that for any l ∈ {1, ...,K − 1}, Sl ∈ Q and there exists ilil+1 ∈ h with
il ∈ Sl and il+1 ∈ Sl+1,

11A nonempty sub-coalitional network consisting of only one coalition is connected since by definition of

nonemptyness there is at least one link among players in that coalition.
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(iii) @ S ∈ P , S /∈ Q and ij ∈ g such that i ∈ Sl, Sl ∈ Q and j ∈ S.

A component (h,Q) of (g, P ) consists of a nonempty sub-network h of g and the coali-

tions in P that contain at least one player with a link in h and that are thus connected

through the links in h. The set of components of (g, P ) is denoted as C(g, P ) and con-

tains the maximal connected sub-coalitional networks of (g, P ). Under this definition of

a component, a coalition whose members have no links is not considered as a component.

Take the coalitional network ({12, 23, 45, 56, 78}, {{1}, {2, 3}, {4, 5}, {6, 7, 8}}) depicted in
Figure 2. The connected sub-coalitional networks are ({12, 23}, {{1}, {2, 3}}), ({23},
{{2, 3}}), ({12}, {{1}, {2, 3}}), ({45, 56, 78}, {{4, 5}, {6, 7, 8}}), ({45}, {{4, 5}}), ({56},
{{4, 5}, {6, 7, 8}}), ({78}, {{6, 7, 8}}). The components are the maximal connected sub-
coalitional networks, that is ({12, 23}, {{1}, {2, 3}}) and ({45, 56, 78}, {{4, 5}, {6, 7, 8}}).
These two components are depicted in Figure 2.
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Figure 2: A coalitional network and its components

Let Π(g, P ) denote the partition of N induced by (g, P ). That is, S ∈ Π(g, P ) if

and only if (i) there exists (h,Q) ∈ C(g, P ) such that S = N(h,Q), or (ii) S ∈ P such

that for all i ∈ S, i /∈ N(g, P ). Π({12, 23, 45, 56, 78}, {{1}, {2, 3}, {4, 5}, {6, 7, 8}}) =

{{1, 2, 3}, {4, 5, 6, 7}} in the previous example.

2.2 Partition value functions and allocation rules

Different coalitional networks lead to different values of overall production or overall utility

to players. These various possible valuations are represented via a partition value function.

A partition value function is a function v : GN × P → R. Let V be the set of all possible
partition value functions. A partition value function only keeps track of how the total

societal value varies across different coalitional networks. The calculation of partition value

is a richer object than a partition function in a partition game and/or a value function in

a network game, as it allows the value generated to depend both on the coalition structure
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and on the network structure. A partition value function v is component additive if∑
(h,Q)∈C(g,P )

v(h,Q) = v(g, P ).

Component additivity is a condition that rules out externalities across components but

still allows them within components. A coalitional network (g, P ) is strongly effi cient

relative to a partition value function v if v(g, P ) ≥ v(g′, P ′) for all g′ ∈ GN and all P ′ ∈ P.
We also wish to keep track of how that value is allocated or distributed among the

players in any coalitional networks. An allocation rule is a function Y : GN ×P×V → RN

such that∑
i∈N

Yi(g, P, v) = v(g, P ) for all v, g and P .

It is important to note that an allocation rule depends on g, P and v. This allows

an allocation rule to take full account of a player i’s role in the network and in the

coalition structure. This includes not only what the network configuration and coalition

structure are, but also and how the value generated depends on the overall network and

coalition structure. A coalitional network (g, P ) is Pareto effi cient relative to partition

value function v and allocation rule Y if no g′ ∈ GN and no P ′ ∈ P exist such that
Yi(g

′, P ′, v) ≥ Yi(g, P, v) for all i with strict inequality for some i.

We propose next three allocation rules that will be helpful for obtaining existence of

stable coalitional networks. For any component additive partition value function v ∈ V,
the component-wise egalitarian allocation rule Y ce is such that for any (h,Q) ∈ C(g, P )

and each i ∈ N(h,Q),

Y ce
i (g, P, v) =

v(h,Q)

#N(h,Q)
.

For any partition value function v ∈ V that is not component additive, Y ce(g, P, v) splits

the value v(g, P ) equally among all players. The component-wise egalitarian rule is one in

which the value of each component is split equally among the members of the component

provided the partition value function is component additive.

Let iS be the player i ∈ S, S ⊆ N , such that i ≤ j for all j ∈ S. For any component
additive partition value function v ∈ V, the component-wise dictatorial allocation rule Y cd

is such that for any (h,Q) ∈ C(g, P ) and each S ∈ Q,

Y cd
i (g, P, v) =

{
v(h,Q)/#Q i = iS ,

0 ∀i ∈ S, i 6= iS

For any partition value function v ∈ V that is not component additive, Y cd(g, P, v) splits

the value v(g, P ) equally among all players. The component-wise dictatorial rule is one in

7



which the value of each component is split equally among one member of each coalition

belonging to the component provided the partition value function is component additive.

