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Abstract

A host of social situations feature graduated punishments. We explain this phe-
nomenon by studying a repeated public good game in which a social planner im-
perfectly monitors agents to detect shirkers. Agents cost of contributing is private
information and administering punishments is costly. A low punishment today im-
perfectly sorts agents by type: only low-cost agents contribute. The planner uses
this information optimally, punishing tomorrow’s (alleged) repeat shirkers harsher
than first-time shirkers. The threat of becoming branded as repeat offender allows
the planner to use a very mild punishment for first-time shirkers, attenuating the
costs associated with administering punishments. Graduated punishments are con-
sequently socially optimal as long as the population is not too homogeneous.
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1 Introduction

A host of social situations involve collective action problems: from the point of view of
the collective it is best if everybody acts in the interest of the group, yet it is individually
optimal to act differently. Examples include tax avoidance, the tragedy of the commons,
using polluting production technologies, and vote abstention. In many instances groups
or societies have managed to induce individuals to behave in the interest of the collective.
One important factor ensuring that individuals are inclined to choose the collectively pre-
ferred action is the presence of a monitoring institution that is able to punish (alleged)
wrongdoers. Many scholars studying collective action problems have observed that suc-
cessful punishment schemes often exhibit graduated sanctions, in which repeat offenders
are punished more severely than first-time offenders (e.g. Agrawal, 2003, Ellickson, 1991,
Ostrom, 1990, 2000, Wade, 1994). Graduated sanctions also appear in many judiciary
systems, stipulating that habitual offenders can or must be punished more severely than
first-time offenders.1 In its most extreme form graduated punishments are such that first-
time offenders receive a mere warning. Given its widespread use, it is surprising that this
phenomenon has received limited theoretical attention.

We present a theory that explains the prevalence of punishment schemes with graduated
punishments. We show that using graduated punishments is often optimal if monitoring
is imperfect, administering punishments is costly, and agents differ with respect to how
‘tempted’ they are to choose the selfish action.

More precisely, in our model a social planner faces a repeated public good problem.
It is socially efficient if all agents contribute to the public good in each period, but an
agent incurs a cost each time he contributes. The social planner monitors the behaviour
of individual agents, but monitoring is imperfect: some non-contributors (shirkers) escape
being detected and some contributors are found guilty of something they did not do. The
planner can administer punishments to alleged shirkers, but this entails a social cost.2

The individually borne cost of contributing to the public good differs among agents and
is either high or low. An agent’s cost type is private information. The planner maximizes
total welfare, i.e the total social benefits of the public good minus all costs.

Because punishing agents is costly, using a punishment that is sufficiently severe to
deter all agents from shirking need not be optimal. Indeed, in a one-shot setting such a
punishment is only optimal if the number of high-cost agents is sufficiently large. If this
number is not sufficiently large, then the social costs of (erroneously) administering severe
punishments to a large group of low-cost agents outweigh the benefits of deterring a small
group of high-cost agents from shirking. The planner then sets a low punishment and only
low-cost agents contribute to the public good. If agents are not only supposed to contribute

1For example, various state governments in the United States have enacted so called ‘Three Strikes
Laws’. Such laws require the state courts to hand down a mandatory and extended period of incarceration
to persons who have been convicted of a serious criminal offense on three or more separate occasions. See
also http://en.wikipedia.org/wiki/Three_strikes_law.

2These costs include the administrative and legal costs associated with punishing someone. They could
also include the cost of keeping someone in jail for some time.
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today, but also in future periods, then the planner can often improve upon this outcome
by employing graduated punishments.

Using graduated punishments instead of a uniform punishment improves welfare for two
reasons. Firstly, by imposing a mild sanction today the planner is able to (imperfectly)
‘sort’ agents by cost type: only low-cost agents contribute if punishments are low. As a
consequence, the planner can in the future (again imperfectly) tailor punishments to types
by imposing a harsh punishment on repeat offenders and a moderate one on first-time
offenders. Such tailoring enables the planner to induce a given amount of contributions in
a more cost-efficient way.

Secondly, the mere threat of becoming ‘branded’ as shirker and thereby moving from
the low punishment regime to the high punishment regime makes an agent reluctant to
shirk today: since monitoring is imperfect, being caught shirking today increases expected
future punishments, even if the agent plans to contribute in future periods. In other words,
an agent fears losing his reputation of being a contributor. This fear enables the planner
to reduce the punishment for first-time shirkers below the low punishment of the one-shot
setting (i.e. below the punishment that prevails if the number of high-cost agents is small).
The reputation effect is particularly strong if agents are patient, i.e. if agents have a long
horizon. In fact, for all cost parameters one can find a discount rate above which it suffices
to issue a mere warning to first-time offenders.

Using graduated punishments is not always optimal. If the society consists mainly of
high-cost agents, then using this punishment scheme would yield a very low level of public
good provision. To increase contributions, the planner then opts for a uniform punishment
that deters all agents from shirking. Nonetheless, because monitoring is imperfect, some
agents are still punished on the equilibrium path.3 On the other hand, if the vast majority
of agents incur the low cost when contributing, then most agents who end up in the high
punishment regime are low-cost agents. It can then be optimal to use the (uniform) low
punishment of the one-shot setting, as this leads to considerably lower punishment costs
without significantly reducing the level of aggregate contributions.

Our main results hinge crucially on the presence of type II errors, i.e. the possibility
that the planner falsely judges someone guilty of shirking. If type II errors were completely
absent, then only shirkers are punished. The presence of type II errors has two effects.
Firstly, if the planner would never erroneously punish contributors, then agents would not
mind losing their reputation and the planner would consequently be unable to reduce the
punishment to first-time shirkers below the low punishment of the one-shot setting. The
reason that only type II errors matter in the determination of the reputation effect is that
all agents contribute in each future period as soon as they move to the high punishment
regime. So, only type II errors lead to punishments being administered to agents who are
branded as shirkers. Secondly, absent type II errors the planner always ensures that high-
cost agents contribute in the one-shot setting. The only advantage of setting a punishment
that does not suffice to deter high-cost agents from shirking is that such a low punishment

3This is a common feature of equilibria of games with private information and imperfect monitoring.
See e.g. Green and Porter (1984).
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entails low social costs of administering punishments to low-cost agents. Yet, since low-cost
agents are only punished if a type II error occurs, this advantage does not play a role if
type II errors are never made.4

If the planner knew each agent’s cost of contributing to the public good, then sorting
agents by type would be redundant and the planner would never resort to graduated
punishments. She would then be able to perfectly deter shirking: it suffices to ‘promise’ a
given agent an expected punishment at least as large as this agent’s cost of contributing.5

Note that our framework not only applies to classic public good situations, but also
to law enforcement problems. The cost of contributing to the public good becomes the
opportunity cost of not committing some crime in the latter category. Furthermore, most
crimes bestow a negative externality upon society at large. This ranges from commonly
felt disgust following a gruesome murder to a reduction in the safety of online services
stemming from cybercrimes. Not engaging in criminal activities thence increases welfare
at the aggregate level in a similar fashion as contributing to a public good does.

Most situations of collective action are plagued by informational problems. Consider
for instance a groundwater basin shared by hundreds of farmers. Such basins can be
destroyed by overextraction.6 Whether a particular farmer extracts more water than he is
entitled to is difficult to determine: a sudden drop in the water level could equally well be
caused by overextraction by one of his neighbours. So, both type I and type II errors are
bound to occur. How ‘tempted’ a farmer is to overextract water depends on unobservable
psychological traits as well as the finer details of the microclimate and the soil composition
he faces. His cost type is consequently private information.

This paper is organized as follows. Section 2 introduces the main ingredients of the
model and presents the optimal punishment scheme of the one-shot setting. In Section
3 we study a two-period version of our model. The full-fledged dynamic model can be
found in Section 4. In Section 5 we consider some extensions and we relate our work to
the literature. Section 6 offers concluding remarks. All proofs are relegated to various
appendices.

2 The Environment

A social planner faces a public good problem. If a fraction π of the population contributes
to the public good, then the total social benefits of the public good amount to π × v.
However, contributing is costly for individuals. A fraction 1− ρ of the population consists
of agents who incur the high cost of γv when contributing, where γ < 1. The remaining
fraction ρ consists of agents who incur the low cost of (γ−α)v when contributing, for some

4Type I errors reduce the probability that shirking is detected. Making a type I error with some
probability p has the same impact on the optimal punishment(s) as only monitoring a sample containing
a fraction 1− p of the population: a larger p leads to higher punishments, but the expected punishments
remain constant.

5Since monitoring is imperfect, expected punishments are not equal to actual punishments.
6Ostrom (1990), chapter 4, provides analytical narratives of the collective action problems surrounding

the groundwater basins near Los Angeles.

4



α ∈ (0, γ). Importantly, an agent’s type (low-cost or high-cost) is private information. All
agents are risk-neutral. We normalize v to 1. We use the subscript L to refer to low-cost
agents and the subscript H to refer to high-cost agents.

Without any further rules (with associated sanctions) imposed by the social planner
no agent would contribute. Yet, because γ < 1, it is socially efficient for all agents to
contribute. The planner can monitor agents’ behaviour, enabling her to punish alleged
non-contributors. However, the planner’s monitoring technology is flawed: with probability
ε the planner draws the wrong conclusion when investigating a given agent’s behaviour,
where ε ∈ (0, 1

2
). So, only a fraction 1 − ε of the non-contributors are caught, whereas a

fraction ε of the contributors are found guilty of something they did not do.7 We assume
that monitoring agents comes at no cost, but that administering punishments to agents is
costly. Specifically, if the planner administers a punishment to an agent that reduces this
agent’s utility by f , then society bears a cost of βf , where β < 1. One can think of βf
as the administrative and legal costs associated with fining an agent or the cost of keeping
someone in jail for some time.

The planner tries to maximize total welfare by choosing the level of the punishments.
We assume that she can commit to this choice. Punishments are made public before agents
advance to the contribution stage. Total welfare consists of the social benefits of the public
good, the individually borne costs of contributing to the public good, and the costs of
administering punishments.8 In a one shot-setting total welfare W = W (f0) therefore
reads

W = ρ(1− γ + α)δL + (1− ρ)(1− γ)δH − Φ(δL, δH)βf0, (1)

where δL = 1 (δL = 0) if low-cost agents (do not) contribute, δH = 1 (δH = 0) if high-cost
agents (do not) contribute, and Φ(δL, δH) is the fraction of the population that is punished.
Of course, the agents’ actions δL and δH depend on the level of the punishment f0.

The planner can ensure that each agent contributes to the public good by choosing
sufficiently harsh punishments. However, since she would still punish a fraction ε of the
agents should everybody contribute, this outcome need not be optimal. We do assume,
however, that the planner prefers the ‘everybody-contributes’ outcome to the laissez-faire
outcome in which there is no public good provision at all. To ensure that the planner never
opts for laissez-faire, we maintain the following condition throughout the paper:

Condition 1 Laissez-faire is never optimal: 1− γ > 1−φ
2φ
βγ,

where φ := 1− 2ε > 0 signifies the quality of the planner’s monitoring technology. In Ap-
pendix A we show that Condition 1 suffices to ensure that the planner always prefers harsh
punishments to laissez-faire, even if all agents would incur the high cost when contributing
(ρ = 0). Condition 1 states that the gain in total welfare associated with one high-cost

7Note that the probability that the planner makes a type I error is equal to the probability that she
makes a type II error. In section 5 we relax this assumption.

8From a normative point of view, it seems natural not to include the actual punishments in the welfare
measure. In Section 5 we consider an extension of the model in which punishing agents who did in fact
contribute is detrimental to welfare.
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agent contributing (i.e. 1 − γ) exceeds the expected cost society bears when the planner
chooses a punishment level that is such that high-cost agents do indeed contribute. This
expected cost equals the marginal cost of administering punishments (β) times the proba-
bility that a high-cost agent who contributes is erroneously found guilty of shirking (1−φ

2
)

times the minimal punishment that is required to deter high-cost agents from shirking (γ
φ
).

Before we move to settings with more than one period, we derive the optimal strategy of
the planner in the one-shot setting. This static equilibrium outcome serves as a benchmark
for the two-period setting and the infinite-horizon setting that we discuss in the next
sections: in both settings the planner can always simply replicate the static outcome in each
period. However, in doing so the planner discards any information regarding agents’ types
that can be inferred from past actions. So, our analysis of the one-shot setting provides a
lower bound on the per-period welfare that can be attained in the other settings.

An agent contributes to the public good if and only if the associated expected costs do
not exceed the expected costs the agent faces when shirking. A low-cost agent consequently
contributes as long as γ − α+ εf0 ≤ (1− ε)f0, i.e. as long as f0 ≥ γ−α

φ
. A high-cost agent

contributes if and only if γ + εf0 ≤ (1 − ε)f0. This inequality reduces to f0 ≥ γ
φ
. So, the

planner must choose between a low punishment (φf0 = γ−α) which only induces low-cost
agents to contribute and a high punishment (φf0 = γ) which ensures that high-cost agents
also contribute. Of course, the latter option becomes more attractive as ρ decreases. This
observation is formalized as follows:

Proposition 1 In the one-shot setting the social planner commits to

φf ∗0 =

{
γ if ρ ≤ ρ̄

γ − α if ρ > ρ̄,
(2)

where

ρ̄ = 1−
1−φ
2φ
βα

1− γ + β(γ − α)
∈ (0, 1). (3)

Proof. See Appendix A.

Even though the cost of contributing to the public good incurred by a high-cost agent
is less than the social welfare generated by this contribution, the planner does not always
opt to incentivize the high-cost agents to contribute. The reason is that administering
punishments is socially costly. If the number of high-cost agents is small (ρ large), the
increase in the provision of the public good brought about by moving from the low pun-
ishment (φf0 = γ − α) to the high punishment (φf0 = γ) is small. Such a move would
also entail administering the high punishment instead of the low one to a fraction ε of the
low-cost agents. If the population consists mainly of low-cost agents the detrimental effect
on welfare of the higher punishments dominates the positive effect of more contributions.
Note that the planner is particularly inclined to simply ignore high-cost agents (i.e. ρ̄ is
relatively small) if there is a large cost difference between low-cost and high-cost agents
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(α large or γ small), if the cost of administering punishments is large (β large), or if the
planner makes a lot of mistakes (φ small).

The trade-off between higher contributions and lower social costs also plays a prominent
role in settings with multiple periods. Yet, it turns out that the planner can often use
information regarding agents’ types obtained in past periods to alleviate the social costs
of punishments.

3 The Two-Period Model

In this section we consider a setting in which agents are supposed to contribute to the
public good in two periods. An agent’s type is again private information. However, the
social planner does remember in the second period whether or not she has punished a given
agent in the first period. Just like in the one-shot setting the planner draws the wrong
conclusion with probability ε when investigating an agent’s behaviour. Drawing the wrong
conclusion with respect to a particular agent’s behaviour in period 1 does not affect the
probability with which she misjudges that agent’s behaviour in period 2.

Recalling who has been punished in the first period enables the planner to use differ-
entiated punishments in the second period, one for agents who have not been punished
in the first period (f2) and one for agents who have been punished (f̂2). Of course, in
the first period the planner can only use one punishment level (f1). We assume that the
planner announces all punishments at the start of the game and that she is able to commit
to these levels. Each agent employs backward induction to arrive at his optimal strategy.
The precise timing of the game is thus as follows:

0. The monitor announces f1, f2, and f̂2.

1a. Each agent decides whether or not to contribute (δL and δH are chosen).

1b. The monitor carries out investigations and administers punishments.

2a. Each agent decides whether or not to contribute.

2b. The monitor carries out investigations and administers punishments.

Payoffs are realized at the end of each period. Each agent minimizes his total expected
costs. The planner maximizes aggregate welfare W , the sum of total welfare in period 1
(W1) and total welfare in period 2 (W2).

Using two different punishments in period 2 need not be optimal. It might be optimal
to either incentivize all agents to contribute in both periods or to simply ignore high-cost
agents altogether. Obviously, if the planner decides to use only one punishment level, then
society is best off if she uses the one described in Proposition 1. Potential improvements
on this strategy are the subject of the next subsection.
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3.1 Analysis

Clearly, using two different punishments in the second period can only be optimal if low-
cost agents and high-cost agents behaved differently in the first period. The reason is
that the planner cannot distill any information regarding a given agent’s type from his
behaviour in period 1 should the two types employ the same strategy in that period. So,
using differentiated punishments requires agents choosing δL = 1 and δH = 0.9

Notice that, since the game ends after the second period, strategic motives do not
play a role in stage 2a: agents simply compare the expected costs associated with the two
possible choices and pick the one with the lowest expected costs. Therefore, if the planner
contemplates using two different punishments in period 2, she can confine attention to
f ∗2 = γ−α

φ
(for those who have not been punished in the first period) and f̂ ∗2 = γ

φ
(for those

who have been punished in the first period). This pair of punishments induces high-cost
agents who were punished in the first period to contribute in period 2. Moreover, each
low-cost agent, whether or not punished in period 1, decides to contribute in period 2
when faced with the pair (f ∗2 , f̂

∗
2 ). Lastly, high-cost agents who dodged being punished in

period 1 shirk again in period 2, as the expected punishment φf ∗2 is less than their cost of
contributing γ.10

The planner induces the choices δL = 1 and δH = 0 if she picks a moderate punishment
level f1 in period 1: it must be such that only low-cost agents opt to contribute in the first
period. Formally, the following incentive compatibility constraints must hold:

• Low-cost agents prefer to contribute in period 1 if and only if:

γ−α+ε(f1+γ−α+εf̂ ∗2 )+(1−ε)(γ−α+εf ∗2 ) ≤ (1−ε)(f1+γ−α+εf̂ ∗2 )+ε(γ−α+εf ∗2 ).

