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Abstract

We analyze collusion in an infinitely repeated version of a standard auction

with a continuum of types. Because of the lack of efficiency results in this setting

the literature has focused on determining and comparing benchmarks on how well

bidders can collude. Aoyagi (2003) has shown that the bidders can improve upon

static bid rotation, making use of a dynamic bid rotation scheme, but this scheme

does not allow to determine how much bidders can improve upon static bid rotation.

In this paper we design a very simple dynamic mechanism that improves upon static

bid rotation which in the limit recovers one third of the gap between static bid

rotation and efficiency.
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1 Introduction

The possibility that bidders collude in auctions by lowering their bids in a coordi-

nated fashion at the expense of the seller has received ample amount of empirical

attention (e.g. Hendricks and Porter (1989), Baldwin et. al. (1997), Pesendorfer

(2000), Cramton and Schwartz (2002)). From a theoretical point of view, the main

question addressed is whether the best collusive agreement is achievable in equilib-

rium. This optimal way in which bidders can collude is to allocate the good to the

bidder who values it the most without leaving any rent to the seller. The latter is

accomplished if the bidder who has the highest valuation bids the reservation price

while the other bidders do not participate in the auction. Since the valuation of each

bidder is private information it is not hard to understand that such a collusive agree-

ment has little chance of success if there are no enforceable side-payments available

or if there are no future auctions in which the bidders participate. In the absence

of the latter two features bidders have an incentive to lie about their valuation.

How well bidders manage to collude thus depends on how they can best strike

a balance between incentive compatibility and allocating the good efficiently. In a

static setting this can be achieved at zero cost if binding side-payments are available.

However, as these side-payments leave a ‘paper trail’, which make them easily visible

to antitrust authorities, the literature has emphasized that collusion arises in an

ongoing relationship (e.g. McAfee and McMillan (1992), Athey and Bagwell (2001),

Johnson and Robert (1998), Aoyagi (2003 and 2007), Skrzypacz and Hopenhayn

(2004)). Can bidders, in a repeated environment, obtain an efficient allocation

of the good in every period leaving zero rent to the seller if monetary payments

are not available? In this case incentive compatibility must be obtained through

transfers of future utility. These transfers are restricted to lie in the set of equilibrium

continuation values. Athey and Bagwell (2001) show that when the typespace is

binary (finite) and satisfies a specific distributional assumption, the first best can

be achieved in equilibrium by trading favors intertemporally. More generally, when

the typespace is finite and types are distributed identically and independently (iid),

then only asymptotic efficiency can be guaranteed (Fudenberg et al. (1994)). In

a repeated auction setting, Aoyagi (2007) confirmed this result and extended it to

affiliated types.

Auctions are mostly studied assuming a continuum of types. Unfortunatley, in

this case no (asymptotic) folk theorem is available. But then, what does the best

collusive scheme look like? Aoyagi (2003) builds on dynamic mechanism design to
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demonstrate the existence of a dynamic bid rotation scheme that outperforms the

static ’bidding ring’ proposed by McAfee and McMillan (1992). Nonetheless, his

mechanism does not allow to pin down exactly how much better bidders can do in

equilibrium.

The purpose of the present note is to propose a very simple dynamic mechanism

that also improves upon static bid rotation and allows us to exactly pin down how

much better bidders can do. We take the two-bidder environment presented in

Aoyagi (2003)1 and introduce a mechanism in which claims fulfill two roles: on

the one hand they serve to allocate the good in an efficient way and on the other

they induce incentive compatibility. At any point in time, bidders are either in a

punishment state or in a reward state. Being punished means that there is some

probability, (1− ϕ), that one is not to participate and the good is allocated to the

other bidder, who is in the reward state, at the reservation price. Higher claims

transfer future utility to the other player, and the simplicity of the mechanism is to

be found here: the transfer is done in only one period and these expected transfers

do not depend on the current state. We show that this collusive scheme can only

be supported as an equilibrium of the repeated auction if ϕ < 1
3
. In the limit, this

mechanism recovers one third of the gap between static bid rotation and efficiency

and, interestingly, this is independent of the distribution of types as long as it

satisfies a common hazard rate assumption.

The rest of the paper is organized as follows : Section 2 discusses the static

setup and provides basic notation. In section 3, the repeated auction is introduced

together with the collusive mechanism. Section 4 contains the main result of the

paper. Section 5 concludes.