For any component additive partition value function v ∈ V, the component-wise ma-
joritarian allocation rule Y cm is such that for any (h,Q) ∈ C(g, P ),

Y cm
i (g, P, v) =

 v(h,Q)/
∑
S∈Q

[
#S
2 + mod[#S, 2]

]
∀i ∈ S′ ⊆ S

0 ∀i ∈ S′′ ⊆ S

with S′ ∩ S′′ = ∅, S′ ∪ S′′ = S, #S′ ≥ #S′′ ≥ #S
2 − mod[#S, 2], and iS

′′
> j, ∀j ∈ S′,

with iS
′′
being the player i ∈ S′′, such that i ≤ j for all j ∈ S′′. For any partition

value function v ∈ V that is not component additive, Y cm(g, P, v) splits the value v(g, P )

equally among all players. The component-wise majoritarian rule is one in which the value

of each component is split equally among half members of each coalition belonging to the

component provided the partition value function is component additive.

2.3 Notions of stability

A simple way to analyze the coalitional networks that one might expect to emerge in the

long run is to examine a sort of equilibrium requirement that no group of players benefits

from altering the coalitional network. What about possible deviations?

Definition 3. A coalitional network (g′, P ′) is obtainable from (g, P ) via S, S ⊆ N , if

(i) ij ∈ g′ and ij /∈ g implies {i, j} ⊆ S, and

(ii) ij /∈ g′ and ij ∈ g implies {i, j} ∩ S 6= ∅, and

(iii) {S′ ∈ P ′ | S′ ⊆ N \ S} = {T \ S | T ∈ P, T \ S 6= ∅}, and

(iv) ∃ {S′1, S′2, ..., S′m} ⊆ P ′ such that ∪ml=1S′l = S.

Condition (i) asks that any new links that are added can only be between players

inside S. Condition (ii) requires that there must be at least one player belonging to S for

the deletion of a link.12 Condition (iii) embodies the assumption that no simultaneous

deviations are possible. So if players in S deviate leaving their coalition in P , non-deviating

players do not move. Condition (iv) allows deviating players in S to form one or several

coalitions in the new coalitional structure P ′. Non-deviating players do not belong to

those new coalitions.
12These first two conditions have been introduced by Jackson and van den Nouweland (2005) to define

the netwoks obtainable from a given network by a coalition S.
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Definition 4. A coalitional network (g, P ) is strongly stable with respect to partition

value function v and allocation rule Y if for any S ⊆ N , (g′, P ′) obtainable from (g, P ) via

S and i ∈ S such that Yi(g′, P ′, v) > Yi(g, P, v), there exists j ∈ S such that Yj(g′, P ′, v) ≤
Yj(g, P, v).

A coalitional network is said to be strongly stable if for any feasible deviation by a

coalition S from (g, P ) to (g′, P ′) we have that if some player i ∈ S gains then at least
another player j ∈ S should not gain and block the deviation from (g, P ) to (g′, P ′).

This definition of strong stability is due to Dutta and Mutuswami (1997). The definition

of strong stability of Dutta and Mutuswami considers a deviation to be valid only if all

members of a deviating coalition are strictly better off, while the definition of Jackson

and van den Nouweland (2005) is slightly stronger by allowing for a deviation to be valid

if some members are strictly better off and others are weakly better off.13 The weaker

definition has sense when transfers among players are not possible.

As in Drèze and Greenberg (1980), we may assume that coalitions are contracts binding

all members and that adding or deleting a link or modifying the existing coalition requires

the consent of coalition partners. Two different decision rules for consent are analyzed:

simple majority and unanimity.

Definition 5. A coalitional network (g, P ) is contractually stable under the unanimity

decision rule with respect to partition value function v and allocation rule Y if for any

S ⊆ N , (g′, P ′) obtainable from (g, P ) via S and i ∈ S such that Yi(g′, P ′, v) > Yi(g, P, v),

there exists k ∈ S(j) with S(j) ∈ P and j ∈ S such that Yk(g′, P ′, v) ≤ Yk(g, P, v).

Under the unanimity decision rule, the move from a coalitional network (g, P ) to any

obtainable coalitional network (g′, P ′) needs the consent of every deviating player as well

as the consent of every member of the initial coalitions of the deviating players. Then,

a coalitional network is contractually stable if any deviating player or any member of

the former coalitions of the deviating players is not better off from the deviation to any

obtainable coalitional network (g′, P ′).