The left-hand side of this constraint consists of the expected costs a low-cost agent
faces when contributing in period 1. It equals the actual cost of contributing γ−α plus
expected costs associated with being erroneously punished in period 1 and/or period
2. The right-hand side consists of the expected costs a low-cost agent faces when
shirking in period 1. Note that we have used the fact that low-cost agents always
contribute in period 2 when faced with the pair (f ∗2 , f̂

∗
2 ). Using the expressions for

f ∗2 and f̂ ∗2 and the definition of φ reduces the constraint to

φf1 ≥ γ − α− 1−φ
2
α. (4)

• High-cost agents prefer to shirk in period 1 if and only if:

γ + ε(f1 + γ + εf̂ ∗2 ) + (1− ε)(1− ε)f ∗2 > (1− ε)(f1 + γ + εf̂ ∗2 ) + ε(1− ε)f ∗2 .
9Because low-cost agents are more inclined to contribute than high-cost agent are (given any first period

punishment f1), we can immediately discard the possibility that only high-cost agents contribute in period
1.

10Formally, expressions like φf∗2 denote a difference in expected punishment: φf∗2 = (1 − ε)f∗2 − εf∗2 is
the expected punishment faced when shirking minus the expected punishment faced when contributing.
We frequently omit the ”difference in” for ease of exposition.
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This constraint is derived in a similar fashion as the one pertaining to low-cost agents.
Observe that a high-cost agent only contributes in the second period if he has been
punished in the first period. The constraint for high-cost agents is equivalent to

φf1 < γ − 1+φ
2
α. (5)

It is not difficult to see that one can always find an f1 such that the two incentive compatibil-
ity constraints (4)-(5) are met simultaneously. In fact, if the planner opts for differentiated
punishments in period 2, then she sets

φf ∗1 = max{γ − α− 1−φ
2
α, 0}.

It remains to determine when differentiated punishments are optimal. The menu of
punishments f ∗ = (f ∗1 , f

∗
2 , f̂

∗
2 ) is optimal if the associated aggregate welfareW(f ∗) exceeds

the aggregate welfareW(f ∗0 ) generated when the planner uses the single punishment given
in (2) in both periods. In Appendix A we compare these two welfare expressions. This
comparison leads to

Proposition 2 There exist ρ̌ = ρ̌(α, β, γ, φ) < ρ̄ and ρ̂(α, β, γ, φ) > ρ̄ such that the social
planner maximizes aggregate welfare W by committing to the menu of punishments

f ∗1 = max{γ−α
φ
− 1−φ

2φ
α, 0}, f ∗2 = γ−α

φ
, f̂ ∗2 = γ

φ
(6)

as long as ρ ∈ [ρ̌, ρ̂]. If ρ < ρ̌ or ρ > ρ̂, then the social planner commits in both periods
to the single punishment given in (2). Furthermore, ρ̂ < 1 if and only if γ − α < 1−φ

2
α,

whereas ρ̌ > 0 for all parameter configurations.

Proof. See Appendix A.

If f ∗ used, then a low-cost agent always contribute, whereas a high-cost agent shirks
in period 1 and contributes in period 2 only if he is punished in period 1.

If the population is (all but) homogeneous (ρ close to 0 or 1), then the planner opts for
the single punishment given in (2) instead of graduated punishments.11 Of course, when
faced with a homogeneous population, the best the planner can do is to commit in both
periods to the smallest punishment that deters each agent from shirking.

The positive effects associated with using graduated punishments (i.e. using f ∗) instead
of a single punishment start playing a role as ρ departs from 0 or 1. If the population is
heterogeneous, then using graduated punishments allows the planner to (imperfectly) sort
agents by type. The reason is that in period 1 the punishment level f ∗1 is too low to
incentivize high-cost agents to contribute and as a result only low-cost agents contribute.
This implies that an agent who is caught shirking in period 2 for the second time is likely
to be a high-type. Because the planner does occasionally draw the wrong conclusion when
investigating agents’ behaviour, this mechanism only imperfectly sorts agents by type.

11If ρ̂ = 1, then the difference in aggregate welfare W(f∗)−W(f∗0 ) vanishes as ρ approaches 1.
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This sorting enables the planner to tailor second-period punishments to types to a large
extent. Since the vast majority of those who have been found guilty of shirking in period 1
are high-cost agents and high-cost agents can only be deterred from shirking by ‘promising’
them an expected punishment of at least γ, the planner announces a punishment of γ

φ
for

repeat offenders. On the other hand, an agent who is found guilty of shirking for the first
time in period 2 is probably not a high-cost agent. A punishment of γ−α

φ
therefore suffices

to deter most of the agents who were not punished in period 1 from shirking in period 2.
Recall that the choice between φf0 = γ − α and φf0 = γ in the one-shot setting is

a ‘choice between two evils’: choosing φf0 = γ − α leads to a suboptimal contribution
level (only a fraction ρ of the population contributes), whereas choosing φf0 = γ leads to
large costs of administering punishments. However, if the planner can (imperfectly) tailor
punishments to types, then this choice can be avoided. This has two consequences. Firstly,
with graduated punishments only high-cost agents who escaped being punished in period
1 shirk in period 2 and the contribution level in period 2 therefore exceeds ρ. Secondly, by
administering the severe punishment only to repeat offenders, the planner moderates the
aggregate costs of administering punishments.

If the population consists mainly of high-cost agents (ρ small), then using graduated
punishments would result in a very low level of public good provision in the first period.
At the same time a considerable part of the population would be punished in that period
(recall that a fraction 1+φ

2
of the high-cost agents ends up being punished if f ∗ is used).

These costs associated with using graduated punishments become smaller as ρ increases.
This explains why in general ρ̌ departs considerably from 0 whereas ρ̂ often equals 1.

Observe that f ∗1 is less than γ−α
φ

, the smallest punishment that deters low-cost agents
from shirking in the one-shot setting. The reason that the planner is able to incentivize
low-cost agents to contribute in period 1 with an expected punishment below γ−α is that
an agent found guilty of shirking in that period receives part of his ‘effective punishment’
indirectly. Such an agent not only faces the direct punishment f ∗1 , but he will also receive
the high punishment f̂ ∗2 instead of the lower punishment f ∗2 should he be found guilty of
shirking a second time. So, the threat of becoming known as a repeat offender, i.e. the
fear of losing one’s reputation, allows the planner to reduce the expected punishment used
in period 1 below the level that is required in a one-shot setting. Notice that the size
of this reputation effect simply equals the loss in expected utility associated with losing
one’s reputation: 1−φ

2φ
α is the difference between f̂ ∗2 and f ∗2 times the probability that a

contributing agent is erroneously found guilty of shirking.12

Whether the planner opts for graduated punishments depends crucially on the fraction
of low-cost agents ρ: using graduated punishments is only optimal if ρ ∈ [ρ̌, ρ̂]. The
following comparative statics results can be obtained:

12The size of the reputation effect is smaller if the corner solution f∗1 = 0 prevails. If φf∗1 = γ−α− 1−φ
2 α

and ρ = 1, then the reduction in aggregate punishments in period 1 due to the reputation effect exactly
equals the increase in aggregate punishments in period 2 caused by the fact that some agents receive the
punishment f̂∗2 instead of f∗2 . The planner therefore becomes indifferent between using f∗0 and using f∗ as
ρ→ 1 if the size of the reputation effect is 1−φ

2φ α. If the reputation effect is smaller, then it cannot offset

the detrimental effect f̂∗2 has on welfare and ρ̂ is consequently less than 1.
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Corollary 1 An increase in φ leads to an increase in ρ̌, whereas an increase in α, β, or
γ leads to a decrease in ρ̌.

Proof. See Appendix A.

To understand these results, recall that if the planner would have a perfect monitoring
technology at her disposal, then she would never use graduated punishments. In such an
ideal world the planner would announce a single punishment that is sufficiently severe to
deter both low-cost and high-cost agents from shirking. Since no mistakes would be made
during the monitoring stages, aggregate welfare would then amount to 2(1− γ + ρα), the
social benefits of the public good minus the costs of contributing if everybody contributes
in both periods. Such ‘perfect deterrence’ is not possible if φ is less than one. In fact, as the
monitoring technology deteriorates (φ decreases), the planner becomes increasingly keen
on moderating its punishment level(s). Using graduated punishments instead of a single
one does that. The threshold ρ̌ above which the planner opts for the menu of punishments
f ∗ consequently increases in φ. A similar reasoning explains why ρ̌ decreases in both β
and γ. Lastly, an increase in α decreases the social costs associated with administering the
punishments f ∗1 and f ∗2 . Using the menu f ∗ instead of f ∗0 = γ

φ
consequently becomes more

attractive as α increases. This explains why ρ̌ decreases in α.
The aggregate welfare that society enjoys when graduated punishments are used (as

well as the optimality of this option) depends crucially on the extent of the reputation
effect. In the two-period model an agent suffers from a bad reputation for at most one
period. Moreover, agents’ behaviour is bound to be prone to ’endgame effects’: losing one’s
reputation in period 2 has no effect on expected payoffs. Because of these reasons it is not
a priori clear whether our results carry over to settings with more than two periods. We
therefore investigate in the next section the relation between the agents’ horizon and the
viability of graduated punishments using a full-fledged dynamic model.

4 The Dynamic Model

Time t = 1, 2, 3, . . . is discrete. Each period t consists of three stages. In the first stage
each agent chooses between contributing to the public good and shirking. In the second
stage the social planner carries out investigations and punishes those agents who have been
found guilty of shirking. The last stage is a renewal stage: a fraction 1− ζ ∈ (0, 1) of the
population dies and is replaced by new agents. The probability that a certain agent dies
does not depend on his type (low-cost or high-cost), his behaviour with respect to the
public good, or the number of times he has been punished. So, each agent advances to the
next period with probability ζ. The population is again characterized by the parameters
α, γ, and ρ. In particular, a fraction ρ of each generation and thus of the population in
any period consists of low-cost agents. Note that since γ < 1, it is socially optimal if an
agent contributes in each period that he lives.

The social planner is immortal. Moreover, she keeps track of whether or not a given
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agent has been punished in the past.13 The quality of her monitoring technology is again
given by φ. She announces all punishment levels that might be applicable in period t at the
start of that period. She can choose to use two different punishments, one for agents who
have never been punished before (ft) and one for agents who have been punished at least
once (f̂t). Alternatively, she can administer the same punishment to all agents found guilty
of shirking, irrespective of their punishment record. Since the fraction low-cost agents is
always ρ, the planner chooses the punishment given in (2) in the latter case. After the
punishment levels for period t have been announced each agent decides whether or not to
contribute in that period.

Note that the population can be divided into four categories: low-cost agents who have
never been punished, low-cost agents who have been punished at least once, high-cost
agents who have never been punished, and high-cost agents who have been punished at
least once. We focus on the stationary equilibria of the model, i.e. equilibria that prevail
if the composition of the population with respect to the above categorization remains
unaltered as the economy moves from some period to the next one. We thus focus on the
very long run (t→∞).

In each period the planner aims to maximize the total welfare generated in that period.
Observe that a strategy of the planner that supports a stationary equilibrium in the present
setting would also support the corresponding stationary equilibrium of the game in which
the planner instead maximizes current welfare plus discounted future welfare, irrespective
of the discount rate. An agent tries to minimize his expected discounted current and
future costs. The only difference between the planner and an agent regarding their attitude
towards the future lies in the fact that the former is immortal whereas an agent only has a
probability of ζ to live on for another period. It is therefore natural to use this survival rate
as agents’ discount factor between periods. Note that ζ determines an agent’s expected
horizon: the expected horizon equals ζ

1−ζ , which is strictly increasing in ζ.14 Importantly,
payoffs are realized after the punishment stage, but before the renewal stage.

A stationary equilibrium is supported by a pair of punishment levels f ∗ and f̂ ∗ and
four contribution rules: δ∗L, δ̂∗L, δ∗H , and δ̂∗H . Here, δ∗j = 1 (δ∗j = 0) if a type j-agent who

has never been punished decides (not) to contribute, j = L,H. Likewise, δ̂∗j = 1 (δ̂∗j = 0) if
a type j-agent who has been punished at least once decides (not) to contribute, j = L,H.
Of course, the equilibrium contribution rules must be best responses to the equilibrium
punishment levels and vice versa.

The strategy of the planner depends crucially on the precise composition of the popula-
tion. We therefore first derive the composition of the population in the limit in Subsection
4.1 before we derive the stationary equilibria in Subsection 4.2. We skip any reference to
taking limits in these subsections if there is no risk of confusion.

13In Section 5 we discuss the possibility that the planner has imperfect recall.
14An agent stays alive for exactly k periods after the current period with probability ζk(1 − ζ). His

expected horizon thus equals
∑
k∈N kζ

k(1− ζ) = ζ
(1−ζ)2 (1− ζ).
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4.1 The Composition of the Population

Whether or not a given agent has been punished in the past is of course irrelevant if
the planner opts for the uniform punishment given in (2). Just like in the two-period
model graduated punishments can only be optimal if these punishments are such that
low-cost agents always contribute whereas high-cost agents only contribute if they have
been punished in past periods at least once. We can thus confine attention to the case
(δL, δ̂L, δH , δ̂H) = (1, 1, 0, 1).

Let q̂ (q) be the fraction of the population that has (never) been punished before.
Denote the fraction of the population that consists of low-cost agents who are in q (q̂) by
µ (µ̂).15 By construction q̂ = 1 − q and µ̂ = ρ − µ. From the above definitions and the
fact that a fraction 1 − ζ of the old population is replaced by pristine agents at the end
of each period one infers that in the stationary equilibrium q abides by the following ‘flow
equation’:

q =1− ζ + ζq ×
(

1+φ
2
δL

µ
q

+ 1−φ
2

(1− δL)µ
q

+ 1+φ
2
δH(1− µ

q
) + 1−φ

2
(1− δH)(1− µ

q
)
)

=1− ζ + ζφµ+ ζ 1−φ
2
q.

(7)

The right-hand side consists of the inflow of new agents (which equals 1 − ζ) and of the
agents who stay in q because they have not been punished in the previous period (which
equals 1+φ

2
times the fraction of contributors in q plus 1−φ

2
times the fraction of shirkers in

q). The flow equation for µ reads

µ = (1− ζ)ρ+ ζq ×
(

1+φ
2
δL

µ
q

+ 1−φ
2

(1− δL)µ
q

)
= (1− ζ)ρ+ ζ 1+φ

2
µ. (8)

Straightforward algebra yields the following:

Lemma 1 Suppose (δL, δH) = (1, 0). Then in the very long run one has:

q =
(1− ζ)(1− ζ 1+φ

2
+ ρζφ)

(1− ζ 1−φ
2

)(1− ζ 1+φ
2

)
, µ =

ρ(1− ζ)

1− ζ 1+φ
2

. (9)

Proof. See Appendix A.

Observe that
µ

q
= ρ×

1− ζ 1−φ
2

1− ζ 1−φ
2
− (1− ρ)ζφ

> ρ,

i.e. in q the fraction of low-cost agents exceeds ρ. This is intuitive: because low-cost agents
in q do contribute, most of them stay in q. On the other hand, the majority of the high-cost
agents, being found guilty of shirking, move to q̂ and hence 1− µ̂

q̂
> 1− ρ.

The above results regarding the composition of the population enable us to determine
the stationary equilibria of the dynamic model. This is done in the next subsection.

15We allow ourselves some abuse of notation by using q for the fraction of the population that has never
been punished before as well as for the set of agents with this feature. A similar remark applies to q̂.
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4.2 Results

An agent minimizes his expected discounted costs by choosing between contributing and
shirking.16 Denote the continuation cost of a type j-agent who is in q (q̂) by Cj (Ĉj),
j = L,H. Then agents’ equilibrium behaviour is governed by the following four Bellman
equations:

• Bellman equation for low-cost agents who have never been punished:

CL = min
δ∈{0,1}

[
δ
(
γ−α+ 1−φ

2
(f + ζĈL) + 1+φ

2
ζCL

)
+ (1− δ)

(
1+φ

2
(f + ζĈL) + 1−φ

2
ζCL

)]
.