2 Stage Game Auction

We assume that there are two bidders. Generically, we denote one bidder i and the

other bidder j. We focus on the independent private value case (IPV) which assumes

the bidders are ex-ante symmetric and draw an independent private value for the

good from a common continuous distribution F with strictly positive continuously

differentiable density f and support Θ = [0, 1] . We assume that F satisfies the

following hazard rate condition: h′ (θ) < 0 where h (θ) = 1−F (θ)
f(θ)

. We allow for the

1We do so for the case without affiliated types as this would unnecessarily complicate the main

message we wish to convey.
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fact that one or all bidders do not participate in the auction. Hence the bidders

choose a bid from the set B = {∅ ∪R+} . We assume for simplicity that the seller’s

reservation price equals zero. In what will follow we will focus on a first price sealed

bid auction but it will be straightforward to see that our reasoning holds for any

auctioning rule used by the auctioneer such that:

• The highest bidder obtains good. The other bidders does not pay a transfer

to the seller. When there is a tie, the good is allocated randomly with equal

probability to any of the two bidders.

• If nobody bids, the good remains in the hands of the seller.

The expected payoff of efficient collusion, v∗, is defined as v∗ =
∫ 1

0
θF (θ)f(θ)dθ.

The expected payoff of a static bid rotation (McAfee and McMillan (1992)), is equal

to v̄
2

where v̄ = E(θ) =
∫ 1

0
θf(θ)dθ : each bidder obtains the good with equal

probability. There exists a symmetric Bayesian-Nash equilibrium for this game with

expected payoff vN . Given the assumption on h we have that vN < v̄
2
. Since2 v∗ > v̄

2

we have that v∗ > v̄
2
> vN .

3 The Repeated Auction

3.1 Setup

In the repeated game we assume that the bidders’ private values are iid over time and

we allow for pre-play communication in each period. Communication is introduced

by assuming that the players have access to a communication device: the center.

The task of the latter is to collect the bidders’ claims, and on the basis of these to

recommend each bidder how much to bid3.

2By integration by parts we get that v∗ = 1
2 −

1
2

∫ 1

0
F (θ)2dθ and v̄

2 = 1
2 −

1
2

∫ 1

0
F (θ)dθ. Hence

v∗ − v̄
2 = 1

2

∫ 1

0
F (θ)(1− F (θ))dθ > 0.

3We introduce the idea of a communication center for ease of exposition and to work with a

comparable set-up to that of Aoyagi (2003). We could do without the center by letting the players,

when announcing their types, also propose: a) a bidding rule based on the announcements and the

outcome of the randomization device, and; b) an adjustment rule governing the probabilities used

for randomization as a function of announcements. The bidders would then effectively assume the

role of the communication device. Such a set-up would be similar to that of Athey and Bagwell

(2001).
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Coordination through communication is then modelled as follows. In each period4

t the bidders play the following stage game:

1. Each bidder i = 1, 2 observes her type θti .

2. Each bidder i = 1, 2 makes an announcement to the mechanism denoted by

θ̂i(θi), according to an announcement rule θ̂i :

θ̂i(.) : Θ→ Θ.

3. In the collusive stage of the mechanism there are two possible states: R1 and

R2, where Ri is the state where bidder i is rewarded and bidder j is penalized.

Given the current state Ri ∈ {R1, R2} and announcements
(
θ̂1, θ̂2

)
∈ Θ ×

Θ = Θ2, the mechanism instructs each bidder how much to bid using the

instruction rule m : {R1, R2} ×Θ2 → B2 where m is defined by

• with probability ϕ the bidder with the highest claim obtains the good,

• with probability 1 − ϕ the bidder in the reward state obtains the good,

regardless of his claim.

4. Given the claims of both bidders there is a transition rule, πi(., .), to to-

morrow’s state which is independent of today’s state: πi : Θ2 → [0, 1] is the

probability that bidder i′s state next period will be Rj.

5. We define a dynamic mechanism M to be a collection of the assignment

rule m and transition rule πi(., .). In short

M = {m,πi(., .)}.

After observing the recommendation of the mechanism and his true valuation

for the good, each bidder places her bid according to a bidding rule b̂i, i = 1, 2

where

b̂i(.) : B ×Θ→ B

Moreover, let θi be the honest reporting rule for bidder i: θi (x) = x, for

all x ∈ Θ, i = 1, 2. Let bi be the obedient bidding rule (bidders follow the

mechanism’s instructions) so that bi(m(θ̂i, θ̂j, Ri), θi) = mi(θ̂i, θ̂j, Ri) where j 6= i.

4For our exposition we do not need the time superscripts and hence omit them below.
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We assume that the bidders decide on the rules of the mechanism at time zero.