Definition 6. A coalitional network (g, P ) is contractually stable under the simple major-

ity decision rule with respect to partition value function v and allocation rule Y if for any

13Notice that Jackson and van den Nouweland’s (2005) version of strongly stability implies pairwise

stability from Jackson and Wolinsky (1996). A network is pairwise stable if no player benefits from severing

one of her links and no two players benefit from adding a link between them, with one benefiting strictly

and the other at least weakly. However, Dutta and Mutuswami’s (1997) version of strongly stability only

implies the strict version of pairwise stability when no two players strictly benefit from adding a link

between them.
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S ⊆ N , (g′, P ′) obtainable from (g, P ) via S and i ∈ S such that Yi(g′, P ′, v) > Yi(g, P, v),

there exists

(i) l ∈ S such that Yl(g′, P ′, v) ≤ Yl(g, P, v), or

(ii) Ŝ ⊆ S(j) with S(j) ∈ P and j ∈ S such that Yk(g′, P ′, v) ≤ Yk(g, P, v) for all k ∈ Ŝ
and #Ŝ ≥ #S(j)/2.

Under the simple majority decision rule, the move from a coalitional network (g, P )

to any obtainable coalitional network (g′, P ′) needs the consent of every deviating player

as well as the consent of more than half members of each initial coalition of the deviating

players. Then, a coalitional network is contractually stable if any deviating player or half

members of some former coalition of the deviating players are not better off from the

deviation to any obtainable coalitional network (g′, P ′). Obviously, a coalitional network

that is strongly stable is contractually stable under the simple majority decision rule,

and a coalitional network that is contractually stable under the simple majority decision

rule is contractually stable under the unanimity decision rule. In fact each decision rule

requires the consent of coalitional partners above some proportion for a deviation not to

be blocked. Let q denote the proportion of coalition partners whose consent is needed for

a deviation not to be blocked, 0 ≤ q ≤ 1. For instance, the simple majority decision rule

reverts to a proportion q > 1
2 while the unanimity decision rule reverts to a quota q = 1.14

3 Two models of coalitional networks

3.1 The connections model with cost sharing

To illustrate both the framework of coalitional networks and the concepts of contractual

stability we consider an alternative version of Jackson and Wolinsky (1996) symmetric

connections model. Municipalities form communication links (roads, railway tracks or

waterways) with each other in order to be connected and form coalitions in order to

share communication costs. If municipality i is "connected" to municipality j, by a path

of t links, then municipality i receives a payoff of δt from her indirect connection with

municipality j. It is assumed that 0 < δ < 1, and so the payoff δt decreases as the path

connecting municipalities i and j increases; thus travelling a long distance is less valuable.

14The relationship between contractual stability under any decision rule embodied by a proportion q is

obvious: a proportion q′ < q refines stability. That is, the set of contractually stable coalitional networks

under q′ is (weakly) included in the set of contractually stable coalitional networks under q. Indeed, the

probability to block a deviation is greater the higher the proportion q. When the proportion approaches

zero (q → 0), coalitional membership has no matter in terms of consent.
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Each direct link ij results in a cost c to both i and j. This cost can be interpreted as the

cost a municipality must spend for building and maintaining a direct link with another

municipality. The communication costs are shared equally within coalitions. Municipality

i’s payoff from a network g in a coalition S(i) ∈ P is given by

Yi(g, P ) =
∑
j 6=i

δt(ij) − 1

#S(i)

∑
j∈S(i)

 ∑
k:jk∈g

c

 ,
where t(ij) is the number of links in the shortest path between i and j (setting t(ij) =∞
if there is no path between i and j). Inside each coalition, the consent of members may

be needed in order to modify the network and/or the coalition structure. The contractu-

ally stable coalitional networks in case of three municipalities under the simple majority

decision rule are depicted in Figure 3.
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Figure 3: Stable coalitional networks in the connections model with costs shared within groups

The contractually stable coalitional networks in case of three municipalities under the

simple majority decision rule are (∅, {{1}, {2}, {3}}) if and only if c > max{3(δ+δ2)/4, δ};
({12, 13, 23}, {{1}, {2}, {3}}) if and only if c < δ−δ2; (∅, {{1, 2, 3}}) if and only if c > 3δ/2;

({12, 13, 23}, {{1, 2, 3}}) if and only if c < min{δ − δ2, 3δ/4}; (∅, {{i, j}, {k}}) if and
only if c > max{3(δ + δ2)/4, δ}; ({ij, ik}, {{i}, {j}, {k}}) if and only if δ − δ2 < c < δ;