(10)
The expected discounted costs a low-cost agent who has never been punished incurs
should he contribute (δ = 1) is given by the δ-part of the right-hand side of this
equation. If such an agent contributes, then he incurs the cost of contributing γ−α.
With probability 1−φ

2
he is erroneously found guilty of shirking. If so, he is punished

by an amount f and moves to q̂. If the planner does not make a mistake (which
happens with probability 1+φ

2
), then he is not punished and stays in q. If the agent

decides to shirk (the (1 − δ)-part), then the planner detects him misbehaving with
probability 1+φ

2
, in which case the agent is punished by an amount f and moves to

q̂. With probability 1−φ
2

he escapes being punished and thus stays in q. In all cases
the agent continues to the next period with probability ζ.

• Bellman equation for low-cost agents who have been punished before:

ĈL = min
δ∈{0,1}

[
δ
(
γ − α + 1−φ

2
f̂
)

+ (1− δ)1+φ
2
f̂ + ζĈL

]
. (11)

This equation (and the ones pertaining to high-cost agents displayed below) is con-
structed in a similar fashion as (10) is. Notice that an agent cannot escape from
q̂. So, CL is absent from (11).17 Furthermore, agents in q̂ receive the punishment f̂
when found guilty of shirking.

• Bellman equation for high-cost agents who have never been punished:

CH = min
δ∈{0,1}

[
δ
(
γ+ 1−φ

2
(f+ζĈH)+ 1+φ

2
ζCH

)
+(1−δ)

(
1+φ

2
(f+ζĈH)+ 1−φ

2
ζCH

)]
. (12)

• Bellman equation for high-cost agents who have been punished before:

ĈH = min
δ∈{0,1}

[
δ(γ + 1−φ

2
f̂) + (1− δ)1+φ

2
f̂ + ζĈH

]
. (13)

16Clearly, if low-cost or high-cost agents would employ a mixed strategy, then an infinitesimal increase
in (one of) the punishment(s) would lead to an upward jump in contributions. This effect renders mixed
strategy equilibria impossible. We can thus confine attention to pure strategies.

17If the planner would have limited recall, a possibility that is explored in Section 5, then an agent who
is currently in q̂ can return to q. The continuation cost ĈL would in that case depend on CL.
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Just like in the two-period model, any equilibrium in which two different punishments
(f 6= f̂) are used, must be such that low-cost agents always contribute, whereas a high-cost
agent only contributes when in q̂. One easily verifies that δ̂L = 1 is optimal as long as
φf̂ ≥ γ − α and that δ̂H = 1 is optimal as long as φf̂ ≥ γ. Consequently, if the planner
does use differentiated punishments, then f̂ = γ

φ
. Combining this observation with the

strategies δ̂L = δ̂H = 1 yields

ĈL
∣∣
f 6=f̂ =

γ − α + 1−φ
2φ
γ

1− ζ
, ĈH

∣∣
f 6=f̂ =

γ + 1−φ
2φ
γ

1− ζ
. (14)

These continuation costs are simply the discounted costs of contributing in each period
plus the discounted expected costs of being (erroneously) punished.

Low-cost agents in q decide to contribute if γ − α ≤ φ(f + ζ(ĈL − CL)), as can be
gathered from (10). On the other hand, by rewriting (12) one sees that high-cost agents
in q do not contribute as long as γ > φ(f + ζ(ĈH − CH)). In Appendix A we show that
with differentiated punishments these incentive compatibility constraints are equivalent to

φf ≥ γ − α− ζ
1−ζ

1−φ
2
α, φf < γ. (15)

Observe that the incentive compatibility constraint of low-cost agents resembles its
counterpart in the two-period setting (see (4)). The reduction in punishment 1−φ

2φ
α (i.e. the

size of the reputation effect) that the planner uses if she employs differentiated punishments
in the two-period setting is now multiplied by ζ

1−ζ , an agent’s expected horizon. If ζ = 1
2
,

then this expectation equals 1 and the constraint reduces to the one of the two-period
setting (in which the expected number of future periods is also 1). Since ζ

1−ζ increases in
ζ, the smallest punishment that ensures that low-cost agents in q contribute decreases in
the discount factor ζ. In fact, if ζ is sufficiently large, it suffices to merely ‘warn’ agents in
q (i.e. f ∗ = 0). This is intuitive: the larger ζ is, the more important expected future costs
are (relative to costs incurred in the current period) and the more agents fear moving to q̂
and the lower f ∗ consequently can be.

The incentive compatibility constraint of high-cost agents does differ dramatically from
its counterpart (5). The reason is that the planner uses at most two punishment levels in
the current setting, whereas she uses three levels (the menu f ∗) in the two-period setting
if using differentiated punishments is optimal. Since both the expected punishment for
agents in q̂ and a high-cost agent’s cost of contributing are equal to γ, a high-cost agent
simply refrains from contributing when in q as long as the expected punishment for agents
in q is less than γ.

Clearly, since γ − α− ζ
1−ζ

1−φ
2
α < γ, the planner can always find an f such that agents

opt for (δL, δH) = (1, 0). In Appendix A we show that inducing these choices can be
optimal. In fact:

Proposition 3 There exist ρ̌ = ρ̌(α, β, γ, φ, ζ) < ρ̄ and ρ̂ = ρ̂(α, β, γ, φ, ζ) > ρ̄ such that
the social planner maximizes per-period welfare by committing to the pair of punishments

f ∗ = max{γ−α
φ
− ζ

1−ζ
1−φ
2φ
α, 0}, f̂ ∗ = γ

φ
(16)
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as long as ρ ∈ [ρ̌, ρ̂]. If ρ < ρ̌ or ρ > ρ̂, then the social planner commits to the single
punishment given in (2). Furthermore, ρ̂ < 1 if and only if γ − α < ζ

1−ζ
1−φ

2
α, whereas

ρ̌ > 0 for all parameter configurations.

Proof. See Appendix A.

If graduated punishments are used, then low-cost agents always contribute, whereas high-
cost agents shirk as long as they have never been punished. On average, a high-cost agent
shirks 1

1−ζ 1−φ
2

times.18

The structure of the optimal graduated punishments scheme in the dynamic setting
departs in several respects from the one we obtained in Proposition 2 for the two-period
setting. In the latter setting agents only fear losing their good reputation in the first period.
The incentives of agents consequently differ across periods and the planner therefore has
to use three punishment levels when opting for graduated punishments: one for those
found guilty of shirking in period 1, one for first time offenders in period 2, and one for
repeat offenders in that period. Only two punishment levels are used in the stationary
equilibrium of the dynamic setting. The punishment level that is not used in the dynamic
setting is γ−α

φ
, the punishment that is administered in period 2 of the two-period setting

to first-time offenders. These agents do not mind losing their good reputation. A loss
of reputation always increases an agent’s expected discounted future costs in the dynamic
setting. In the dynamic setting the planner can therefore allow herself to always administer
the cost-efficient punishment f ∗ to (alleged) first time offenders instead of the more costly
punishment γ−α

φ
.

The cost reduction that the planner (maximally) achieves by using graduated punish-
ments instead of a uniform punishment scheme (i.e. ζ

1−ζ
1−φ
2φ
α) is the size of the reputation

effect (1−φ
2φ
α) times the expected horizon ( ζ

1−ζ ). As ζ becomes sufficiently large, the plan-
ner arrives at a corner solution in which she merely issues warnings to first time offenders
(f ∗ = 0). Even though such a solution leads to zero costs of punishing first-time offenders,
it is suboptimal if the fraction of low-cost agents ρ is very large. The explanation of this
result has already been alluded to in footnote 13: If ρ = 1 and f ∗ = γ−α

φ
− ζ

1−ζ
1−φ
2φ
α , then

the reduction in aggregate punishments to alleged first-time offenders due to the reputation
effect exactly equals the increase in aggregate punishments to alleged repeat offenders due
to the fact that they receive the punishment γ

φ
instead of γ−α

φ
. However, if γ−α

φ
< ζ

1−ζ
1−φ
2φ
α,

then the planner, being forced to set f ∗ = 0, cannot fully exploit the reputation effect and
the reduction in aggregate punishments to alleged first-time offenders consequently drops
below the increase in aggregate punishments to alleged repeat offenders.

Intuitively, if both ρ and ζ are close to 1, then the population consists mainly of (long
lived) low-cost agents. Because ζ is large, it is very likely that such a low-cost agent spends

18With probability 1+φ
2 + 1−φ

2 (1− ζ) = 1− ζ 1−φ
2 a shirking high-cost agent is caught shirking or fails to

advance to the next period. In both cases he stops shirking. With the complementary probability ζ 1−φ
2

he advances to the next period and shirks in that period. So, the expected number of times a high-cost
agent shirks is

∑∞
k=0(k + 1)(1− ζ 1−φ

2 )(ζ 1−φ
2 )k = 1

1−ζ 1−φ
2

.
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a large part of his life in q̂: because monitoring is imperfect, the probability that a (law-
abiding) low-cost agent is found guilty of shirking at least once in τ periods goes to 1 as
τ →∞. In fact, q̂ = 1− q, the fraction of the population that has been punished at least
once, converges to 1 as ζ ↑ 1, as can be inferred from (9). So, if ρ and ζ are both large,
then the vast majority of agent in q̂ are low-cost-agents. Administering the punishment
f̂ ∗ = γ

φ
to such agents is clearly suboptimal: it suffices to commit to a punishment of γ−α

φ

to deter these agents from shirking. Since the number of high-cost agents in q̂ is negligible
if ρ is close to 1, administering the punishment f̂ ∗ to repeat offenders is dominated by
administering the more cost-efficient punishment γ−α

φ
. The planner therefore does not use

graduated punishments if ρ and ζ are both close to 1.
The comparative statics with respect to ρ̌ do not differ qualitatively from those obtained

for the two-period model. Summarizing:

Corollary 2 An increase in φ leads to an increase in ρ̌, whereas an increase in α, β, γ,
or ζ leads to a decrease in ρ̌.

Proof. See Appendix A.

5 Discussion

In this section we investigate the robustness of our results by considering some extensions
and discuss our work’s relation to the literature.

5.1 Extensions

Differing Type I and Type II Errors : We have assumed in the previous sections that the
planner’s monitoring technology is such that the probability that she fails to detect a shirker
(a type I error) equals the probability that she falsely judges someone guilty of shirking (a
type II error). It is very likely that monitoring technologies are in general prone to both
types of mistakes. Yet, the assumption that the associated probabilities are equal is rather
strong. Our calculations reveal that relaxing this assumption does not affect the nature of
the prevailing equilibrium. It does reveal that type II errors are essential to the optimality
of graduated punishments: if the planner would never make type II errors, then she would
never opt for graduated punishments. By contrast, graduated punishments can be optimal
if the planner never makes type I errors.

Consider the two-period model of Section 3, but with the probability ε that an error
occurs replaced by two probabilities: a probability εI ∈ (0, 1

2
) that a type I error occurs

and a probability εII ∈ (0, 1
2
) that a type II error occurs. The quality of a monitoring

technology with this more general specification reads φ̃ := 1− εI − εII > 0. The following
results pertaining to this generalization hold:

17



Proposition 4 Suppose laissez-faire is never optimal.19 Then:

• In the one-shot setting the planner commits to

φ̃f̃ ∗0 =

{
γ if ρ ≤ ˜̄ρ

γ − α if ρ > ˜̄ρ,
(17)

where

˜̄ρ = 1− εIIβα

φ̃
(
1− γ + β(γ − α)

) .
• In the two-period setting there exist ˜̌ρ < ˜̄ρ and ˜̂ρ > ˜̄ρ such that the planner maximizes

aggregate welfare by committing to the menu of punishments

f̃ ∗1 = max{γ−α−εIIα
φ̃

, 0}, f̃ ∗2 = γ−α
φ̃
,

˜̂
f ∗2 = γ

φ̃
(18)

as long as ρ ∈ [ ˜̌ρ, ˜̂ρ]. If ρ < ˜̌ρ or ρ > ˜̂ρ, then the planner commits in both periods to
the single punishment given in (17). Furthermore, ˜̂ρ < 1 if and only if γ−α < εIIα,
whereas ˜̌ρ > 0 for all parameter configurations.

Proof. See Appendix B.

Comparing Proposition 4 with Propositions 1-2 reveals that in the one-shot setting as
well as in the two-period model the probability εII that the planner erroneously punishes
someone who did contribute plays a more prominent role than the probability εI that the
planner fails to detect a shirker. To understand the relation between ˜̄ρ and εII , recall that
a fraction εII is punished if φ̃f̃ ∗0 = γ is used, whereas a fraction ρεII + (1 − ρ)(1 − εI) is
punished if φ̃f̃ ∗0 = γ−α. In words, if the planner moves from φ̃f̃ ∗0 = γ to φ̃f̃ ∗0 = γ−α, then
she stops making type II errors related to high-cost agents, but she starts making type I
errors related to those agents. This move therefore leads to an increase of (1− ρ)φ̃ in the
fraction of the population that is punished. Such an increase makes using φ̃f̃ ∗0 = γ − α
instead of φ̃f̃ ∗0 = γ less attractive. The second disadvantage of the low punishment stems
from the fact that high-cost agents do not contribute if the punishment is low. These two
disadvantages are the building blocks of the denominator of 1− ˜̄ρ. The sole advantage of
using φ̃f̃ ∗0 = γ − α instead of φ̃f̃ ∗0 = γ is that the punishment γ−α

φ̃
is, of course, less costly

than the punishment γ

φ̃
. This reduction in punishment costs only applies to the fraction εII

of the population that would be punished if the high punishment were used, explaining the
fact that the low punishment is never used if type II errors do not occur (˜̄ρ = 1 if εII = 0).
Because a low-cost agent contributes in both periods, the probability that such an agent is
found guilty of shirking in period 2 is simply the probability εII that a type II error occurs.

So, the reputation effect equals
˜̂
f ∗2 − f̃ ∗2 times εII and hence f̃ ∗1 = max{γ−α−εIIα

φ̃
, 0}. Note

that the reputation effect vanishes as εII approaches 0.

19This condition boils down to 1− γ > εII
φ̃
βγ.
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Punishing the Innocent : Making a type II error results in an injustice: an innocent person
is punished for an offense he did not commit. In general societies appear to be more
worried about such injustices than about possible type I errors. Indeed, several authors
have pointed out that there may be social costs associated with the conviction of law-
abiding citizens above and beyond the costs associated with administering punishment.20

This idea can be incorporated in the extension that allows for differing type I and type
II errors by attaching an additional weight δ > 0 to punishments stemming from type II
errors. In other words, the marginal social cost of punishing someone who did contribute
becomes β+ δ, whereas the marginal social cost of punishing a shirker remains equal to β.
Our main results continue to hold in this more general setting:

Proposition 5 Suppose punishing the innocent entails an additional social cost. Specifi-
cally, let the marginal social cost of punishing a contributor be β + δ, δ > 0, instead of β
(the marginal social cost of punishing a shirker). Then for any δ > 0 such that laissez-faire
is never optimal one has:21

• In the one-shot setting the planner commits to

φ̃f̃ ∗0 (δ) =

{
γ if ρ ≤ ˜̄ρ(δ)

γ − α if ρ > ˜̄ρ(δ),
(19)

where

˜̄ρ(δ) = 1−
εII
φ̃

(β + δ)α

1− γ + β(γ − α)− εII
φ̃
δ(γ − α)

decreases in δ.

• In the two-period setting there exist ˜̌ρ(δ) < ˜̄ρ(δ) and ˜̂ρ(δ) > ˜̄ρ(δ) such that the planner

maximizes aggregate welfare by committing to the menu of punishments f̃
∗

given in
(18) as long as ρ ∈ [ ˜̌ρ(δ), ˜̂ρ(δ)]. If ρ < ˜̌ρ(δ) or ρ > ˜̂ρ(δ), then the planner commits
in both periods to the single punishment given in (19). Furthermore, ˜̌ρ(δ) is strictly
decreasing in δ, whereas ˜̂ρ(δ) is weakly decreasing in δ.

Proof. See Appendix C.

If punishing the innocent entails an additional social cost (δ > 0), then using the high
punishment γ

φ̃
is particularly unattractive: as this punishment ensures that all agents con-

tribute, the number of type II errors is maximal should the planner use this punishment.
The parameter range for which the optimal punishment of the one-shot setting is γ

φ̃
there-

fore shrinks as δ increases. In other words, ˜̄ρ(δ) decreases in δ.

20See for instance the discussion in Chu et al. (2000, p. 130).
21Laissez-faire is never optimal if and only if 1 − γ > εII

φ̃
(β + δ)γ. This condition obviously becomes

more difficult to meet as δ increases.
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The same reasoning explains why ˜̌ρ(δ) decreases in δ. If ρ ≤ ˜̄ρ(δ), then in the two-
period setting the planner chooses between the high uniform punishment and graduated
punishments. The larger δ, the larger the social costs associated with the first option
relative to the social costs associated with the second option, implying that indeed ˜̌ρ′(δ) <
0. If ρ > ˜̄ρ(δ), then the planner chooses between the low uniform punishment and graduated
punishments. Using the low uniform punishment minimizes the number of type II errors
that occur. The planner is consequently more inclined to use the low uniform punishment
instead of graduated punishments the larger δ is. Yet, if δ is such that laissez-faire is never
optimal, then the effect of δ on aggregate welfare is small compared to the advantages of
using graduated punishments. The upper bound ˜̂ρ(δ) therefore only decreases in δ if the
upper bound is already less than 1 in the absence of δ, i.e. if the planner administers
warnings to first-time shirkers.

