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Abstract

In many contests competing agents (politicians, firms, soccer teams,

etc.) form cooperative alliances. However, when agents share valuable re-

sources or information they increase not only their own value for the prize

but also their rivals’ valuations. Hence it is not obvious that competitors

decide to cooperate. We study the endogenous formation of networks of

cooperation in the Tullock contest. We find that the network formation

process can act as a barrier to the entry to the contest insofar as there

can exist pairwise stable group dominant networks that hamper the par-

ticipation of some competitors. Moreover, we show that the total welfare

can be maximized under pairwise stable dominant group networks rather

than the complete one. Furthermore, it may happen that the player who

is driven out is the one with the highest ex-ante valuation.

1 Introduction

In many situations of rivalry one observes that competitors are also involved

in cooperative relationships. Von Hippel [9] identifies that U.S. steel minimill

producers cooperate by informally trading technical know-how. Firms can also

decide to share fixed costs of R&D, while they nonetheless are competing for

a patent. On the demand side, firms can enhance their potential customer

base by exchanging customer information, even thought they are competing to
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be the first to launch a new product. Soccer teams in the same league may

decide to exchange information about players that jointly attract their interest

in order to reduce uncertainty about the value of the player, but compete for

the services of the very same player. The latter two examples share the feature

that cooperative agreements between rivals have the potential to increase the

(expected) value of winning the competition.

In many instances in economics and politics, competition takes form in con-

tests. Rivals decide to spend resources in order to increase the probability of

becoming the (only) winner of the contest. Indeed, competition in most of the

examples above could be described adequately in terms of a contest. In these

situations, competitors are usually confronted with the following dilemma. By

forming a cooperative link with a competitor they increase the value of winning

the competition, but they also increase the value their cooperating rival attaches

to winning the competition. It is thus not obvious that rivals wish to form a

link, even if there is any cost attached to doing it. Therefore, it is our aim to

study the endogenous formation of cooperation networks in the classical model

of contests: the Tullock model (Tullock, [8]). In order to do so, we employ a

two stage model. In particular, in the first stage agents form a network of co-

operation. We assume that the players are related symmetrically regarding the

strategic value they obtain from a new link. In the second stage, agents take

part in the Tullock contest.

We solve the model by backward induction and we rely on network theory

from which we borrow the notion of pairwise stability (Jackson and Wolinsky,

[3]). A (cooperative) network is pairwise stable if no agent wants to cut one of

her links with other players and no two agents who are not linked find it in their

interest to form a link.

Our main result is the characterization of all pairwise stable networks in the

Tullock contest for small but negligible costs of link formation. We find that if

a network is pairwise stable than it is either the complete network or it has a

group dominant shape. The latter network architecture arises when there is a

core of players who are fully linked with one another and all other agents have

no links at all.

The existence of (group dominant) networks which are pairwise stable but

different from the complete network is different from established results of net-

work formation in the Tullock contest. Goyal and Joshi [1] consider a patent

contest following Loury [4], which is, in the limit, a Tullock contest. They

obtain that, when the cost of link formation is low, the only pairwise stable

network is the complete network when the effort level in the patent contest is
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fixed and the same for all firms. In their terminology, the game has a “play-

ing the field” structure: the expected marginal gross profit is only a function

of the amount of links a player has and the aggregate amount of links of all

other players. However, when agents can freely choose their effort intensity, the

marginal gross benefits depend on the full distribution of the links of the others

agents. We show that this feature allows for the existence of other pairwise

stable networks. This idea has been studied in the related but different context

of all pay auctions. In particular, Marinucci and Vergote, [5] have shown that

when link formation affects the value of the prize in a multiplicative way, then

group dominant networks and the complete network are the only pairwise stable

networks. We thus confirm the results of Marinucci and Vergote [5] in the case

of the Tullock contest: network formation can act as a barrier to entry to the

Tullock contest. Nonetheless our results differ from Marinucci and Vergote [5]

in three important ways. First, although we straightforwardly show that their

results hold when the strategic value of link formation is multiplicative, we focus

on the more difficult case where a link changes the value in an equal way for all

agents. This assumption allows for a more natural interpretation of the effects

of link formation. Second, we show that, by means of an example, there can be

pairwise stable group dominant networks which yield a higher level of welfare

than the complete network. Third we show, as a corollary to our results, that

network formation has the potential to eliminate agents who have initially the

highest valuation for to the prize of the contest.

We equally contribute to the theoretical literature on Tullock contests. Stein

[7] has shown that when the valuation of a player increases and, as a result, no

other player decided to leave the contest, then the expected payoff of that player

will increase. We complete the result of Stein [7] by showing that it holds even

in the case where some players decide not to participate in the contest in the

event of an increase in the valuation of one player. In addition, we show that

if the value of two agents increases with the same amount, the same conclusion

is reached. A stronger result is show if the strategic value of link formation is

multiplicative: if any given amount of players see their value increase by the

same percentage, then they all see their expected payoff from the Tullock contest

increase. All players not involved see their payoff decrees.