({ij, ik}, {{i}, {j, k}}) if and only if δ − δ2 < c < δ; ({ij, ik}, {{i, j}, {k}}) if and only
if c < min{δ + δ2, 4δ/3}; ({ij, ik, kj}, {{i, j}, {k}}) if and only if c < δ − δ2. While

the allocation rule depends on the coalitions in P , the partition value function does not

depend on the coalitions in P . Hence, the strongly effi cient coalitional networks are
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like the strongly effi cient networks of the original symmetric connections model where

each municipality only bears her own costs. The strongly effi cient coalitional networks

are ({ij, ik, kj}, {{i}, {j}, {k}}), ({ij, ik, kj}, {{i, j}, {k}}) and ({ij, ik, kj}, {{i, j, k}}) if
c < δ − δ2; ({ij, ik}, {{i}, {j}, {k}}), ({ij, ik}, {{i, j}, {k}}), ({ij, ik}, {{i}, {j, k}}) and
({ij, ik}, {{i, j, k}}) if δ − δ2 < c < δ + (δ2)/2; and, (∅, {{i}, {j}, {k}}), (∅, {{i, j}, {k}})
and (∅, {{i, j, k}}) if δ + (δ2)/2 < c. We have that, for any parameter values, there

is always a strongly effi cient coalitional network which is contractually stable under the

simple majority decision rule.

But what happens for more than three municipalities? For δ < c < δ+((n−2)/2)δ2, the

strongly effi cient coalitional networks consist of a star network associated to any coalition

structure but is never strongly stable. A coalitional network consisting of a star network

associated to a coalition structure where (i) the central municipality is a singleton (she is

alone in a coalition) is never contractually stable under the simple majority decision rule

because this central municipality has incentives to cut links, (ii) the central municipality

belongs to a coalition consisting of at least three municipalities is never contractually

stable under the simple majority rule because the partners of the central municipality

have incentives to break the coalition to become singletons. The last case to be considered

is the star network associated to a coalition structure where the central municipality forms

a coalition with a single partner. If δ + ((n − 2)/n)δ < c < δ + ((n − 2)/2)δ2 then both

the central municipality and her partner have incentives to cut all their links. However, if

δ < c < min{δ + ((n− 2)/n)δ, δ + ((n− 2)/2)δ2}, then the central municipality’s partner
does not want to cut the link she has with the central municipality. We conclude that,

for δ + ((n − 2)/n)δ < c < δ + ((n − 2)/2)δ2, no strongly effi cient coalitional network is

contractually stable under the simple majority decision rule; for δ < c < min{δ + ((n −
2)/n)δ, δ+((n−2)/2)δ2}, the coalitional network consisting of the star network associated
to a coalition structure where the central municipality forms a coalition with a single

partner is strongly effi cient and contractually stable under the simple majority decision

rule. For c < δ(1− δ), it is straightforward that the strongly effi cient coalitional network
consisting of the complete network and the coalition structure where all municipalities are

singletons is contractually stable under the simple majority rule.

Proposition 1. Take the symmetric connections model with communication costs shared

within groups. For c < δ(1 − δ), (g, P ) is contractually stable under the simple majority

rule and strongly effi cient if g is the complete network and #S(i) = 1 ∀i ∈ N . For

δ < c < min{δ + ((n − 2)/n)δ, δ + ((n − 2)/2)δ2}, (g, P ) is contractually stable under

the simple majority rule and strongly effi cient if g is a star network encompassing all

municipalities and #S(i∗) = 2, S(i∗) ∈ P with i∗ being the center of the star network.

12



For δ + ((n− 2)/n)δ < c < δ + ((n− 2)/2)δ2, no strongly effi cient (g, P ) is contractually

stable under the simple majority rule. For δ + ((n − 2)/2)δ2 < c, (g, P ) is contractually

stable under the simple majority rule and strongly effi cient if g is the empty network and

#S(i) = 1 ∀i ∈ N .

3.2 R&D coalitional networks

We develop a three-stage game in a setting with n competing firms that produce some

homogeneous good. Let qi denote the quantity of the good produced by firm i ∈ N . In
the first stage, firms decide the bilateral R&D collaborations (or links) they are going to

establish and the alliances (or coalitions) they want to form in order to maximize their

respective profits. The collection of pairwise links between the firms and the alliances

define a R&D coalitional network. In the second stage, firms can undertake R&D to look

for cost reducing innovations. The cost function for technology is given by γ
2 (xi)

2, where

xi is the research output undertaken by firm i, i ∈ N . Firms belonging to the same alliance
(or coalition) decide the amount of research output that each of them has to undertake in

order to maximize the joint profits of the alliance. Given a network g and the collection

of research outputs {x1, ..., xn}, the marginal cost of production of firm i is given by

ci(g, P ) = c− xi(g, P )−
∑
j:ij∈g
or j∈S(i)

xj(g, P )−
∑
j:ij /∈g

and j /∈S(i)

µ · xj(g, P )

where the parameter µ ∈ (0, 1) measures the public knowledge spillovers obtained from

indirectly connected partners and unconnected firms that are not in the same alliance.