Limited Recall : In the dynamic model of Section 4 the planner has a perfect memory.
This is not only a strong assumption, but it might also be suboptimal. The reason is that
an agent, once he is in the high punishment regime q̂, cannot return to q if the planner
‘refuses to forget’ that the agent has been found guilty of shirking in some past period.
The planner is consequently forced to apply the high punishment f̂ ∗ each time this agent
is erroneously found guilty of shirking. Because monitoring is imperfect, this happens
with positive probability in equilibrium. With limited recall, however, the planner enables
herself to reduce the cost of administering punishments by ‘moving agents back to q’.
On the other hand, such ‘forgetting’ comes at a cost. Compared to the perfect memory
setting agents spend on average more time in q if the planner has limited recall. High-cost
agents consequently shirk more frequently in the latter setting. Furthermore, losing one’s
reputation is less frightening if a stay in q̂ is only temporary. The size of the reputation
effect is thus bound to be smaller if the planner has limited recall.

Our calculations indicate that in general the costs of forgetting outweigh its benefits.
Yet, using graduated punishments in the presence of limited recall often improves welfare
compared to using a uniform punishment in the same way as using graduated punishments
with perfect recall does. Formally:

Proposition 6 Suppose the planner can only remember whether or not an agent has
received a punishment in the previous period. Then in the stationary equilibrium she
uses graduated punishments instead of a uniform punishment if ρ ∈ [ρ̌lim, ρ̂lim], for some
ρ̌lim ∈ (0, ρ̄) and ρ̂lim ∈ (ρ̄, 1].22 The associated punishments abide by

φf ∗lim = max{γ − α−
ζ 1−φ

2

1 + ζφ
α, 0}, φf̂ ∗lim = max{γ −

ζ 1+φ
2

1 + ζφ
α,

1

1 + ζ 1+φ
2

γ}.

Furthermore, if using graduated punishments welfare-dominates the uniform punishment

22The thresholds ρ̌lim and ρ̂lim exhibit the same behaviour as their counterparts ρ̌ and ρ̂ of the perfect
recall model. In particular, ρ̂lim = 1 if and only if the punishment that alleged first-time offenders receive
equals γ − α minus the reputation effect.
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scheme, then the planner prefers perfect recall to limited recall as long as she would be able
to fully exploit the reputation effect (i.e. φf ∗ = γ − α− ζ

1−ζ
1−φ

2
α ≥ 0).23

Proof. See Appendix D.

The advantage of limited recall that we already mentioned, i.e. the reduced frequency
with which the planner administers the high punishment associated with repeat offenders,
is especially important if the population consists mainly of long-lived low-cost agents (both
ρ and ζ are large). If the planner opts for graduated punishments with perfect recall in
such a case, then the high punishment f̂ ∗ will quite often be used to punish law-abiding
(low-cost) agents who happen to reside in q̂ by mistake. As is explained in Section 4, the
planner prefers the uniform punishment scheme to the graduated punishments with perfect
recall should this problem be severe. Using limited recall instead of perfect recall certainly
alleviates the problem, but it does not take it away completely. The planner therefore
resorts to the uniform punishment scheme.24

The expression for f̂ ∗lim reveals that limited recall has a second advantage vis-à-vis
perfect recall. Since agents in q̂ are able to return to q, the punishment such agents receive
when found guilty of shirking is in general lower than f̂ ∗, the punishment they would
receive if the planner had perfect recall. The reason is that agents in q̂ have an incentive to
‘regain a good reputation’: if such an agent contributes, then he does not only dodge (with
large probability) being punished, but he also moves back to the low punishment regime
q (with the same probability). So, contributing when in q̂ bestows a benefit (in expected
terms) on the contributing agent, thereby reducing the net expected cost of contributing.
The planner can consequently set the punishment for repeat offenders below f̂ ∗ if she has
limited recall. Despite this second advantage of limited recall, the downsides of limited
recall - more shirking by high-cost agents, less fear of losing one’s reputation when in q -
outweigh its merits, rendering graduated punishments with limited recall inutile should the
planner possess a perfect memory. Nevertheless, if the planner can only choose between
graduated punishments with limited recall and the uniform punishment, then she does
choose graduated punishment with limited recall.

5.2 Relation to the Literature

Graduated punishments have received quite some theoretical attention, most notably from
law and economics scholars. Various explanations for this phenomenon have been proposed.
Miceli and Bucci (2005) argue that the dire labour market prospects of convicted criminals
makes committing crimes relatively more attractive for those who already have a criminal
record. This effect can be negated by punishing repeat offenders harsher than first-time

23If the planner is unable to fully exploit the reputation effect, then one cannot assess analytically the
sign of the per-period welfare difference. However, numerical computations indicate that the planner also
prefers perfect recall to limited recall in those cases.

24The fact that using limited recall alleviates the problem does imply that graduated punishments with
limited recall welfare-dominates graduated punishments with perfect recall if ρ and ζ are sufficiently large.
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offenders. If offenders learn how to evade apprehension, as in Mungan (2010), then the
expected punishment a repeat offender faces is lower than the expected punishment a first-
time offender faces should the actual punishment remain the same. It is then optimal
to set the actual punishment for repeat offenders higher than the actual punishment for
first-time offenders. Of course, law enforcers could also learn from past offenses, yielding
an increase in the probability that repeat offenses are detected. If law enforcers learn more
than offenders, then the optimal punishment for repeat offenders is lower than the one for
first-time offenders.25

Stigler (1970) argued informally that heavy penalties are unnecessary for first-time
offenders if they are likely to have committed the offense accidentally and the probability
of repetition is negligible. In Rubinstein (1979) offenses may also have been committed by
accident. Convicting innocent offenders is detrimental to welfare. Rubinstein shows that
it is then optimal to be lenient towards individuals with a ‘reasonable’ criminal record,
i.e. those individuals are not administered the exogenously given punishment. Erroneous
convictions also play a central role in Chu et al. (2000). Their planner tries to minimize
total social costs, which consists of the harm imposed on society by criminal conduct and
the cost of erroneous convictions. Chu et al. (2000) establish that in a two-period setting
society is always best off if alleged repeat offenders are punished more severely than alleged
first-time offenders. Such a solution is optimal, because the probability of convicting an
innocent offender twice is much lower than convicting an innocent offender only once.
Since punishing those who did commit crimes is costless, Chu et al.’s planner does not face
a trade-off between crime prevention and cost minimization comparable to our trade-off
between public good provision and cost minimization. Furthermore, they do not allow the
punishment for first-time offenders in period 1 to differ from its counterpart in period 2.
Their solution consequently fails to appreciate any reputation effects.

Polinsky and Rubinfeld (1991) study a setting with perfect monitoring. They assume
that an individual’s gain from committing some crime has two components: a socially
acceptable gain and an illicit gain. The latter is a fixed trait. By contrast, an individ-
ual’s acceptable gain is drawn from some distribution at the start of each period. Both
components are private information. The planner maximizes aggregate acceptable gains
minus harms stemming from criminal activities by choosing fines for first and second of-
fenses. Since some crimes are socially efficient, the planner never opts for full deterrence.
Individuals who commit crimes in the first period are likely to enjoy high illicit gains, es-
pecially if the fine for first offenses is low. This allows the planner to sort agents by ‘illicit
type’. Using higher fines for second offenses reduces underdeterrence vis-à-vis low uniform
fines and reduces overdeterrence vis-à-vis high uniform fines, making such graduated fines
socially optimal for some parameter values.26

Unlike Polinsky and Rubinfeld (1991), Polinsky and Shavell (1998) only consider ac-
ceptable gains in their two-period model with perfect monitoring. Polinsky and Shavell’s

25Dana (2001) provides ample arguments in favour of a higher probability of detection for repeat offend-
ers.

26If acceptable gains were fixed and illicit gains were drawn at the start of each period, then it can be
optimal to use lower fines for second offenses.
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planner has to expend resources to apprehend offenders and punishments cannot exceed
some upper bound. Because administering punishments itself is costless, the planner uses
this maximal punishment should using a uniform punishment be optimal. Since employing
graduated punishments creates a reputation effect (a difference in tomorrow’s punishments
for first-time and repeat offenders makes agents more reluctant to commit a crime today),
it can be optimal to set the punishment for first-time offenders in the second period below
the maximal punishment. This reputation effect increases crime deterrence in period one,
but reduces deterrence in period two. Whether the positive period-one effect outweighs
the negative period-two effect depends on the distribution from which acceptable gains are
drawn. In contrast to our reputation effect, Polinsky and Shavell’s reputation effect has
no impact on the punishment that prevails in period one.

In Rubinstein (1980) an agent’s income should he abide the law is stochastic. Because
the probability that the agent is caught when committing a crime is less than one, his
income from criminal activities is also stochastic. Whether a uniform punishment scheme
(in which punishments for first-time offenders and repeat offenders equal the maximal pun-
ishment) or a graduated punishment scheme is best at minimizing the number of offenses
depends on the agent’s risk attitude.

Warnings play a prominent role in Harrington (1988). Harrington, studying the en-
forcement of compliance with environmental regulations, shows that a planner who knows
each firm’s cost of compliance can achieve a higher compliance rate (compared to a sys-
tem with a uniform punishment) by resorting to a system in which firms with relatively
good compliance records are merely warned. Just like in our model, firms do not want to
lose their good reputation, i.e. move to a high punishment regime. Yet, since Harrington
(1988) assumes perfect monitoring, this result hinges on the presence of an upper bound to
punishments. In a more recent paper, Rousseau (2009) argues that the use of warnings re-
duces the number of erroneous convictions and at the same time mitigates overcompliance
to regulations by low types. Importantly, Rousseau assumes that the structure of punish-
ments is exogenously given and that the planner can only choose between administering
the appropriate punishment and warning the alleged violator.

Our approach is related to the model developed by Abreu et al. (2005). They study
ongoing relationships between two players in which one player is tempted to depart from
jointly efficient behaviour. How tempted that player is is private information. The other
player receives signals regarding the tempted player’s behaviour and can administer punish-
ments to that player. In equilibrium punishments can go in either direction after perceived
bad behaviour. The sign of the change in punishment depends crucially on the distribution
from which the level of temptation is drawn. Although Abreu et al. (2005) stress that both
asymmetric information and imperfect monitoring are a prerequisite for graduated punish-
ments to occur, the setting they consider differs considerably from ours. They investigate
a one-sided prisoner’s dilemma with players who try to maximize their own payoff. In our
public good game only the agents are selfish, the planner is benevolent. More importantly,
the player who is tempted to depart from jointly efficient behaviour is infinitely impatient.
As a consequence, reputation effects do not play a role in Abreu et al. (2005).
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6 Conclusions

We have investigated the optimal punishment scheme a benign social planner uses when
confronted with a repeated public good problem. Because monitoring is imperfect and ad-
ministering punishments is costly, a uniform punishment that deters all agents from shirk-
ing is often suboptimal. To alleviate the detrimental effects on total welfare of monitoring
mistakes and costly punishments, the planner employs a punishment scheme featuring
graduated punishments: repeat offenders are punished harsher than first time offenders.
Such a punishment scheme allows the planner to (imperfectly) sort agents by cost type, en-
abling her to tailor future punishments to type. Moreover, because agents fear losing their
reputation and becoming branded as shirkers, the planner can allow herself to sanction
first time offenders very mildly. In fact, mere warnings are often optimal.

Obviously, one can envision more elaborate punishment schemes. For instance, in most
judiciary systems punishments do not simply depend on whether a convicted criminal has
a criminal record, but on the precise content of such a record. Furthermore, we have only
looked at the stationary equilibria of the dynamic model. We have consequently left an
important question unanswered: when do groups or societies reach steady states in which
graduated punishments are employed? To answer this question one needs to analyze the
short run of the dynamic setting. These two issues might prove fruitful avenues for future
research.

Appendix A: Proofs

Details regarding Condition 1
High-cost agents contribute if and only if the expected costs they face when contributing
(γ + εf0) does not exceed the expected costs they face when shirking ((1 − ε)f0). So, the
lowest punishment that ensures that all agents contribute is f0 = γ

φ
. Using (1) and the

definition of φ one obtains W (γ
φ
) = 1− γ + ρα− β 1−φ

2φ
γ, a decreasing function of ρ. Since

laissez-faire yields zero welfare, it follows that the planner does not opt for laissez-faire if
Condition 1 holds.

Proof of Proposition 1
Straightforward calculations reveal that

W (γ−α
φ

) = ρ(1− γ + α)− (1+φ
2φ
− ρ)β(γ − α), W (γ

φ
) = 1− γ + ρα− β 1−φ

2φ
γ. (A.1)

The difference in welfare between the two options (as a function of ρ) reads

∆(ρ) := W (γ
φ
)−W (γ−α

φ
) = (1− ρ)(1− γ) + (1− ρ)βγ − (1+φ

2φ
− ρ)βα.

Because ∂∆
∂ρ

= −(1 − γ) − β(γ − α) < 0 and ∆(1) = −1−φ
2φ
βα < 0, it is optimal to set

φf0 = γ − α if ρ is sufficiently large. Specifically, f ∗0 = γ−α
φ

if ρ > ρ̄, where

ρ̄ = 1−
1−φ
2φ
βα

1− γ + β(γ − α)
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solves ∆(ρ) = 0. Observe that:

∆(0) = 1− γ + β(γ − 1+φ
2φ
α) > 1− γ + β(γ − 1+φ

2φ
γ) = 1− (1 + 1−φ

2φ
β)γ > 0,

where we have used the fact that γ > α and Condition 1. The inequality ∆(0) > 0 implies
that ρ̄ must be strictly positive.

Proof of Proposition 2
The aggregate welfareW(f ∗0 ) generated when the planner uses only one punishment follows
from Proposition 1:

W(f ∗0 ) =

{
2W (γ

φ
) if ρ ≤ ρ̄

2W (γ−α
φ

) if ρ > ρ̄.

We have to compare this figure with f ∗. Let us first derive the total welfare W2(f ∗)
generated in period 2 if the menu of punishments f ∗ is used.

In period 2 all low-cost agents as well as those high-cost agents who have been caught
shirking in the first period contribute. This yields, after taking into account agents’ costs
of contributing, an aggregate payoff of

ρ(1− γ + α) + (1− ρ)1+φ
2

(1− γ), (A.2)

where we have used the fact that a fraction 1−ε = 1+φ
2

of the high-cost agents are punished
in period 1. We have to deduct the social costs of administering punishments from this
figure. The aggregate punishment in period 2 reads:

ρε2f̂ ∗2 + ρ(1− ε)εf ∗2 + (1− ρ)(1− ε)εf̂ ∗2 + (1− ρ)ε(1− ε)f ∗2 = 1−φ
2φ
×
(
(1 +φ− ρφ)γ− 1+φ

2
α
)
.

To see this, recall that in each period the planner misjudges a particular agent’s behaviour
with probability ε. So, in period 1 a fraction ε of the low-cost agents are erroneously pun-
ished, whereas a fraction ε of the high-cost agents escape being befittingly punished. A
fraction ε of the low-cost agents who have been punished in the first period are again pun-
ished in the second period. Since they are considered repeat offenders the high punishment
f̂ ∗2 is applied. This reasoning explains the ρ-part of the left-hand side. The (1− ρ)-part is
constructed along similar lines. Combining the aggregate punishment with (A.2) results in

W2(f ∗) = ρ(1− γ + α) + (1− ρ)1+φ
2

(1− γ)− β 1−φ
2φ
×
(
(1 + φ− ρφ)γ − 1+φ

2
α
)
.

We now determine the total welfare W1(f ∗) generated in period 1. This equals

W1(f ∗) = ρ(1− γ + α)−
(
ρ1−φ

2
+ (1− ρ)1+φ

2

)
βf ∗1 .

This figure depends crucially on whether γ − α − 1−φ
2
α is positive or negative, i.e. on

whether φf ∗1 = γ − α− 1−φ
2
α or φf ∗1 = 0. We consider these two possibilities in turn:

Suppose γ ≥ (1 + 1−φ
2

)α. Then φf ∗1 = γ − α− 1−φ
2
α. Adding W1(f ∗) and W2(f ∗) now

yields:

W(f ∗) = 2ρ(1− γ + α) + (1− ρ)1+φ
2

(1− γ)−
(

1+φ
2φ

+ 1−φ2

2φ
− ρ(1 + 1−φ

2
)
)
β(γ − α).
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We have to analyze the cases ρ ≤ ρ̄ and ρ > ρ̄ separately:
The case ρ ≤ ρ̄: In this case W(f ∗0 ) = 2W (γ

φ
) and therefore:

Ψ :=W(f ∗)−W(f ∗0 )

=− 2(1− ρ)(1− γ) + (1− ρ)1+φ
2

(1− γ)−
(

1+φ
2φ

+ 1−φ2

2φ
− ρ(1 + 1−φ

2
)
)
β(γ − α) + 1−φ

φ
βγ

=− (1− ρ)
(
1 + 1−φ

2

)(
(1− γ) + β(γ − α)

)
+ 1−φ

φ
βα.