The mechanism is assumed to begin in a “collusive phase”: at time zero the state is

chosen at random after which it is determined by the claims of the bidders. After

any observable deviation the mechanism reverts to a “non-collusive phase” which

is characterized by playing the Bayesian Nash equilibrium forever, in which bidders

obtain vN per period.

3.2 The Mechanism as a Perfect Public Equilibrium

Let Ui(θ̂, b̂,M) denote bidder i′s expected payoff (bidder j′s is defined analogously)

from the stage game as a function of the announcement, bidding and instruction

rules. Communication history for a bidder in period t in the repeated game is the

sequence of his announcements and instructions in periods 1, 2, ..., t − 1. Private

history is the sequence of private signals θik in periods k = 1, 2, ..., t − 1. Finally,

public history in period t is a sequence of outcomes of the assignment rule used

by the mechanism, the actual bids and communication history. Bidder i′s strategy

σ̂i is a pair of announcement and bidding rules (θ̂i, b̂i) for each period defined as a

function of his public and private histories. Define σ to be the honest and obedient

strategy which selects the pair (θ, b) for all histories. Bidders aim to maximize their

expected discounted payoff given a common discount factor δ < 1. The collusive

mechanism M = {m(ϕ), πi(., .)} is an equilibrium if the pair Σ = (σi, σj) of honest

and obedient strategies is a perfect public equilibrium (PPE) of the repeated game,

i.e., if σi is optimal against (σj,M) after any public history of the game. That is,

what is required is that bidders are truthful and obedient.

4 The Main Result

Given a mechanism M, interim welfare for bidder i after observing his valuation

and given a truthful and obedient strategy of bidder j is equal, in states Ri and Rj,

to

WRi
i (θi, θ̂i) = (1− δ)(ϕθiF (θ̂i) + (1− ϕ)θi) +

δ

∫ 1

0

[π(θ̂i, θj)W
Rj

i + (1− π(θ̂i, θj))W
Ri
i ]f(θj)dθj, (1)

W
Rj

i (θi, θ̂i) = (1− δ)ϕθiF (θ̂i) +

δ

∫ 1

0

[π(θ̂i, θj)W
Rj

i + (1− π(θ̂i, θj))W
Ri
i ]f(θj)dθj. (2)
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where WRi
i

(
W

Rj

i

)
is the ex ante expected payoff for bidder i in state Ri (Rj):

WRi
i = Eθi

[
WRi
i (θi, θi)

]
and W

Rj

i = Eθi

[
W

Rj

i (θi, θi)
]
. If there exists an incentive

compatible transition mapping πi(θ) = πi(θ̂i, θ̂j), then expected payoffs in each state

can be written recursively as:

WRi
i = (1− δ)(ϕv∗ + (1− ϕ)Eθ) + δ(πiW

Rj

i + (1− πi)WRi
i ), (3)

W
Rj

i = (1− δ)ϕv∗ + δ(πiW
Rj

i + (1− πi)WRi
i ), (4)

W
Rj

j = (1− δ)(ϕv∗ + (1− ϕ)Eθ) + δ((1− πi)WRi
j + πiW

Rj

j ), (5)

WRi
j = (1− δ)ϕv∗ + δ((1− πi)WRi

j + πiW
Rj

j ), (6)

where πi = Eπi(θ) =1
0

1
0π

i(θ)f(θi)f(θj)dθidθj. From the above we have that:

WRi
i −W

Rj

i = W
Rj

j −W
Ri
j = (1− δ)(1− ϕ)Eθ = (1− δ)(1− ϕ)v̄ (7)

We now provide conditions under which the transition rule πi(θ) induces local in-

centive compatibility. We need, for bidder i that:

WRi
i (θi, θ̂i)

∂θ̂i
|θ̂i=θi= 0 and

W
Rj

i (θi, θ̂i)

∂θ̂i
|θ̂i=θi= 0. (8)

Similar conditions hold true for bidder j. Now define

πi(θi, θj) = πii(θi) + πij(θj) where: (9)

πii(θi) =
1

2
− ϕ

δ(1− ϕ)v̄

θi

0

θf(θ)dθ, (10)

πij(θj) =
ϕ

δ(1− ϕ)v̄

θj

0

θf(θ)dθ. (11)

Then πi(θi, θj) induces local incentive compatibility since the latter implies (from

(8)):

for bidder i : (1− δ)ϕθif(θi) + δπ′i(θi)(W
Ri
i −W

Rj

i ) = 0, (12)

for bidder j : (1− δ)ϕθjf(θj)− δπ′j(θj)(W
Rj

j −W
Ri
j ) = 0, (13)