Notice that the transmission of knowledge among linked firms and among firms in the

same alliance is fully appropriated. In the third stage, firms compete in quantities in

the oligopolistic market, taking as given the costs of production. Let p(q) = a − q be

the market-clearing price when aggregate quantity on the market is q ≡
∑

i∈N qi. More

precisely, p(q) = a − q for q < a, and p(q) = 0 otherwise, with a > 0. Given a R&D

coalitional network (g, P ), the profits of firm i ∈ N are given by

Yi(g, P ) =

a− qi(g, P )−
∑
j 6=i

qj(g, P )− ci(g, P )

 · qi(g, P )− γ

2
(xi(g, P ))2 .

This three-stage game is solved backwards. We first look for subgame perfect equilibria

of the multi-stage game made up of stage two to stage three. Then, stage one is solved

using the concept of contractual stability.

Suppose that n = 3 and γ = 4 (minimum value for γ that ensures that all equi-

librium outputs are positive for any µ ∈ (0, 1)). The third stage equilibrium can be
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easily computed as a function of the different firms’marginal costs for any given coali-

tional network (g, P ). The equilibrium quantity and the profits of firm i in any coali-

tional network (g, P ) are: qi(c1(g, P ), c2(g, P ), c3(g, P )) =
a−4ci+

∑
j cj

4 and Yi(g, P ) =

(qi(c1(g, P ), c2(g, P ), c3(g, P ))2 − γ
2 (xi(g, P ))2 with i ∈ N = {1, 2, 3}. Next equilibrium

research output levels are computed according to the R&D structure defined by any given

coalitional network (g, P ). Finally, the contractually stable coalitional networks under the

unanimity decision rule are depicted in Figure 4.15

a)

b)

c)

�
�
�
�

�
�
�
�

�
�
�
�

A
A
A
A

s
i

s k

s
j

s
i

s k

s
j

s
i

s k

s
j

s k
s
i

s
j

�
�
�
�

�
�
�
�

s
i

s k

s
j

s
i

s k

s
j

s
i

s k
s
j

s
i

s k
s
j

Figure 4: Contractually Stable coalitional networks in the RD model

Proposition 2. The contractually stable coalitional networks under the unanimity deci-

sion rule are:

a) (∅, {{i, j}, {k}}) and ({ij}, {{i, j}, {k}}), one coalition of two firms (linked or not) and
an isolated singleton firm if µ < 1

2 .

b) ({ik}, {{i, j}, {k}}) and ({ij, ik}, {{i, j}, {k}}), one coalition of two firms (linked or
not) with one of the two firms linked to the singleton firm if µ < 0.737.

c) (g, {{N}}), the grand coalition of firms with any possible network g, ∀g ∈ G3.

Note that the set of contractually stable coalitional networks under the unanimity

decision rule includes three different types of coalitional networks. It is interesting to note

that the network structure inside a coalition of a contractually stable coalitional network

does not affect the stability of the coalitional network since the transmission of information

can take place through the link or through the coalition. All firms get the same profits in

(g, {{N}}) regardless of the particular g. This is a general fact in this example. In case of
15All equilibrium expressions and proofs are available from the authors upon request.
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a coalition with two firms, the existence or not of a link between them does not affect the

level of profits they obtain. In case of no public spillovers, i.e. µ = 0, all the coalitional

networks in a), b) and c) are contractually stable. However, as the level of public spillovers

increases the set of contractually stable coalitional networks under the unanimity decision

rule shrinks. The asymmetric coalitional networks become unstable since the three firms

gain moving to the grand coalition due to the fact that a larger µ reduces the strategic

use of R&D output levels.

One interesting question is to investigate whether the effi cient coalitional networks

are included in the set of contractually stable coalitional networks. Note that, for this

example, effi ciency is attained when the grand coalition forms since joint industry profits

are maximized when the equilibrium research outputs are set jointly. Moreover, since

links are not costly, any network inside the grand coalition give rises the same level of

profits. Hence, the effi cient coalitional networks are (g, {{N}}) for all g ∈ G3. Thus,

the effi cient coalitional networks are contractually stable coalitional networks under the

unanimity decision rule for any µ.

Proposition 3. The contractually stable coalitional networks under the simple majority

decision rule are:

a) (∅, {{i, j}, {k}}) and ({ij}, {{i, j}, {k}}), one coalition of two firms (linked or not) and
an isolated singleton firm if µ < 1

2 .

b) ({ik}, {{i, j}, {k}}) and ({ij, ik}, {{i, j}, {k}}), one coalition of two firms (linked or
not) with one of the two firms linked to the singleton firm if µ < 0.737.

c) ({ij, ik, jk}, {{N}}) and ({ij, ik}, {{N}}), the grand coalition of firms with the com-
plete or the star networks for all µ.

d) (∅, {{N}}) and ({ij}, {{N}}), the grand coalition of firms with the empty or the par-
tially connected networks for all µ > 1

2 .