(A.3)

Observe that Ψ is strictly increasing in ρ. Evaluating Ψ = Ψ(ρ) at ρ = ρ̄ yields

Ψ(ρ̄) =−
1−φ
2φ
βα

1− γ + β(γ − α)
×
(
1 + 1−φ

2

)(
(1− γ) + β(γ − α)

)
+ 1−φ

φ
βα

=1−φ
2φ
βα×

(
− 1− 1−φ

2
+ 2
)
> 0.

The last two observations imply that Ψ(ρ) ≥ 0 if ρ ∈ [ρ̌, ρ̄], where ρ̌ = ρ̌(α, β, γ, φ) < ρ̄
equals max{Ψ−1(0), 0}.

To prove that ρ̌ = Ψ−1(0) > 0 if γ ≥ (1 + 1−φ
2

)α, it suffices to show that Ψ(0) < 0:

Ψ(0) =−
(
1 + 1−φ

2

)(
(1− γ) + β(γ − α)

)
+ 1−φ

φ
βα < −

(
1 + 1−φ

2

)
1−φ
2φ
βγ + 1−φ

φ
βα

=1−φ
2φ
β ×

(
−
(
1 + 1−φ

2

)
γ + 2α

)
≤ 1−φ

2φ
β ×

(
−
(
1 + 1−φ

2

)2
α + 2α

)
< 0,

where the first inequality follows from Condition 1 and the fact that γ > α and the second
one holds as long as γ ≥ (1 + 1−φ

2
)α.

The case ρ > ρ̄: The difference in aggregate welfare now reads:

W(f ∗)−W(f ∗0 ) =(1− ρ)1+φ
2

(1− γ)−
(

1+φ
2φ

+ 1−φ2

2φ
− ρ(1 + 1−φ

2
)
)
β(γ − α)

+ (1+φ
φ
− 2ρ)β(γ − α)

=(1− ρ)1+φ
2

(1− γ + β(γ − α)) > 0.

We conclude that the planner opts for the menu f ∗ if ρ > ρ̌ and γ − α− 1−φ
2
α ≥ 0.

Suppose next γ < (1 + 1−φ
2

)α. Then φf ∗1 = 0 and aggregate welfare using the menu f ∗

equals

W(f ∗) = 2ρ(1− γ + α) + (1− ρ)1+φ
2

(1− γ)− β 1−φ
2φ

(
(1 + φ− ρφ)γ − 1+φ

2
α
)
.

Again, we have to distinguish between ρ ≤ ρ̄ and ρ > ρ̄:
The case ρ ≤ ρ̄: The difference in aggregate welfare Ψ(ρ) is:

Ψ(ρ) =− (1− ρ)(2− 1+φ
2

)(1− γ)− β 1−φ
2φ

(
(1 + φ− ρφ)γ − 1+φ

2
α− 2γ

)
=− (1− ρ)(1 + 1−φ

2
)(1− γ) + 1−φ

2φ
(1− (1− ρ)φ)βγ + 1−φ

2φ
1+φ

2
βα.

(A.4)
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Evaluating this expression at ρ = ρ̄ results in:

Ψ(ρ̄) =

1−φ
2φ
βα

1− γ + β(γ − α)
×
[
− (1− γ)(1 + 1−φ

2
)− 1−φ

2
βγ
]

+ 1−φ
2φ
βγ + 1−φ

2φ
1+φ

2
βα

=1−φ
2φ
βα×

[
1+φ

2
−

(1 + 1−φ
2

)(1− γ) + 1−φ
2
βγ

1− γ + β(γ − α)

]
+ 1−φ

2φ
βγ

>1−φ
2φ
βα×

[−(1− φ)(1− γ) + 1+φ
2
β(γ − α)− 1−φ

2
βγ

1− γ + β(γ − α)
+ 1
]

=1−φ
2φ
βα×

(1 + 1+φ
2

)β(γ − α) + φ(1− γ)− 1−φ
2
βγ

1− γ + β(γ − α)

>1−φ
2φ
βα×

(1 + 1+φ
2

)β(γ − α)

1− γ + β(γ − α)
> 0,

(A.5)

where the first inequality follows from the fact that γ > α and the second one from
Condition 1. Since ∂Ψ

∂ρ
= (1 + 1−φ

2
)(1− γ) + 1−φ

2
βγ > 0, we again conclude that Ψ(ρ) ≥ 0

if ρ ∈ [ρ̌, ρ̄], where ρ̌ = ρ̌(α, β, γ, φ) < ρ̄ equals max{Ψ−1(0), 0}.
Again, ρ̌ > 0:

Ψ(0) =−
(
1 + 1−φ

2

)
(1− γ) + 1−φ

2φ
(1− φ)βγ + 1−φ

2φ
1+φ

2
βα

<−
(
1 + 1−φ

2

)
1−φ
2φ
βγ + 1−φ

2φ
(1− φ)βγ + 1−φ

2φ
1+φ

2
βα = 1−φ

2φ
β ×

[
1+φ

2
α− 1+φ

2
γ
]
< 0,

The case ρ > ρ̄: The relevant welfare difference Ψ(ρ) =W(f ∗)−W(f ∗0 ) now reads

Ψ(ρ) =(1− ρ)1+φ
2

(1− γ)− β 1−φ
2φ

(
(1 + φ− ρφ)γ − 1+φ

2
α
)

+ (1+φ
2φ
− ρ)β(γ − α)

=(1− ρ)
[

1+φ
2

(1− γ) + 1+φ
2
βγ − βα

]
− 1−φ

2
1−φ
2φ
βα.

Clearly, this expression is negative if ρ is sufficiently large. On the other hand, by continuity
of Ψ, we infer from (A.5) that Ψ(ρ) > 0 for ρ > ρ̄ not too large. Since, using Condition 1,

1+φ
2

(1−γ)+ 1+φ
2
βγ−βα = 1+φ

2
(1−γ)− 1−φ

2
βγ+β(γ−α) > 1+φ

2
(1−γ)−φ(1−γ)+β(γ−α) > 0,

we know that Ψ decreases monotonically in ρ for ρ ∈ (ρ̄, 1). We conclude that there exists
a ρ̂ = ρ̂(α, β, γ, φ) ∈ (ρ̄, 1) such that Ψ(ρ) ≥ 0 if ρ ∈ (ρ̄, ρ̂], whereas Ψ(ρ) < 0 if ρ ∈ (ρ̂, 1].
This observation completes the proof.

Proof of Corollary 1
Suppose first that γ − α− 1−φ

2
α ≥ 0. Then from (A.3) we infer that ρ̌ solves

−(1− ρ)
(
1 + 1−φ

2

)(
(1− γ) + β(γ − α)

)
+ 1−φ

φ
βα = 0. (A.6)

Totally differentiating this expression yields after some rearranging

dρ̌

dφ
=
−1−ρ̌

2
(1− γ + β(γ − α)) + 1

φ2βα

(1 + 1−φ
2

)(1− γ + β(γ − α))
.
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The denominator of dρ̌
dφ

is clearly positive. The equality (A.6) implies that

1
φ2βα = 1

φ(1−φ)
(1− ρ̌)

(
1 + 1−φ

2

)(
(1− γ) + β(γ − α)

)
.

The sign of the numerator of dρ̌
dφ

is consequently the same as the sign of

−1

2
+

1 + 1−φ
2

φ(1− φ)
=

2 + (1− φ)2

2φ(1− φ)
.

We conclude that dρ̌
dφ
> 0.

Using (A.6) one obtains

dρ̌

dβ
=

(1− ρ̌)(1 + 1−φ
2

)(γ − α)− 1−φ
φ
α

(1 + 1−φ
2

)(1− γ + β(γ − α))
.

The denominator of this expression is clearly positive. Furthermore:

(1− ρ̌)(1 + 1−φ
2

)(γ − α)− 1−φ
φ
α = β−1 ×−(1− ρ̌)

(
1 + 1−φ

2

)
(1− γ) < 0,

where the equality follows from (A.6). So, dρ̌
dβ
< 0.

It is straightforward to verify that both dρ̌
dγ

and dρ̌
dα

are negative.

Next, suppose γ − α− 1−φ
2
α < 0. Equation (A.4) informs us that ρ̌ now solves

−(1− ρ)
(
1 + 1−φ

2

)
(1− γ)− (1− ρ)1−φ

2
βγ + 1−φ

2φ
βγ + 1−φ

2φ
1+φ

2
βα = 0. (A.7)

The derivative of ρ̌ with respect to φ therefore abides by[(
1 + 1−φ

2

)
(1− γ) + 1−φ

2
βγ
]
dρ̌+ 1

2

[
(1− ρ̌)(1− γ) + (1− ρ̌)βγ − 1

φ2βγ − 1+φ2

2φ2 βα
]
dφ = 0.

Since (A.7) is equivalent to

(1− ρ)(1− γ) + (1− ρ)βγ = 1
φ
βγ + 1+φ

2φ
βα− 2

1−φ(1− ρ)(1− γ),

we conclude that

(1− ρ̌)(1− γ) + (1− ρ̌)βγ − 1
φ2βγ − 1+φ2

2φ2 βα = −1−φ
φ2 βγ − 1−φ

2φ2 βα− 2
1−φ(1− ρ̌)(1− γ) < 0

and thus that dρ̌
dφ
> 0.

The derivative of ρ̌ with respect to β reads

dρ̌

dβ
=

(1− ρ̌)1−φ
2
γ − 1−φ

2φ
γ − 1−φ

2φ
1+φ

2
α

(1 + 1−φ
2

)(1− γ) + 1−φ
2
βγ

.

Because (A.7) implies that

(1− ρ̌)1−φ
2
γ − 1−φ

2φ
γ − 1−φ

2φ
1+φ

2
α = β−1 ×−(1− ρ̌)

(
1 + 1−φ

2

)
(1− γ) < 0,
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this derivative is negative.
Again, one easily verifies that both dρ̌

dγ
and dρ̌

dα
are negative.

Proof of Lemma 1
Combining (7) and (8) results in the following system of equalities:(
q
µ

)
=

[
ζ 1−φ

2
ζφ

0 ζ 1+φ
2

](
q
µ

)
+

(
1− ζ
ρ(1− ζ)

)
⇐⇒

(
q
µ

)
=

[
1− ζ 1−φ

2
−ζφ

0 1− ζ 1+φ
2

]−1(
1− ζ
ρ(1− ζ)

)
The expressions given in (9) now follow immediately from the fact that[
1− ζ 1−φ

2
−ζφ

0 1− ζ 1+φ
2

]−1

=
1

(1− ζ 1−φ
2

)(1− ζ 1+φ
2

)

[
1− ζ 1+φ

2
ζφ

0 1− ζ 1−φ
2

]
.

Details regarding (15)
If δL = 1, then (10) reduces to

CL = γ − α + 1−φ
2

(f + ζĈL) + 1+φ
2
ζCL ⇔ CL =

γ − α + 1−φ
2

(f + ζĈL)

1− 1+φ
2
ζ

,

from which one infers using (14) that

ĈL − CL =
(1− ζ)ĈL − (γ − α)− 1−φ

2
f

1− ζ 1+φ
2

=

1−φ
2

(γ
φ
− f)

1− ζ 1+φ
2

.

Consequently:

γ − α ≤ φ(f + ζ(ĈL − CL))⇔ φf ≥ (γ − α)−
ζ 1−φ

2
(γ − φf)

1− ζ 1+φ
2

⇔ φf ≥ γ − α− ζ
1−ζ

1−φ
2
α.

Substituting δH = 0 in (12) yields

CH = 1+φ
2

(f + ζĈH) + 1−φ
2
ζCH ⇔ CH =

1+φ
2

(f + ζĈH)

1− ζ 1−φ
2

.

Combining the latter expression with (14) results in

ĈH − CH =
(1− ζ)ĈH − 1+φ

2
f

1− ζ 1−φ
2

=

1+φ
2

(γ
φ
− f)

1− ζ 1−φ
2

.

Therefore:

γ > φ(f + ζ(ĈH − CH))⇔ φf < γ −
ζ 1+φ

2
(γ − φf)

1− ζ 1−φ
2

⇔ φf < γ.
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Proof of Proposition 3
We have to compare the total welfare Ω = Ω(f ∗, f̂ ∗) generated in a period if the pair (f ∗, f̂ ∗)
is used with W (f ∗0 ) (given in (A.1)), the per-period welfare generated if the planner uses
only one punishment. We calculate Ω step by step. The per-period welfare without the
costs of administering punishments reads

ρ(1− γ + α) + (q̂ − µ̂)(1− γ) = ρ(1− γ + α) +
[
(1− ρ)− (q − µ)

]
(1− γ),

where we have used the identities q̂ = 1 − q, µ̂ = ρ − µ and the fact that low-cost agents
always contribute whereas high-cost agents only contribute when in q̂. Lemma 1 informs
us that

q − µ =
(1− ζ)(1− ζ 1+φ

2
+ ρζφ)

(1− ζ 1−φ
2

)(1− ζ 1+φ
2

)
− ρ(1− ζ)

1− ζ 1+φ
2

=
(1− ζ)(1− ρ)

1− ζ 1−φ
2

. (A.8)

We conclude that, ignoring punishments, per-period welfare equals

ρ(1− γ + α) + (1− ρ)×
ζ 1+φ

2

1− ζ 1−φ
2

(1− γ). (A.9)

The aggregate per-period punishment reads(
1−φ

2
µ
q

+ 1+φ
2

(1− µ
q
)
)
qf ∗ + 1−φ

2
q̂f̂ ∗ = (1+φ

2
q − φµ)f ∗ + 1−φ

2
(1− q)f̂ ∗.

Notice that f ∗ > 0 only if γ > γ̌, where γ̌ := α + ζ
1−ζ

1−φ
2
α. We have to treat the cases

γ ≥ γ̌ (i.e. φf ∗ = γ − α− ζ
1−ζ

1−φ
2
α) and γ < γ̌ (i.e. φf ∗ = 0) separately:

The case γ ≥ γ̌: Then aggregate per-period punishment is:

(1+φ
2φ
q − µ)(γ − α− ζ

1−ζ
1−φ

2
α) + 1−φ

2φ
(1− q)γ.

In this expression γ is multiplied by

1+φ
2φ
q − µ+ 1−φ

2φ
(1− q) =

(1− ζ)(1− ρ)

1− ζ 1−φ
2

+ 1−φ
2φ
,

where we have used (A.8) to arrive at the right-hand side of this equation. Furthermore,
−α is multiplied by

(1+φ
2φ
q − µ)(1 + ζ

1−ζ
1−φ

2
) =

1− ζ
1− ζ 1+φ

2

×
[

1+φ
2φ
×

1− ζ 1+φ
2

+ ρζφ

1− ζ 1−φ
2

− ρ
]
×

1− ζ 1+φ
2

1− ζ

=

1+φ
2φ

(1− ζ 1+φ
2

)− ρ(1− ζ)

1− ζ 1−φ
2

=
(1− ζ)(1− ρ)

1− ζ 1−φ
2

+ 1−φ
2φ
.

It follows that

(1+φ
2
q − φµ)f ∗ + 1−φ

2
(1− q)f̂ ∗ =

(1− ζ)(1− ρ)

1− ζ 1−φ
2

(γ − α) + 1−φ
2φ

(γ − α). (A.10)
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Combining (A.9) and (A.10) yields

Ω(f ∗, f̂ ∗) =ρ(1− γ + α) + (1− ρ)×
ζ 1+φ

2

1− ζ 1−φ
2

(1− γ)

− (1− ζ)(1− ρ)

1− ζ 1−φ
2

β(γ − α)− 1−φ
2φ
β(γ − α) if γ − α− ζ

1−ζ
1−φ

2
α ≥ 0.

The subcase ρ ≤ ρ̄: The difference in welfare between the two options now reads

Ω(f ∗, f̂ ∗)−W (f ∗0 ) =(1− ρ)
ζ 1+φ

2

1− ζ 1−φ
2

(1− γ)− (1− ζ)(1− ρ)

1− ζ 1−φ
2

β(γ − α)− 1−φ
2φ
β(γ − α)

− (1− ρ)(1− γ) + 1−φ
2φ
βγ

=− 1− ζ
1− ζ 1−φ

2

(1− ρ)
(
(1− γ) + β(γ − α)

)
+ 1−φ

2φ
βα.

Evaluating this expression at ρ = ρ̄ results in

Ω(f ∗, f̂ ∗)−W (f ∗0 )
∣∣
ρ=ρ̄

= − (1− ζ)

1− ζ 1−φ
2

1−φ
2φ
βα + 1−φ

2φ
βα =

(
1− 1− ζ

1− ζ 1−φ
2

)
1−φ
2φ
βα > 0.