π′i(θi) = −(1− δ)ϕθif(θi)

δ(WRi
i −W

Rj

i )
= − ϕθif(θi)

δ(1− ϕ)v̄
, (14)

π′j(θj) =
(1− δ)ϕθjf(θj)

δ(W
Rj

j −W
Ri
j )

=
ϕθjf(θj)

δ(1− ϕ)v̄
. (15)
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Moreover, since the payoffs satisfy the single crossing property, local incentive com-

patibility implies global incentive compatibility. Given our definition of πi(θi, θj)

above we obtain that πi = 1
2
. Now let ϕ = δ

2+δ
and observe that this implies that

πi(1, 0) = 1 and hence πi(θi, θj) ∈ [0, 1] for all (θi, θj) ∈ Θ2. Since δ < 1 we have

that

ϕ <
1

3
(16)

and for all δ < 1 on schedule incentive compatibility is satisfied.

Off schedule deviations are deterred by Nash Reversion. The highest incentive

to deviate is when a bidder is told not to bid while having the highest valuation,

θ = 1. Deviating is then deterred when δ > δNR where5 δNR = 1
ϕv∗+(1−ϕ) v̄

2
−vN+1

< 1.

The expected payoff of M = {m(ϕ), πi(., .)} for i, in each state, becomes:

WRi
i = (1− 2ϕ

(1− ϕ)
)(ϕv∗ + (1− ϕ)Eθ) +

2ϕ

(1− ϕ)
(
WRi
i +W

Rj

i

2
), (17)

W
Rj

i = (1− 2ϕ

(1− ϕ)
)ϕv∗ +

2ϕ

(1− ϕ)
(
WRi
i +W

Rj

i

2
). (18)

Before the auction one randomizes (50/50) over who will start in the punishment

and reward phases. Because of symmetry, the expected payoff of the mechanism

becomes:
WRi
i +W

Rj

i

2
=
WRi
j +W

Rj

j

2
= ϕv∗ + (1− ϕ)

v̄

2
. (19)

Hence when bidders become very patient (δ → 1) the expected payoff approaches

1

3
v∗ +

2

3
· v̄

2
(20)

We thus have the the following proposition:

Proposition 1 Let ϕ = 2δ
1+δ

, then for any δ > δNR(M) the mechanism M defined as

above is an equilibrium of the repeated auctions game. Moreover, a bidder’s expected

payoff converges to 1
3
v∗ + 2

3
v̄
2

as δ → 1.

The above defined probability mapping guarantees that the bidders will always

announce their valuation in a truthful manner locally. The single crossing property

then guarantees that incentive compatibility is also satisfied globally. In particular,

5The monotone hazard condition guarantees us that the expected payoff at any state of the

collusive phase of the mechanism is always higher than that of the non-collusive phase, vN , and

hence observable deviations can be deterred by Nash reversion.
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the whole transfer needed to obtain incentive compatibility is obtained in the next

period only. The cost is that the good is allocated in an efficient way only with

probability ϕ. We would like to stress that our mechanism can, with patient enough

bidders, recover one third of the gap between bid rotation and efficiency, indepen-

dent of the underlying distribution. In order to gain some intuition, note that the

transfer needed to guarantee incentive compatibility occurs through having higher

announcements lead to a higher probability of being punished in the next period.

Adding all the incentives for all θi ∈ [0, 1] one obtains ϕv̄, the exact amount by

which the expected utility of announcing the highest value, θ = 1, must be reduced

in the next period, compared to announcing the lowest value. Assume away dis-

counting then (πi(1, θj)− πi(0, θj)) (1− ϕ)v̄ is the expected decrease in utility next

period. In order for πi(θi, θj) to be a probability we imposed that πi(1, 0) = 1, or

that πi(1, 0)− πi(0, 0) = 1
2
. In the limit scenario, δ = 1, we see immediately that ϕ

is independent of v̄ and ϕ = 1
3
.

5 Concluding Remarks

We have constructed a very simple dynamic mechanism that outperforms the bid

rotation scheme proposed by McAfee and McMillan (1992). It is similar in nature

to the mechanism of Aoyagi (2003) but it displays some noteworthy differences.

First, the mechanism reduces the gap between the equilibrium static bid rotation

payoff and the efficient payoff with one third. Second, the mechanism achieves

truthtelling in every period but requires that the good is not always allocated to the

bidder with the highest valuation, although the announced valuations are known

to be correct. Third, the mechanism is perhaps surprisingly simple, but once one

attempts to generalize, things quickly become much more involved. Making the

transition probabilities depend on the current state, for instance, makes the model

intractable.
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