The change in the decision rule affects the set of contractually stable coalitional net-

works for small public spillovers. The coalitional networks with the empty or partially

connected networks and the grand coalition (part d) in Proposition 3) are unstable against

deviations of two firms (a simple majority of firms) who form a coalition leaving behind

the other firm. By doing so, the deviating firms obtain a significant strategic advantage

over the firm left alone that implies higher profits than the ones obtained under the grand

coalition. Therefore, when µ = 0, only parts a), b) and c) of Proposition 3 apply. How-

ever, coalitional networks with the complete or star networks and the grand coalition are

contractually stable for any value of µ. This is an interesting illustration of the claim

that coalition formation and network formation cannot be tackled independently. In this

particular example, any change in the network structure inside a coalition has no effect
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on firms profits but it has consequences on the stability of coalitional networks. In con-

trast with the unanimity decision rule case, not all the effi cient coalitional networks are

contractually stable coalitional networks under the simple majority decision rule for any

µ.

Finally, we investigate whether the effi cient coalitional networks are contractually sta-

ble under the unanimity and the simple majority decision rules for an arbitrary number of

firms, n ≥ 3. First of all, note that the research outputs chosen under the grand coalition

maximize the aggregate profits of the industry. Therefore, the effi cient coalitional networks

are contractually stable under the unanimity decision rule since any potential improve-

ment of a group of deviating firms reduces the profits of the non-deviating firms. Hence,

any deviation from the grand coalition will be blocked. Take now the case of no public

spillovers, µ = 0. Then, the effi cient coalitional network (∅, {{N}}) is not contractually
stable under the simple majority decision rule. The deviation of a coalition consisting of

n − 1 firms to (∅, {{N − i}, {i}}) is profitable for the deviating firms and they have the
majority inside the grand coalition. However, if µ = 1, the effi cient coalitional network

(∅, {{N}}) is stable against the same type of deviation. In fact, it is stable against any
deviation that splits the grand coalition into two coalitions. Indeed, the coalition that

benefits by deviating it is always the smaller one. Then, the non-deviating firms can

always block the deviation of the smaller coalition.

4 Stability and Pareto effi ciency

There can be many contractually stable coalitional networks in the connections model or

in the R&D model. However, it is easy to find an example where a contractually stable

coalitional network fails to exist. Take N = {1, 2, 3} and P = {{1}, {2}, {3}}. Payoffs
are Yi(∅, P ) = 1, Y1({23}, P ) = 1, Y2({23}, P ) = 2, Y3({23}, P ) = 4, Y1({13}, P ) = 4,

Y2({13}, P ) = 1, Y3({13}, P ) = 2, Y1({12}, P ) = 2, Y2({12}, P ) = 4, Y3({12}, P ) = 1,

Yi({13, 23}, P ) = 3, Yi({12, 13}, P ) = 3, Yi({12, 23}, P ) = 3, Yi({12, 13, 23}, P ) = 1, and

Yi(g, P ) = 0 ∀i ∈ N , ∀P 6= P , ∀g ∈ GN . The coalitional networks with positive payoffs
are depicted in Figure 4.

16



�
�
�
�

A
A
A
A

�
�
�
�

s
3

s 3
s
3

s
1

s 1
s
1

�
�
�
�

A
A
A
A

A
A
A
A

s
4

s 1
s
2

s
3

s 3
s
3

s
3

s 3
s
3

�
�
�
�

A
A
A
A

s
1

Pl.1

s 1Pl.2

s
1

Pl.3 s
2

s 4
s
1

s
1

s 2
s
4

and Yi(g, P ) = 0 ∀i ∈ N,

∀P 6= {{1}, {2}, {3}},

∀g ∈ GN .

Figure 4: Non-existence of contractually stable networks

We now study the existence of stable coalitional networks. Let gS be the set of all

subsets of S ⊆ N of size 2. Let

(h,Q)[S] = argmax
h⊆gS ,Q⊆P

s.t. (h,Q) is connected

v(h,Q)

#N(h,Q)

be the connected sub-coalitional network with the highest per capita value out of those

that can be formed by players in S ⊆ N . Given a component additive partition value

function v, find a coalitional network (g, P )v,ce through the following algorithm. Pick

some (g1, Q1) ∈ (h,Q)[N ]. Next, pick some (g2, Q2) ∈ (h,Q)[N \ N(g1, Q1)]. At stage k

pick some (gk, Qk) ∈ (h,Q)[N \∪i≤k−1N(gi, Qi)]. Since N is finite this process stops after

a finite number K of stages. The union of the components picked in this way defines a

coalitional network (g, P )v,ce which is Pareto effi cient.16

Proposition 4. Under a component additive partition value function v, a coalitional net-

work (g, P )v,ce defined by the preceding algorithm is strongly stable under the component-

wise egalitarian allocation rule Y ce.