Because Ω(f ∗, f̂ ∗) −W (f ∗0 ) increases in ρ, we conclude that the pair (f ∗, f̂ ∗) maximizes
per-period welfare if ρ ≥ ρ̌ for some ρ̌ = ρ̌(α, β, γ, φ, ζ) < ρ̄. Since

Ω(f ∗, f̂ ∗)−W (f ∗0 )
∣∣∣
ρ=0

=− 1− ζ
1− ζ 1−φ

2

(
(1− γ) + β(γ − α)

)
+ 1−φ

2φ
βα

≤− 1− ζ
1− ζ 1−φ

2

(1− γ) +
1− ζ 1+φ

2

1− ζ 1−φ
2

1−φ
2φ
βα

≤− 1− ζ
1− ζ 1−φ

2

(1− γ) +
1− ζ

1− ζ 1−φ
2

1−φ
2φ
βγ < 0,

where the fist two inequalities follow from γ ≥ γ̌ and the last one from Condition 1, we
infer that ρ̌ > 0.

The subcase ρ > ρ̄: In this parameter range the difference in welfare is

Ω(f ∗, f̂ ∗)−W (f ∗0 ) =
ζ 1+φ

2

1− ζ 1−φ
2

(1− ρ)(1− γ)− (1− ζ)(1− ρ)

1− ζ 1−φ
2

β(γ − α)− 1−φ
2φ
β(γ − α)

+
(

1+φ
2φ
− ρ
)
β(γ − α)

=
ζ 1+φ

2

1− ζ 1−φ
2

(1− ρ)
(

(1− γ) + β(γ − α)
)
> 0.

So, using the pair (f ∗, f̂ ∗) instead of the single punishment f ∗0 is also optimal if ρ > ρ̄.
This result implies that ρ̂ = 1 if γ ≥ γ̌.
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The case γ < γ̌: The aggregate punishment now reduces to 1−φ
2

(1− q)f̂ ∗. With the aid
of (9) one can calculate this figure:

1−φ
2

(1− q)f̂ ∗ =
ζ 1−φ

2

1− ζ 1−φ
2

×
[

1+φ
2φ
− ρ (1− ζ)

1− ζ 1+φ
2

]
γ.

Consequently:

Ω(f ∗, f̂ ∗) =ρ(1− γ + α) +
ζ 1+φ

2

1− ζ 1−φ
2

(1− ρ)(1− γ)

−
ζ 1−φ

2

1− ζ 1−φ
2

×
[

1+φ
2φ
− ρ (1− ζ)

1− ζ 1+φ
2

]
βγ if γ − α− ζ

1−ζ
1−φ

2
α < 0.

(A.11)

We again have to distinguish between ρ ≤ ρ̄ and ρ > ρ̄:
The subcase ρ ≤ ρ̄: Subtracting W (γ

φ
) from (A.11) yields

Ω(f ∗, f̂ ∗)−W (f ∗0 ) =
ζ 1+φ

2

1− ζ 1−φ
2

(1− ρ)(1− γ)−
ζ 1−φ

2

1− ζ 1−φ
2

[
1+φ
2φ
− ρ (1− ζ)

1− ζ 1+φ
2

]
βγ

− (1− ρ)(1− γ) + 1−φ
2φ
βγ

=
1− ζ

1− ζ 1−φ
2

[
− (1− ρ)(1− γ) + 1−φ

2φ
βγ +

ρζ 1−φ
2

1− ζ 1+φ
2

βγ
]

=
1− ζ

1− ζ 1−φ
2

[
− (1− ρ)(1− γ) +

1− ζ 1−φ
2

1− ζ 1+φ
2

1−φ
2φ
βγ −

ζ 1−φ
2

1− ζ 1+φ
2

(1− ρ)βγ
]
.

(A.12)

We again show that the difference Ψ(ρ) := Ω(f ∗, f̂ ∗)−W (f ∗0 ) is positive if ρ = ρ̄:

Ψ(ρ̄) =
β(1− ζ)1−φ

2φ

1− ζ 1−φ
2φ

[
− α(1− γ)

1− γ + β(γ − α)
+

1− ζ 1−φ
2

1− ζ 1+φ
2

γ −
ζ 1−φ

2

1− ζ 1+φ
2

× αβγ

1− γ + β(γ − α)

]
=
β(1− ζ)1−φ

2φ

1− ζ 1−φ
2φ

[−α(1− γ)(1− ζ 1+φ
2

) + (1− γ + β(γ − α))(1− ζ 1−φ
2

)γ − ζ 1−φ
2
αβγ

(1− γ + β(γ − α))(1− ζ 1+φ
2

)

]
>
β(1− ζ)1−φ

2φ

1− ζ 1−φ
2φ

[ ζφ(1− γ)γ − ζ 1−φ
2
βγ2

(1− γ + β(γ − α))(1− ζ 1+φ
2

)

]
> 0,

(A.13)

where the first inequality follows from the fact that γ > α and the second one from
Condition 1. Because Ψ(ρ) increases in ρ, we conclude that Ω(f ∗, f̂ ∗) > W (f ∗0 ) if ρ > ρ̌,
for some ρ̌ = ρ̌(α, β, γ, φ, ζ) < ρ̄. Condition 1 implies that the threshold ρ̌ is again strictly

32



positive:

Ω(f ∗, f̂ ∗)−W (f ∗0 )
∣∣∣
ρ=0

=
1− ζ

1− ζ 1−φ
2

[
− (1− γ) +

1− ζ 1−φ
2

1− ζ 1+φ
2

1−φ
2φ
βγ −

ζ 1−φ
2

1− ζ 1+φ
2

βγ
]

=
1− ζ

1− ζ 1−φ
2

[
− (1− γ) + 1−φ

2φ
βγ
]
< 0.

The subcase ρ > ρ̄: In this case we need to subtract W (γ−α
φ

) from (A.11) to arrive at
the relevant welfare difference:

Ψ(ρ) := Ω(f ∗, f̂ ∗)−W (f ∗0 ) =
ζ 1+φ

2

1− ζ 1−φ
2

(1− ρ)(1− γ)

−
ζ 1−φ

2

1− ζ 1−φ
2

(
1+φ
2φ
− ρ (1− ζ)

1− ζ 1+φ
2

)
βγ + (1+φ

2φ
− ρ)β(γ − α).

(A.14)

Observe that:

Ψ′(ρ) =−
ζ 1+φ

2

1− ζ 1−φ
2

(1− γ) +
ζ 1−φ

2

1− ζ 1−φ
2

× 1− ζ
1− ζ 1+φ

2

βγ − β(γ − α)

<−
ζ 1+φ

2

1− ζ 1−φ
2

× 1−φ
2φ
βγ +

ζ 1−φ
2

1− ζ 1−φ
2

× 1− ζ
1− ζ 1+φ

2

βγ

=
(
− 1+φ

2φ
+

1− ζ
1− ζ 1+φ

2

)
×

ζ 1−φ
2

1− ζ 1−φ
2

βγ < 0,

where we have used Condition 1 and the fact that γ > α to establish the first inequality.
The second inequality follows from the facts that −1+φ

2φ
< −1 and 1−ζ

1−ζ 1+φ
2

< 1. We infer

from the above inequality combined with (A.13) that Ψ(ρ) is positive for ρ > ρ̄ not ’too
large’.27 As ρ approaches 1, one obtains

Ψ(1) =−
ζ 1−φ

2

1− ζ 1−φ
2

(
1+φ
2φ
− 1− ζ

1− ζ 1+φ
2

)
βγ + 1−φ

2φ
β(γ − α)

=−
ζ 1−φ

2
1−φ
2φ

1− ζ 1+φ
2

βγ + 1−φ
2φ
β(γ − α) = 1−φ

2φ
β ×

[ 1− ζ
1− ζ 1+φ

2

γ − α
]
.

Because γ < γ̌ =
1−ζ 1+φ

2

1−ζ α, Ψ(1) is always negative, implying that ρ̂ < 1 if γ < γ̌.

Proof of Corollary 2
The claims regarding dρ̌

dα
, dρ̌

dβ
, and dρ̌

dγ
as well as those pertaining to dρ̌

dφ
and dρ̌

dζ
for γ ≥ γ̂ can

be straightforwardly obtained. Their proofs are omitted.

27Notice that, by construction, Ψ(·) is continuous.
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Suppose γ < γ̂. Then from (A.12) we infer that ρ̌ solves

Ψ̃ = −
(
1− ζ 1+φ

2

)
(1− ρ)(1− γ) +

(
1− ζ 1−φ

2

)
1−φ
2φ
βγ − ζ 1−φ

2
(1− ρ)βγ = 0.

It is not difficult to see that ∂Ψ̃
∂ρ̌
> 0. Furthermore:

∂Ψ̃

∂φ
= ζ

2
(1− ρ)(1− γ) + ζ

2
1−φ
2φ
βγ −

(
1− ζ 1−φ

2

)
1

2φ2βγ + ζ
2
(1− ρ)βγ.

Note that Ψ̃ = 0 implies that

ζ
2
(1− ρ̌)(1− γ) + ζ

2
(1− ρ̌)βγ = 1

1−φ ×
(
− (1− ζ)(1− ρ̌)(1− γ) +

(
1− ζ 1−φ

2

)
1−φ
2φ
βγ
)
.

Therefore:

∂Ψ̃

∂φ

∣∣∣
ρ=ρ̌

=− 1
1−φ(1− ζ)(1− ρ̌)(1− γ) + 1

2φ
βγ −

(
1− ζ 1−φ

2

)
1

2φ2βγ

<
(
− (1− ζ)(1− ρ̌) + 1−

(
1− ζ 1−φ

2

)
1
φ

)
× βγ

2φ

=
(
ρ̌(1− ζ)− 1

φ
+ ζ 1+φ

2φ

)
× βγ

2φ
<
(

(1− ζ)− 1
φ

+ ζ 1+φ
2φ

)
× βγ

2φ

=1−φ
φ

(
− 1 + ζ

2

)
× βγ

2φ
< 0,

where the first inequality follows from Condition 1. We conclude that dρ̌
dφ
> 0. Differenti-

ating Ψ̃ with respect to ζ yields

∂Ψ̃

∂ζ
= 1+φ

2
(1− ρ)(1− γ)− 1−φ

2
1−φ
2φ
βγ − 1−φ

2
(1− ρ)βγ.

Note that Ψ̃ = 0 implies that

1− ρ̌ =
(1− ζ 1−φ

2
)1−φ

2φ
βγ

(1− ζ 1+φ
2

)(1− γ) + ζ 1−φ
2
βγ
.

Combining this result with the above expression for ∂Ψ̃
∂ζ

results in

∂Ψ̃

∂ζ

∣∣∣
ρ=ρ̌

=

1+φ
2

(1− γ)(1− ζ 1−φ
2

)1−φ
2φ
βγ

(1− ζ 1+φ
2

)(1− γ) + ζ 1−φ
2
βγ
− 1−φ

2
1−φ
2φ
βγ −

1−φ
2
βγ(1− ζ 1−φ

2
)1−φ

2φ
βγ

(1− ζ 1+φ
2

)(1− γ) + ζ 1−φ
2
βγ

=1−φ
2φ
βγ ×

φ(1− γ)− 1−φ
2
βγ

(1− ζ 1+φ
2

)(1− γ) + ζ 1−φ
2
βγ

> 0,

where the inequality is courtesy of Condition 1. So, dρ̌
dζ
< 0.
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Appendix B: Differing Type I and Type II Errors

Proof of Proposition 4
Consider the one-shot setting. A low-cost agent contributes as long as γ − α + εII f̃0 ≤
(1 − εI)f̃0 ⇔ φ̃f̃0 ≥ γ − α, whereas a high-cost agent contributes as long as γ + εII f̃0 ≤
(1 − εI)f̃0 ⇔ φ̃f̃0 ≥ γ. If the planner sets the expected punishment φ̃f̃0 equal to γ, then
low-cost as well as high-cost agents contribute. Welfare with this punishment equals

W̃ (γ
φ̃
) = ρ(1− γ + α) + (1− ρ)(1− γ)− εII

φ̃
βγ.

Setting ρ = 0 results in a welfare of 1 − γ − εII
φ̃
βγ. So, laissez-faire is never optimal if

1 − γ > εII
φ̃
βγ. If the planner opts for an expected punishment of γ − α only low-cost

agents contribute and welfare amounts to

W̃ (γ−α
φ̃

) = ρ(1− γ + α)− ρ εII
φ̃
β(γ − α)− (1− ρ)1−εI

φ̃
β(γ − α).

Observe that:

W̃ (γ
φ̃
) ≥ W̃ (γ−α

φ̃
)⇐⇒ 1− ρ ≥

εII
φ̃
βα

1− γ + β(γ − α)
.

This observation proves the optimality of (17).
We move on to the two-period setting. If the planner employs two different punishments

in period 2, then she optimally sets φ̃f̃ ∗2 = γ − α for first-time shirkers and φ̃
˜̂
f ∗2 = γ

for second-time shirkers. Denoting the punishment in period 1 by f̃1, a low-cost agent
contributes in that period if and only if

γ − α + εII(f̃1 + γ − α + εII
˜̂
f ∗2 ) + (1− εII)(γ − α + εII f̃

∗
2 ) ≤

(1− εI)(f̃1 + γ − α+εII
˜̂
f ∗2 ) + εI(γ − α + εII f̃

∗
2 ),

which, using the expressions for f̃ ∗2 and
˜̂
f ∗2 , reduces to φ̃f̃1 ≥ γ − α − εIIα. A high-cost

agent does not contribute in period 1 as long as

γ + εII(f̃1 + γ + εII
˜̂
f ∗2 ) + (1− εII)(1− εI)f̃ ∗2 > (1− εI)(f̃1 + γ + εII

˜̂
f ∗2 ) + εI(1− εI)f̃ ∗2 ,

that is as long as φ̃f̃1 < γ − α + εIα. The two incentive compatibility constraints thus
imply that the planner sets φ̃f̃ ∗1 = max{γ − α − εIIα, 0} should she opt for graduated

punishments. Let f̃
∗

= (f̃ ∗1 , f̃
∗
2 ,

˜̂
f ∗2 ). If the planner employs graduated punishments, then

in period 1 welfare amounts to

W̃1(f̃
∗
) = ρ(1− γ + α)− β

(
ρεII f̃

∗
1 + (1− ρ)(1− εI)f̃ ∗1

)
(B.1)

and in period 2 welfare amounts to

W̃2(f̃
∗
) =ρ(1− γ + α) + (1− εI)(1− ρ)(1− γ)

− β
(
ρε2II

˜̂
f ∗2 + ρ(1− εII)εII f̃ ∗2 + (1− ρ)(1− εI)εII ˜̂

f ∗2 + (1− ρ)εI(1− εI)f̃ ∗2
)
.

(B.2)
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We have to treat the two cases (γ − α− εIIα ≥ 0, γ − α− εIIα < 0) separately:

The case γ − α− εIIα ≥ 0: Total welfare W̃(f̃
∗
) = W̃1(f̃

∗
) + W̃2(f̃

∗
) now equals

W̃(f̃
∗
) = 2ρ(1− γ+α) + (1− εI)(1− ρ)

(
1− γ+β(γ−α)

)
− 2β

(
ρεII + (1− ρ)(1− εI)

)
γ−α
φ̃
.

Let us compare W̃(f̃
∗
) with 2W̃ (f̃ ∗0 ), the total welfare generated if the planner uses the

uniform punishment. Two possibilities require attention:
The subcase ρ ≤ ˜̄ρ: The welfare difference Ψ̃ = Ψ̃(ρ) := W̃(f̃

∗
)− 2W̃ (γ

φ̃
) now reads

Ψ̃ =(1− εI)(1− ρ)
(
1− γ + β(γ − α)

)
− 2β

(
ρεII + (1− ρ)(1− εI)

)
γ−α
φ̃

− 2(1− ρ)(1− γ) + 2βεII
γ

φ̃

=− (1 + εI)(1− ρ)
(
1− γ + β(γ − α)

)
+ 2 εII

φ̃
βα,

(B.3)

where we have used the fact that φ̃ = 1− εI − εII to establish the second equality. Since

Ψ̃(˜̄ρ) = −(1 + εI)
εII
φ̃
βα + 2 εII

φ̃
βα = (1− εI) εIIφ̃ βα > 0

and Ψ̃′(ρ) > 0, we conclude that there exists a ˜̌ρ ∈ (0, ˜̄ρ) such that Ψ̃(ρ) ≥ 0 if ρ ∈ [ ˜̌ρ, ˜̄ρ].28

The subcase ρ > ˜̄ρ: Subtracting 2W̃ (γ−α
φ̃

) from W̃(f̃
∗
) results in (1 − εI)(1 − ρ)

(
1 −

γ + β(γ − α)
)
, which is clearly positive. So, W̃(f̃

∗
) ≥ 2W̃ (γ−α

φ̃
) for all ρ ∈ (˜̄ρ, 1].

The case γ − α− εIIα < 0: With f̃ ∗1 equal to 0, total welfare W̃(f̃
∗
) reduces to

W̃(f̃
∗
) =2ρ(1− γ + α) + (1− ρ)(1− εI)(1− γ)− (1− ρ)εIβγ − εII

φ̃
βγ

+ (1− ρ)(εI − εII)βα + (1−εII)εII
φ̃

βα.