Proof. Given the algorithm and the component-wise egalitarian allocation rule Y ce, the

players in N(g1, Q1) obtain the highest possible payoff they can get. So, no player in

16Jackson (2005) has proposed a similar algorithm for finding a network that is pairwise stable and

Pareto effi cient under the classic component-wise egalitarian rule.
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N(g1, Q1) will deviate from (g, P )v,ce. Players in any N(gk, Qk), k = 2, ...,K, obtain the

highest possible payoff they can get among the players in N \ ∪i≤k−1N(gi, Qi). However,

their payoff is smaller than the payoffof players in N(gj , Qj) with j = 1, ..., k−1. Although

players in N(gk, Qk) would like to be in any N(gj , Qj) with j = 1, ..., k − 1, no player in

that components would like to change its position in N(gj , Qj), j = 1, ..., k − 1, with the

position of any player in N(gk, Qk).

Let

(h,Q)[S] = argmax
h⊆gS ,Q⊆P s.t.
(h,Q) is connected

v(h,Q)( ∑
S′∈Q

(
#S′

2 + mod[#S′, 2]
)) .

be the connected sub-coalitional network out of those that can be formed by players in

S ⊆ N with the highest per capita value for a majority of players in each S′, S′ ∈ Q. Given
a component additive partition value function v, a similar algorithm as before provides us

a coalitional network (g, P )v,cm.

Proposition 5. Under a component additive partition value function v, a coalitional

network (g, P )v,cm defined by the preceding algorithm is contractually stable under the

simple majority decision rule and the component-wise majoritarian allocation rule Y cm.

Proof. Given the algorithm and the component-wise majoritarian allocation rule Y cm, a

majority of players in each coalition S′, S′ ∈ Q1, in the component (g1, Q1) ∈ (h,Q)[N ]

obtain the highest possible payoff they can get. So, any (g′, P ′) obtainable from (g, P )v,cm

via some coalition S containing some members of N(g1, Q1) would be blocked by the

majority of players in each coalition S′, S′ ∈ Q1. Moreover, a majority of players in each
coalition S′, S′ ∈ Qk, k = 2, ...,K, in the component (gk, Qk) ∈ (h,Q)[N\∪i≤k−1N(gi, Qi)]

obtain the highest possible payoff they can get among the players in N \∪i≤k−1N(gi, Qi).

So, any (g′, P ′) obtainable from (g, P )v,cm via some coalition S ⊂ N \ ∪i≤k−1N(gi, Qi)

containing some members of N(gk, Qk) would be blocked by the majority of players in

each coalition S′, S′ ∈ Qk. However, the majority of players in each S′, S′ ∈ Qk, in the
component (gk, Qk) receive a smaller payoff than a majority of players in each S′, S′ ∈ Qj ,
in each component (gj , Qj), for j = 1, ..., k−1. But any (g′, P ′) obtainable from (g, P )v,cm

via S, involving some players in some (gj , Qj), j = 1, ..., k − 1, would be blocked by a

majority of players in each coalition S′, S′ ∈ Qj .

Let

(h,Q)[S] = argmax
h⊆gS ,Q⊆P

s.t. (h,Q) is connected

v(h,Q)

#Q
.
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be the connected sub-coalitional network out of those that can be formed by players in

S ⊆ N with the highest per capita value for a single player in each S′, S′ ⊆ Q. Given a

component additive partition value function v, a similar algorithm as before provides us

a coalitional network (g, P )v,cd.

Proposition 6. Under a component additive partition value function v, a coalitional

network (g, P )v,cd defined by the preceding algorithm is contractually stable under the una-

nimity decision rule and the component-wise dictatorial allocation rule Y cd.

Proof. Given the algorithm and the component-wise dictatorial allocation rule Y cd, a

single player in each coalition S′, S′ ∈ Q1, in the component (g1, Q1) ∈ (h,Q)[N ] obtains

the highest possible payoff she can get. So, any (g′, P ′) obtainable from (g, P )v,cm via some

coalition S containing some members of N(g1, Q1) would be blocked by the player that

obtains the highest possible payoff in each coalition S′, S′ ∈ Q1. Moreover, a single player
in each coalition S′, S′ ∈ Qk, in the component (gk, Qk) ∈ (h,Q)[N \ ∪i≤k−1N(gi, Qi)]

obtains the highest possible payoff she can get among the players in N \∪i≤k−1N(gi, Qi)).

So, any (g′, P ′) obtainable from (g, P )v,cd via some coalition S ⊂ N \ ∪i≤k−1N(gi, Qi)

containing some members of N(gk, Qk) would be blocked by the player obtaining the

highest payoff in each coalition S′, S′ ∈ Qk. Finally, any (g′, P ′) obtainable from (g, P )v,cd

via S, involving some players in some (gj , Qj), j = 1, ..., k − 1, would be blocked by the

player receiving the highest payoff in each coalition S′, S′ ∈ Qj .