We again need to treat the two subcases separately:
The subcase ρ ≤ ˜̄ρ: Subtracting 2W̃ (γ

φ̃
) from W̃(f̃

∗
) evaluated at f̃

∗
= (0, γ−α

φ̃
, γ
φ̃
)

yields

Ψ̃(ρ) =− (1 + εI)(1− ρ)(1− γ)− (1− ρ)εIβ(γ − α) + εII
φ̃
βγ

− (1− ρ)εIIβα + (1− εII) εIIφ̃ βα.
(B.4)

28The laissez-faire condition together with the assumption that γ ≥ (1 + εII)α ensure that ˜̌ρ > 0.
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In particular:

Ψ̃(˜̄ρ) =−
(
(1 + εI)(1− γ) + εIβ(γ − α) + εIIβα

) εII
φ̃
βα

1− γ + β(γ − α)
+ εII

φ̃
βγ + (1− εII) εIIφ̃ βα

=− εI εIIφ̃ βα− (1− γ + εIIβα)

εII
φ̃
βα

1− γ + β(γ − α)
+ εII

φ̃
βγ + (1− εII) εIIφ̃ βα

=εIIβα−
1− γ + εIIβα

1− γ + β(γ − α)
εII
φ̃
βα + εII

φ̃
βγ > εII

φ̃
βα×

[
φ̃− 1− γ + εIIβα

1− γ + β(γ − α)
+ 1
]

=

εII
φ̃
βα

1− γ + β(γ − α)
×
[
φ̃
(
1− γ + β(γ − α)

)
+ β(γ − α− εIIα)

]
>

εII
φ̃
βα

1− γ + β(γ − α)
×
[
εIIβγ + φ̃β(γ − α) + β(γ − α)− εIIβα

]
> 0,

where the first and the last inequality stem from the fact that γ > α and the second one
is a consequence of the laissez-faire condition (φ̃(1− γ) > εIIβγ). Furthermore:

Ψ̃(0) =− (1 + εI)(1− γ)− εIβ(γ − α) + εII
φ̃
βγ − εIIβα + (1− εII) εIIφ̃ βα

<
(
− (1 + εI)

εII
φ̃
− εI + εII

φ̃

)
βγ +

(
εI − εII + (1− εII) εIIφ̃

)
βα

=− (1− εI) εIφ̃ βγ + (1− εI) εIφ̃ βα < 0,

where the first inequality follows from the laissez-faire condition. Since Ψ̃ increases in
ρ, the facts that Ψ̃(0) < 0 and Ψ̃(˜̄ρ) > 0 imply that there exists a ˜̌ρ ∈ (0, ˜̄ρ) such that
Ψ̃(ρ) ≥ 0 if ρ ∈ [ ˜̌ρ, ˜̄ρ].

The subcase ρ > ˜̄ρ: The welfare difference W̃(0, γ−α
φ̃
, γ
φ̃
)− 2W̃ (γ−α

φ̃
) equals

Ψ̃(ρ) =(1− εI)(1− ρ)(1− γ)− (1− ρ)εIβγ − εII
φ̃
βγ + (1− ρ)(εI − εII)βα

+ (1− εII) εIIφ̃ βα + 2(1− ρ)β(γ − α) + 2 εII
φ̃
β(γ − α)

=(1− εI)(1− ρ)
(
1− γ + β(γ − α)

)
+ (1− ρ)β(γ − α− εIIα) + εII

φ̃
β(γ − α− εIIα).

Because γ − α − εIIα < 0, Ψ̃(ρ) < 0 for ρ sufficiently large. On the other hand, by conti-
nuity of Ψ̃ we know that Ψ̃(ρ) > 0 for ρ > ˜̄ρ close to ˜̄ρ. Invoking the monotonicity of Ψ̃(ρ)
we conclude that there exists a ˜̂ρ ∈ (˜̄ρ, 1) such that Ψ̃(ρ) ≥ 0 if ρ ∈ [ ˜̄ρ, ˜̂ρ].

Appendix C: Punishing the Innocent

Proof of Proposition 5
Notice that since the incentives of the agents do not depend on δ, provided laissez-faire is
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not optimal the planner sets either the low punishment γ−α
φ̃

or the high punishment γ

φ̃
in

the one-shot setting. Welfare with the low punishment equals

W̃ (γ−α
φ̃

; δ) = W̃ (γ−α
φ̃

; 0)−ρ εII
φ̃
δ(γ−α) = ρ(1−γ+α)−ρ εII

φ̃
(β+δ)(γ−α)−(1−ρ)1−εI

φ̃
β(γ−α)

and welfare with the high punishment equals

W̃ (γ
φ̃
; δ) = W̃ (γ

φ̃
; 0)− εII

φ̃
δγ = ρ(1− γ + α) + (1− ρ)(1− γ)− εII

φ̃
(β + δ)γ.

Laissez-faire is never optimal as long as

max{W̃ (γ−α
φ̃

; δ), W̃ (γ
φ̃
; δ)} > 0.

Since W̃ (γ
φ̃
; δ) increases in ρ and W̃ (γ

φ̃
; δ)
∣∣
ρ=0

= 1− γ − εII
φ̃

(β + δ)γ, a sufficient condition

for laissez-faire to never be optimal is

1− γ > εII
φ̃

(β + δ)γ. (C.1)

Because W̃ (γ−α
φ̃

; δ)
∣∣
ρ=0

< 0 for all δ > 0, (C.1) is also a necessary condition.

Straightforward calculations reveal that29

W̃ (γ
φ̃
; δ) ≥ W̃ (γ−α

φ̃
; δ)⇐⇒ 1− ρ ≥ 1− ˜̄ρ(δ) :=

εII
φ̃

(β + δ)α

1− γ + β(γ − α)− εII
φ̃
δ(γ − α)

,

proving the optimality of (19). Since

d

dδ

( εII
φ̃

(β + δ)α

1− γ + β(γ − α)− εII
φ̃
δ(γ − α)

)
> 0,

the threshold ˜̄ρ(δ) is decreasing in δ.
We now look at the two-period setting. The planner then has to choose between using

the uniform punishment f̃ ∗0 in both periods and using the menu of punishments f̃
∗
. The

latter option yields a total welfare of

W̃(f̃
∗
; δ) = W̃(f̃

∗
; 0)− ρεIIδf̃ ∗1 −

(
ρε2IIδ

˜̂
f ∗2 + ρ(1− εII)εIIδf̃ ∗2 + (1− ρ)(1− εI)εIIδ ˜̂

f ∗2
)
,

where W̃(f̃
∗
; 0) = W̃1(f̃) + W̃2(f̃) (i.e. (B.1) plus (B.2)). Two cases (γ − α − εIIα ≥ 0

and γ − α− εIIα < 0) with each two subcases (ρ ≤ ˜̄ρ(δ) and ρ > ˜̄ρ(δ)) require attention.
The case γ − α− εIIα ≥ 0: In this case the planner sets φ̃f̃ ∗1 = γ − α− εIIα.

29The condition (C.1) ensures that ˜̄ρ(δ) ∈ (0, 1).
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The subcase ρ ≤ ˜̄ρ(δ): The relevant welfare difference (welfare with graduated punish-
ments minus two times W̃ (γ

φ̃
; δ)) then reads

Ψ̃(ρ; δ) =Ψ̃(ρ; 0)− ρεIIδ γ−α−εIIαφ̃
−
(
ρε2IIδ

γ

φ̃
+ ρ(1− εII)εIIδ γ−αφ̃ + (1− ρ)(1− εI)εIIδ γφ̃

)
+ 2 εII

φ̃
δγ = Ψ̃(ρ; 0) + εII

φ̃
δ
(
(1 + εI)(1− ρ)γ + 2ρα

)
=− (1 + εI)(1− ρ)

(
1− γ + β(γ − α)− εII

φ̃
δ(γ − α)

)
+ 2 εII

φ̃
(β + δ)α

− (1− εI) εIIφ̃ δ(1− ρ)α,

where Ψ̃(ρ; 0) can be found in (B.3). One has consequently:

Ψ̃(˜̄ρ(δ); δ) = −(1 + εI)
εII
φ̃

(β + δ)α + 2 εII
φ̃

(β + δ)α− (1− εI) εIIφ̃ δ(1− ˜̄ρ(δ))α > 0.

This observation together with the fact that Ψ̃(ρ; δ) increases in ρ proves that ˜̌ρ(δ) < ˜̄ρ(δ).
Totally differentiating Ψ̃(ρ; δ) = 0 reveals that ˜̌ρ′(δ) < 0.

The subcase ρ > ˜̄ρ(δ): The difference in total welfare between the two possibilities now
equals

W̃(f̃
∗
; 0)− 2W̃ (γ−α

φ̃
; 0)− ρεIIδ γ−α−εIIαφ̃

−
(
ρε2IIδ

γ

φ̃
+ ρ(1− εII)εIIδ γ−αφ̃ + (1− ρ)(1− εI)εIIδ γφ̃

)
+ 2ρ εII

φ̃
δ(γ − α)

=(1− εI)(1− ρ)
(
1− γ + β(γ − α)− εII

φ̃
δγ
)
,

where we have used the fact that W̃(f̃
∗
; 0)−2W̃ (γ−α

φ̃
; 0) = (1−εI)(1−ρ)

(
1−γ+β(γ−α)

)
.

The laissez-faire condition (C.1) implies that 1−γ+β(γ−α)− εII
φ̃
δγ > εII

φ̃
βγ+β(γ−α) > 0,

proving that using graduated punishments is optimal if ρ > ˜̄ρ(δ). So, ˜̂ρ(δ) = 1.

The subcase ρ ≤ ˜̄ρ(δ): Subtracting 2W̃ (γ
φ̃
; δ) from W̃(f̃

∗
; δ) evaluated at f̃

∗
= (0, γ−α

φ̃
, γ
φ̃
)

yields
Ψ̃(ρ; δ) = Ψ̃(ρ; 0) + εII

φ̃
δ
(
γ + (1− ρ)εIγ + ρ(1− εII)α

)
,

where Ψ̃(ρ; 0) is given in (B.4). Evaluating Ψ̃(ρ; δ) at ρ = ˜̄ρ(δ) yields after some manipu-
lations

Ψ̃(˜̄ρ(δ); δ) =εII(β + δ)α + εII
φ̃

(β + δ)γ − (1− ˜̄ρ(δ))(1− γ)− (1− ˜̄ρ(δ))εII(β + δ)α

=εII(β + δ)
(
α + γ

φ̃

)
− εII(β + δ)α

1− γ + εII(β + δ)α

1− γ + β(γ − α)− εII
φ̃
δ(γ − α)

.

This expression is positive precisely if

γ

φ̃α
>
εII(β + δ)α− [β(γ − α)− εII

φ̃
δ(γ − α)]

1− γ + [β(γ − α)− εII
φ̃
δ(γ − α)]

. (C.2)
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Observe that the RHS of this inequality decreases in the term between square brackets.
Note that:

β(γ − α)− εII
φ̃
δ(γ − α) > − εII

φ̃
δ(γ − α) > −1−γ

γ
(γ − α),

where we have used (C.1) to establish the second inequality. Furthermore, (C.1) also
implies that εII(β + δ)α < φ̃ 1−γ

γ
α. The inequality (C.2) consequently holds a forteriori if

γ

φ̃α
>

φ̃1−γ
γ
α + 1−γ

γ
(γ − α)

(1− γ)− 1−γ
γ

(γ − α)
=
φ̃α + (γ − α)

γ − (γ − α)
⇔ γ

α
> φ̃2 + φ̃ γ

α
− φ̃⇔ γ

α
> −φ̃,

an inequality which trivially holds. This proves that Ψ̃(˜̄ρ(δ); δ) > 0 and hence that ˜̌ρ(δ) <
˜̄ρ(δ). Totally differentiating Ψ̃(ρ; δ) = 0 again reveals that ˜̌ρ′(δ) < 0.

The subcase ρ > ˜̄ρ(δ): The relevant welfare difference is

W̃(0, γ−α
φ̃
, γ
φ̃
; 0)− 2W̃ (γ−α

φ̃
; 0)− εII

φ̃
δ
(
ρεIIγ + ρ(1− εII)(γ − α) + (1− ρ)(1− εI)γ

)
+ 2ρ εII

φ̃
δ(γ − α)

=W̃(0, γ−α
φ̃
, γ
φ̃
; 0)− 2W̃ (γ−α

φ̃
; 0) + εII

φ̃
δ
(
ρ(γ − α− εIIα)− (1− ρ)(1− εI)γ

)
.

Because γ − α− εIIα < 0, this difference is less than W̃(0, γ−α
φ̃
, γ
φ̃
; 0)− 2W̃ (γ−α

φ̃
; 0). Since

Ψ̃(˜̄ρ(δ); δ) > 0, the planner does employ graduated punishments as long as ρ does not
exceed ˜̄ρ(δ) by ‘too much’. However, because the welfare difference decreases in δ, ˜̂ρ(δ)
also decreases in δ.

Appendix D: Limited Recall

Proof of Proposition 6
To be able to determine whether using graduated punishments is optimal, we need to know
the long run (t→∞) composition of the population, q = 1− q̂ as well as µ and µ̂ = ρ−µ,
if graduated punishments are indeed used.

As before, when looking at graduated punishment schemes it suffices to consider situ-
ations in which low-cost agents always contribute (δL = δ̂L = 1), whereas high-cost agents
only contribute when in q̂ (δH = 0, δ̂H = 1).

The ‘flow equation’ for the fraction q with limited recall reads

q = 1− ζ + ζq(1+φ
2

µ
q

+ 1−φ
2

(1− µ
q
)) + ζ(1− q)1+φ

2
= 1− ζ 1−φ

2
− ζφq + ζφµ. (D.1)

The difference between (D.1) and its counterpart of the perfect recall setting (see (7)) is
that the latter does not contain a term pertaining to agents returning from q̂ to q (the
term ζ(1− q)1+φ

2
in (D.1)).
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If the planner has only limited recall, then the ‘flow equation’ for the fraction of the
population that consists of low-cost agents residing in q is:

µ = (1− ζ)ρ+ ζq 1+φ
2

µ
q

+ ζ(1− q)1+φ
2

ρ−µ
1−q = ρ(1− ζ 1−φ

2
). (D.2)

Substituting this expression into (D.1) results in

q =
(1− ζ 1−φ

2
)(1 + ρζφ)

1 + ζφ
. (D.3)

In order to derive the optimal punishments f and f̂ that prevail should the planner opt
for graduated punishments, we need to know the incentive compatibility constraints that
ensure that (δL, δ̂L) = (1, 1) ((δH , δ̂H) = (0, 1)) is indeed optimal from the point of view
of the low-cost agents (high-cost agents). These constraints follow from the following four
Bellman equations that govern agents’ behaviour:

• Bellman equation for low-cost agents in q:

CL = min
δ∈{0,1}

[
δ
(
γ−α+ 1−φ

2
(f + ζĈL) + 1+φ

2
ζCL

)
+ (1− δ)

(
1+φ

2
(f + ζĈL) + 1−φ

2
ζCL

)]
.

• Bellman equation for low-cost agents in q̂:

ĈL = min
δ∈{0,1}

[
δ
(
γ−α+ 1−φ

2
(f̂ + ζĈL) + 1+φ

2
ζCL

)
+ (1− δ)

(
1+φ

2
(f̂ + ζĈL) + 1−φ

2
ζCL

)]
.

• Bellman equation for high-cost agents in q:

CH = min
δ∈{0,1}

[
δ
(
γ + 1−φ

2
(f + ζĈH) + 1+φ

2
ζCH

)
+ (1− δ)

(
1+φ

2
(f + ζĈH) + 1−φ

2
ζCH

)]
.

• Bellman equation for high-cost agents in q̂:

ĈH = min
δ∈{0,1}

[
δ
(
γ + 1−φ

2
(f̂ + ζĈH) + 1+φ

2
ζCH

)
+ (1− δ)

(
1+φ

2
(f̂ + ζĈH) + 1−φ

2
ζCH

)]
.

Optimality of (δL, δ̂L, δH , δ̂H) = (1, 1, 0, 1) requires:

γ − α ≤ φf + φζ(ĈL − CL), γ − α ≤ φf̂ + φζ(ĈL − CL),

γ > φf + φζ(ĈH − CH), γ ≤ φf̂ + φζ(ĈH − CH).

Clearly, as long as f̂ > f the second and third inequality contain slack and the planner
opts for punishments that solve

φf ≥ γ − α− φζ(ĈL − CL), φf̂ ≥ γ − φζ(ĈH − CH). (D.4)
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Combining the Bellman equations with the fact that (δ∗L, δ̂
∗
L, δ

∗
H , δ̂

∗
H) = (1, 1, 0, 1) yields

after some rearranging

ĈL − CL = 1−φ
2

(f̂ − f), ĈH − CH =
γ + 1−φ

2
f̂ − 1+φ

2
f

1 + ζφ
. (D.5)

Plugging these expressions into (D.4) with equality signs replacing the inequality signs
results after some straightforward algebra in:

φf = γ − α−
ζ 1−φ

2

1 + ζφ
α, φf̂ = γ −

ζ 1+φ
2

1 + ζφ
α = γ − α +

1− ζ 1−φ
2

1 + ζφ
α. (D.6)

Of course, just like in the model with perfect recall, the expression for the punishment
for first time offenders can be negative. However, unlike in the model with perfect recall,
simply setting φf = 0 and using the expression for φf̂ given above is not an option.
The reason is that the resulting pair of punishments violates the incentive compatibility
constraint for high-cost agents in q̂. This is caused by the fact that, in contrast to the
optimal punishment for repeat offenders in the perfect recall setting, f̂ as given in (D.6)
depends negatively on α. Because f̂ decreases in α, the difference between f̂ and f becomes

smaller as α increases beyond the value above which γ − α− ζ 1−φ
2

1+ζφ
α < 0, i.e. above which

f = 0. The incentives for high-cost agents to contribute when in q̂ are consequently
weakened via two channels. Clearly, a lower punishment f̂ weakens the incentives to
contribute. On top of that, a smaller difference between f̂ and f decreases the relative
attractiveness of being in q, making agents less inclined to try to move back to q by
contributing.

Evaluating ĈH −CH (see (D.5)) at f = 0 and combining the result with the constraint
on f̂ given in (D.4) yields (1 + ζ 1+φ

2
)φf̂ ≥ γ. We conclude that

φf ∗ =

{
γ − α− ζ 1−φ

2

1+ζφ
α if γ ≥ γ̄

0 if γ < γ̄
, φf̂ ∗ =

γ − α +
1−ζ 1−φ

2

1+ζφ
α if γ ≥ γ̄

1

1+ζ 1+φ
2

γ if γ < γ̄
, (D.7)

where γ̄ := α +
ζ 1−φ

2

1+ζφ
α increases in ζ.

We can now calculate the total welfare Ω(f ∗, f̂ ∗) generated in one period if the planner,
having limited recall, employs graduated punishments. The per-period welfare ignoring
the costs of administering punishments reads

ρ(1− γ + α) + (1− µ̂
q̂
)q̂(1− γ) = ρ(1− γ + α) +

[
(1− q)− (ρ− µ)

]
(1− γ).

Note that:

(1− q)− (ρ− µ) =
(1− ρ)ζφ+ (1 + ρζφ)ζ 1−φ

2

1 + ζφ
−
ρζ 1−φ

2
(1 + ζφ)

1 + ζφ
=

(1− ρ)ζ 1+φ
2

1 + ζφ
.
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So, per-period welfare gross of punishment costs equals

ρ(1− γ + α) +
ζ 1+φ

2

1 + ζφ
(1− ρ)(1− γ). (D.8)

Let us now determine the per-period costs of administering punishments. These costs
amount to β times

q
(

1−φ
2

µ
q

+ 1+φ
2

(1− µ
q
)
)
f ∗ + (1− q)1−φ

2
f̂ ∗ = (1+φ

2
q − φµ)f ∗ + (1− q)1−φ

2
f̂ ∗. (D.9)

where we have used that in an equilibrium with graduated punishments a fraction 1−φ
2

of

the low-cost agents in q, a fraction 1+φ
2

of the high-cost agents in q, and a fraction 1−φ
2

of
the agents in q̂ are punished. We have to treat the cases γ ≥ γ̄ and γ < γ̄ separately:

The case γ ≥ γ̄: In this case the aggregate punishment equals

(1+φ
2
q − φµ)f ∗ + (1− q)1−φ

2
f̂ ∗ =(q − µ)(γ − α) + 1−φ

2φ
(γ − α)− (1+φ

2φ
q − µ)

ζ 1−φ
2

1 + ζφ
α

+ 1−φ
2φ

(1− q)
1− ζ 1−φ

2

1 + ζφ
α

=:(q − µ+ 1−φ
2φ

)(γ − α) + χα.

Observe that:

χ =
−ζ 1−φ

2
1+φ
2φ
− 1−φ

2φ
+ ζ 1−φ

2
1−φ
2φ

1 + ζφ
q +

ζ 1−φ
2

1 + ζφ
ρ(1− ζ 1−φ

2
) +

1− ζ 1−φ
2

1 + ζφ
1−φ
2φ

=− 1−φ
2φ
q + 1−φ

2φ
(1− ζ 1−φ

2
)
1 + ρζφ

1 + ζφ
= 0.

Furthermore:

q − µ+ 1−φ
2φ

=
(
1− ζ 1−φ

2

)
1−ρ

1+ζφ
+ 1−φ

2φ
=

1+φ
2φ
− ρ(1− ζ 1−φ

2
)

1 + ζφ
.

The social costs associated with administering punishments thus amount to

β

1+φ
2φ
− ρ+ ζρ1−φ

2

1 + ζφ
(γ − α).

Subtracting this from (D.8) yields the total per-period welfare:

Ω(f ∗, f̂ ∗) = ρ(1−γ+α)+
ζ 1+φ

2

1 + ζφ
(1−ρ)(1−γ)−β

1+φ
2φ
− ρ(1− ζ 1−φ

2
)

1 + ζφ
(γ−α), γ ≥ γ̄. (D.10)

To assess the difference in per-period welfare between using the single punishment f ∗0
and using graduated punishments, we consider the subcases ρ ≤ ρ̄ and ρ > ρ̄ in turn.
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The subcase ρ ≤ ρ̄: Subtracting W (γ
φ
) (see (A.1)) from Ω(f ∗, f̂ ∗) yields

Ω(f ∗, f̂ ∗)−W (γ
φ
) =
( ζ 1+φ

2

1 + ζφ
− 1
)

(1− ρ)(1− γ)− β
1+φ
2φ
− ρ(1− ζ 1−φ

2
)

1 + ζφ
(γ − α) + β 1−φ

2φ
γ

=− (1− ρ)
1− ζ 1−φ

2

1 + ζφ
×
[
(1− γ) + β(γ − α)

]
+ β 1−φ

2φ
α.

Evaluating this expression at ρ = ρ̄ results in

Ω(f ∗, f̂ ∗)−W (γ
φ
)
∣∣
ρ=ρ̄

= −1−φ
2φ
βα

1− ζ 1−φ
2

1 + ζφ
+ 1−φ

2φ
βα =

ζ 1+φ
2

1 + ζφ
× 1−φ

2φ
βα > 0,

where we have used the fact that 1 − ρ̄ =
(
(1 − γ) + β(γ − α)

)−1 1−φ
2φ
βα. One easily

verifies that Ω(f ∗, f̂ ∗)−W (γ
φ
) is strictly increasing in ρ and we consequently conclude that

Ω(f ∗, f̂ ∗) > W (γ
φ
) if ρ ∈ (ρ̌1, ρ̄] for some ρ̌1 < ρ̄.

The subcase ρ > ρ̄: Subtracting W (γ−α
φ

) (see (A.1)) from Ω(f ∗, f̂ ∗) and some rearrang-
ing suffices to show that using graduated punishments always dominates using a single
punishment in this case:

Ω(f ∗, f̂ ∗)−W (γ−α
φ

) =
ζ 1+φ

2

1 + ζφ
(1− ρ)(1− γ)− β

1+φ
2φ
− ρ(1− ζ 1−φ

2
)

1 + ζφ
(γ − α)

+ (1+φ
2φ
− ρ)β(γ − α)

=
ζ 1+φ

2

1 + ζφ
(1− ρ)(1− γ) +

ζ 1+φ
2

1 + ζφ
(1− ρ)β(γ − α) > 0.

The case γ < γ̄: Since f ∗ = 0 and f̂ ∗ = γ

φ(1+ζ 1+φ
2

)
, the aggregate punishment now equals

(1− q)
1−φ
2φ

1 + ζ 1+φ
2

γ =
(1− ρ)(1− ζ 1−φ

2
) + 1−φ

2φ
(1 + ζφ)

1 + ζφ

ζ 1−φ
2

1 + ζ 1+φ
2

γ.

The per-period welfare Ω(f ∗, f̂ ∗) consequently reads

Ω(f ∗, f̂ ∗) =ρ(1− γ + α) +
ζ 1+φ

2

1 + ζφ
(1− ρ)(1− γ)

−
(1− ρ)(1− ζ 1−φ

2
) + 1−φ

2φ
(1 + ζφ)

1 + ζφ

ζ 1−φ
2

1 + ζ 1+φ
2

βγ, γ < γ̄.

(D.11)
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The subcase ρ ≤ ρ̄: The relevant welfare difference is

Ω(f ∗, f̂ ∗)−W (γ
φ
) =

ζ 1+φ
2

1 + ζφ
(1− ρ)(1− γ)−

(1− ρ)(1− ζ 1−φ
2

) + 1−φ
2φ

(1 + ζφ)

1 + ζφ

ζ 1−φ
2

1 + ζ 1+φ
2

βγ

− (1− ρ)(1− γ) + 1−φ
2φ
βγ

=−
1− ζ 1−φ

2

1 + ζφ
(1− ρ)(1− γ)− (1− ρ)

1− ζ 1−φ
2

1 + ζφ
×

ζ 1−φ
2

1 + ζ 1+φ
2

βγ

+
1 + ζφ

1 + ζ 1+φ
2

× 1−φ
2φ
βγ.

Since this welfare difference is increasing in ρ, it suffices to show that this difference eval-
uated at ρ = ρ̄ is positive, i.e. that ∆ :=

1−φ
2φ
β×
[
−

1− ζ 1−φ
2

1 + ζφ
× (1− γ)α

1− γ + β(γ − α)
−

1− ζ 1−φ
2

1 + ζφ
×

ζ 1−φ
2

1 + ζ 1+φ
2

βγα

1− γ + β(γ − α)
+

1 + ζφ

1 + ζ 1+φ
2

γ

]
is positive. Condition 1 implies that

ζ 1−φ
2

1 + ζ 1+φ
2

βγ <
ζφ

1 + ζ 1+φ
2

(1− γ).

Therefore:

(
1−φ
2φ
β
)−1

∆ >−
1− ζ 1−φ

2

1 + ζφ
×
(

1 +
ζφ

1 + ζ 1+φ
2

) (1− γ)α

1− γ + β(γ − α)
+

1 + ζφ

1 + ζ 1+φ
2

γ

>−
1− ζ 1−φ

2

1 + ζφ
×
(

1 +
ζφ

1 + ζ 1+φ
2

)
γ +

1 + ζφ

1 + ζ 1+φ
2

γ

=
(ζ 1+φ

2
)2

(1 + ζφ)(1 + ζ 1+φ
2

)
γ > 0.

We conclude that Ω(f ∗, f̂ ∗) > W (γ
φ
) if ρ ∈ (ρ̌1, ρ̄] for some ρ̌1 < ρ̄.

The subcase ρ > ρ̄: Subtracting W (γ−α
φ

) from (D.11) yields the relevant welfare differ-
ence:

Ψ(ρ) =
ζ 1+φ

2

1 + ζφ
(1−ρ)(1−γ)−

(1− ρ)(1− ζ 1−φ
2

) + 1−φ
2φ

(1 + ζφ)

1 + ζφ

ζ 1−φ
2

1 + ζ 1+φ
2

βγ+
(

1+φ
2φ
−ρ
)
β(γ−α).
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Analysis of Ψ′(ρ) conveys that this difference decreases monotonically in ρ:

Ψ′(ρ) =−
ζ 1+φ

2

1 + ζφ
(1− γ) +

1− ζ 1−φ
2

1 + ζφ

ζ 1−φ
2

1 + ζ 1+φ
2

βγ − β(γ − α)

<−
ζ 1+φ

2

1 + ζφ
(1− γ) +

1− ζ 1−φ
2

1 + ζφ

ζφ

1 + ζ 1+φ
2

(1− γ)− β(γ − α)

=−
ζ 1−φ

2
+ ζ2(1+φ

2
)2 + ζ2φ1−φ

2

(1 + ζφ)(1 + ζ 1+φ
2

)
− β(γ − α) < 0,

where the first inequality follows from Condition 1. Because Ψ(ρ̄) = ∆ > 0, we conclude
that using graduated punishments is optimal for ρ ∈ (ρ̄, ρ̂1] for some ρ̂1 > ρ̄. Observe that

Ψ(1) =−
ζ 1−φ

2

1 + ζ 1+φ
2

1−φ
2φ
βγ + 1−φ

2φ
β(γ − α) = 1−φ

2φ
β
[ 1 + ζφ

1 + ζ 1+φ
2

γ − α
]

<1−φ
2φ
β
[ 1 + ζφ

1 + ζ 1+φ
2

γ̄ − α
]

= 0.

So, ρ̂1 < 1 if γ < γ̄. Since γ̄ increases in ζ, this observation implies that the planner resorts
to the uniform punishment scheme if ρ and ζ are both sufficiently large.

We have now shown that using graduated punishments improves welfare compared to
using a uniform punishment if the planner has limited recall as long as ρ ∈ [ρ̌1, ρ̂1]. We next
compare the per-period welfare generated if the planner has perfect recall with the per-
period welfare generated if the planner has only limited recall. To that end it is useful to
denote the per-period welfare under perfect recall by Ω∞ and the per-period welfare under
limited recall by Ω1. For the sake of convenience we first repeat these welfare expressions
below:

Ω∞ =


ρ(1− γ + α) +

ζ 1+φ
2

1−ζ 1−φ
2

(1− ρ)(1− γ)− ζ 1−φ
2

1−ζ 1−φ
2

(1−ρ)(1−ζ)+ 1−φ
2φ

(1−ζ 1−φ
2

)

1−ζ 1+φ
2

βγ if γ < γ̌

ρ(1− γ + α) +
ζ 1+φ

2

1−ζ 1−φ
2

(1− ρ)(1− γ)− (1−ρ)(1−ζ)+ 1−φ
2φ

(1−ζ 1−φ
2

)

1−ζ 1−φ
2

β(γ − α) if γ ≥ γ̌,

(D.12)

Ω1 =

ρ(1− γ + α) +
ζ 1+φ

2

1+ζφ
(1− ρ)(1− γ)− ζ 1−φ

2

1+ζ 1+φ
2

(1−ρ)(1−ζ 1−φ
2

)+ 1−φ
2φ

(1+ζφ)

1+ζφ
βγ if γ < γ̄

ρ(1− γ + α) +
ζ 1+φ

2

1+ζφ
(1− ρ)(1− γ)− (1−ρ)(1−ζ 1−φ

2
)+ 1−φ

2φ
(1+ζφ)

1+ζφ
β(γ − α) if γ ≥ γ̄.

(D.13)
Straightforward calculations reveal that γ̄ < γ̌. We thus have to consider three (disjoint)

cases: γ ∈ (α, γ̄), γ ∈ [γ̄, γ̌), and γ ∈ [γ̌, 1).
The case γ ∈ (α, γ̄): The welfare difference now reads:

Ω1 − Ω∞ =
[ ζ 1+φ

2

1 + ζφ
−

ζ 1+φ
2

1− ζ 1−φ
2

]
(1− ρ)(1− γ)−

(1− ρ)(1− ζ 1−φ
2

) + 1−φ
2φ

(1 + ζφ)

1 + ζφ

ζ 1−φ
2

1 + ζ 1+φ
2

βγ

+
(1− ρ)(1− ζ) + 1−φ

2φ
(1− ζ 1−φ

2
)

1− ζ 1−φ
2

ζ 1−φ
2

1− ζ 1+φ
2

βγ.
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The sign of this expression cannot be assessed analytically. Numerical computations indi-
cate that Ω1 − Ω∞ is negative if γ ∈ (α, γ̄).

The case γ ∈ [γ̄, γ̌): The welfare difference is:

Ω1 − Ω∞ =
[ ζ 1+φ

2

1 + ζφ
−

ζ 1+φ
2

1− ζ 1−φ
2

]
(1− ρ)(1− γ)−

(1− ρ)(1− ζ 1−φ
2

) + 1−φ
2φ

(1 + ζφ)

1 + ζφ
β(γ − α)

+
ζ 1−φ

2

1− ζ 1−φ
2

(1− ρ)(1− ζ) + 1−φ
2φ

(1− ζ 1−φ
2

)

1− ζ 1+φ
2

βγ.

(D.14)

Again, one has to resort to numerical methods to assess the sign of the welfare difference.
It appears that Ω1 − Ω∞ is also negative if γ ∈ [γ̄, γ̌).

The case γ ∈ [γ̌, 1): With γ large the welfare difference equals

Ω1 − Ω∞ =
[ ζ 1+φ

2

1 + ζφ
−

ζ 1+φ
2

1− ζ 1−φ
2

]
(1− ρ)(1− γ)−

(1− ρ)(1− ζ 1−φ
2

) + 1−φ
2φ

(1 + ζφ)

1 + ζφ
β(γ − α)

+
(1− ρ)(1− ζ) + 1−φ

2φ
(1− ζ 1−φ

2
)

1− ζ 1−φ
2

β(γ − α)

=
[ ζ 1+φ

2

1 + ζφ
−

ζ 1+φ
2

1− ζ 1−φ
2

]
(1− ρ)(1− γ)−

ζ2(1+φ
2

)2

(1 + ζφ)(1− ζ 1−φ
2

)
(1− ρ)β(γ − α) < 0,

implying that there exists a γ̃ < γ̌ such that Ω∞ > Ω1 as long as γ > γ̃. This observation
completes the proof.
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