5 Community structures

Many real world social and economic networks are composed of many communities of

nodes, where the nodes of the same community are highly connected, while there are few

links between the nodes of different communities.17 The framework of coalitional networks

is general enough to study the emergence of "community structures" where links between

individuals belonging to different communities are infeasible. Suppose that two players

can be linked to each other only if they belong to the same coalition. Then, the set of

feasible coalitional networks becomes

{(g, P ) ∈ GN × P | ij ∈ g only if S(i) = S(j)}.

This situation may be interpreted as a limit case of community structures.

Proposition 7. Suppose that two players can be linked to each other only if they belong to

the same coalition. Then, under a component additive partition value function v, strongly
17See for instance Jackson (2008) or Wasserman and Faust (1994). Research on community structures

mainly deals with the detection of these communities in network data.
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effi cient community structures are always contractually stable under the unanimity decision

rule.

If there are no externalities among coalitions (which coincide with components since

players cannot be linked to players belonging to other coalitions), then it is possible to

stabilize the strongly effi cient community structures thanks to the unanimity decision rule,

and this, whatever the allocation rule. However, once only the consent of more than half

members of the initial coalitions of the deviating players is required, then we need to

impose a specific allocation rule to stabilize the strongly effi cient community structures.

Proposition 8. Suppose that two players can be linked to each other only if they belong

to the same coalition. Under a component additive partition value function v, strongly

effi cient community structures are contractually stable under the simple majority decision

rule and the component-wise majoritarian allocation rule.

Proof. Let {(g, P ) ∈ GN × P | ij ∈ g only if S(i) = S(j)} be the set of feasible coalitional
networks. Then, for any component additive partition value function v, the component-

wise majoritarian allocation rule Y cm is such that for any (h, S) ∈ C(g, P ), Y cm
i (g, P, v) =

v(h, S)[#S2 + mod[#S, 2]]−1 ∀i ∈ S′ ⊆ S and Y cm
i (g, P, v) = 0 ∀i ∈ S′′ ⊆ S, with S′∩S′′ =

∅, S′ ∪ S′′ = S, #S′ ≥ #S′′ ≥ #S
2 −mod[#S, 2], and iS

′′
> j ∀j ∈ S′. Let (g, P )∗ be an

effi cient coalitional network with P = {S∗1 , S∗2 , ..., S∗m}. First, any deviation from (g, P )∗

to any (g′, P ) by a coalition S ⊆ S∗j will be blocked because (g, P )∗ is effi cient and hence

in (g′, P ) players in S′ ⊆ S∗j are worse off than in (g, P )∗ and players in S′′ ⊆ S∗j are equal
off. Second, any deviation from (g, P )∗ to any (g′, P ′) by a coalition S = S∗1 ∪S∗2 ∪ ... with
P ′ = P \{S∗1 , S∗2 , ...}∪{S∗1∪S∗2∪...} will be blocked by all the deviating players in S∗1∪S∗2∪...
that now obtain a payoff of zero (and a positive payoff in (g, P )∗). Third, any deviation

from (g, P )∗ to any (g′, P ′) by a coalition S ⊆ S∗j with P ′ = P \ {S∗j } ∪ {S′j ∪S′′j ∪ ...} and
S∗j = S′j ∪ S′′j ∪ ... will be blocked by all the deviating players that now obtain a payoff of
zero in every S′j , S

′′
j , ..., with S

∗
j = S′j ∪ S′′j ∪ ... Fourth, any deviation from (g, P )∗ to any

(g′, P ′) by a coalition S with P ′ = P \ {S∗1 , S∗2} ∪ {S} ∪ {S∗1 \ (S∗1 ∩ S)} ∪ {S∗2 \ (S∗2 ∩ S)}
will be blocked by all the deviating players that now obtain a payoff of zero in (g′, P ′).

6 Conclusion

We have developed a theoretical framework that allows us to study which bilateral links

and coalition structures are going to emerge at equilibrium. We have introduced the notion

of coalitional network to represent a network and a coalition structure, where the network

specifies the nature of the relationship each individual has with her coalition members and
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with individuals outside her coalition. To predict the coalitional networks that are going

to emerge at equilibrium we have used the concepts of strong stability and of contractual

stability. Contractual stability requires that any change made to the coalitional network

needs the consent of both the deviating players and their original coalition partners. We

have shown that there always exists a contractually stable coalitional network under the

simple majority decision rule and the component-wise egalitarian or majoritarian allo-

cation rules. However, once we adopt the component-wise dictatorial allocation rule, a

contractually stable coalitional network always exists only under the unanimity decision

rule. Hence, requiring the unanimity for consent may be too strong since it can help to

support extreme allocations. Finally, we have shown that requiring the consent of group

members under the simple majority or the unanimity decision rule may help to reconcile

stability and effi ciency of coalitional networks or community structures.
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