Furthermore, Matros [6] analyzes a Tullock contest where players may have

different exogenously given valuations for the prize. He shows that if a player

with a higher valuation joins the contest then players with lower valuations may

leave the competition. On the contrary, in our model since a player’s valuation

is endogenously affected by the network of collaborations, it may be that a
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player with a priori higher valuation is not able to join the contest, because of

the existing link formation. In this case, network formation acts as a deterrence

to new efficient potential entrants in Tullock contest.

The paper is organized as follows. In Section 2 we present the network

cooperation stage. In Section 3 we describe both Tullock contest and Stein’s

main results. In Section 4 we show that besides the complete network, there

also exist pairwise stable dominant group networks. To get more insights we

also analyze what happens when valuations take different specifications. Section

5 provides a welfare analysis and Section 6 concludes.

2 Network cooperation

We consider a finite set of ex-ante identical agents, N = {1, . . . , n} with n > 1.

Relationships between agents are captured by the binary variables gij ∈ {0, 1}
which denote a relationships between agent i and j. In particular, if there exists

a link between agents i and j then gij takes the value of 1, and of 0 otherwise.

As a consequence, the set of agents and the relationships between them define

a network g while the set of all possible networks is Γ. Let Ni(g) be the set of

agents that have a link with player i given some network g then ηi(g) = |Ni(g)|
represents the number of agents linked with i. To simplify notation, g + ij

means that the link gij is added to the network g while, g − ij corresponds to

the network g without the link gij . We say that there exists a path between

agents i and j if either gij = 1 or if there exists a sequence of l distinct players

{k1, k2, . . . , kl} such that gik1 = gk1k2 = . . . = gklj = 1. Network ĝ is said to be

a component of network g if for all i, j, i 6= j belonging to ĝ, the there exist a

path between i and j and for i ∈ ĝ and j ∈ g, if gij = 1 then j ∈ ĝ. These are

all the basic features which allows us to describe some network structures we

will refer later on. In particular,

• the complete network gN is characterized by ηi(gN ) = n− 1 for all i ∈ N ,

• the empty network g0 is characterized by ηi(g0) = 0 for all i ∈ N ,

• the network gD is characterized by a dominant group structure when the

component ĝD = {i ∈ N, ηi(ĝD) > 0}  N is complete and all j /∈ ĝD

have no links: ηj(gD) = 0

A network game is a game where every agent i ∈ N announces its intended link

sij ∈ {0, 1} which all other agents j 6= i. If i wants to make a link with j, then

sij = 1 and sij = 0 otherwise. A strategy in the network game for agent i is
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given by si = {sij}j 6=i, which is a n − 1 vector which belongs to the set of all

possible strategies of agent i, i.e. Si. We then have that gij = 1 if sij = 1 = sji

and gij = 0 otherwise. A strategy profile s = {si, . . . , sn} induces a network

g(s) ∈ Γ. Once a network is formed, we assume that each agent pays a negligible

but positive cost c > 0 per link formed. Given a strategy profile s, the payoff

of agent i is given by

Πi(si, s−i) = πi(g(s))− c× ηi(g(s))

where, πi(g(s)) is the agent i expected gain to participate in the contest. Given

this framework we look for the pairwise stable networks according to the defi-

nition proposed by Jackson and Wolinsky [3], namely

Definition 1 (Pairwise Stability) A network g is pairwise stable (PWS) if

the following two conditions holds:

1. if gij ∈ g ⇒ Πi(g + ij) > Πi(g) and Πj(g + ij) > Πj(g)

2. if gij /∈ g and Πi(g + ij) > Πi(g)⇒ Πj(g + ij) < Πj(g)

Intuitively, the two conditions state that, starting form a network g, no one

wants to delete a link and no pair of agents want to form a new link respectively.

3 Network formation in Tullock Contests

Given a network g, the value for the prize of agent i is denoted as vi(g) which

is known to all agents. We relabel the agents such that

v1 ≥ v2 ≥ . . . ≥ vn (1)

We assume that the creation of a new link between agents i and j allows them

to increase their value of the prize. As mentioned in the introduction, this could

be due to the sharing of valuable information, to the sharing of fixed costs, etc.

Furthermore, we assume that the benefit β of the link formation on each agents’

valuation is symmetric. In other words, when two agents form a link they get

exactly the same benefit form the collaboration i.e. for any network g such that

i and j are not linked in g we have:1

vi(g + ij)− vi(g) = vj(g + ij)− vj(g) = β > 0 (2)

Each agent i can exert an effort level ei ≥ 0 and agent i wins the prize with

probability pi(g) = eiPN
j=1 ej

. Given any network g we can derive the equilibrium

1We will discuss the implication of a asymmetric benefit in the paragraph 4.2.2.
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effort level of each agent and, as a consequence, her equilibrium expected payoff.

In particular, the agent chooses the effort level that maximizes her expected

payoff:

max
ei(g)

pi(g)vi(g)− ei(g)

It is well known (see for instance Hillman and Riley [2]) that the number of

participating agents is the largest integer κ such that

vκ(g) >
κ− 2
Sκ−1

=
κ− 2
κ− 1

hκ−1(g) (3)

where Sκ−1 =
∑κ−1
j=1

1
vj(g)

and hκ−1(g) is the harmonic mean of the largest κ−1

valuations. Since an agent i would join the contest if and only if condition (3) is

satisfied, only κ players with the largest valuation will be active in the contest,

whereas players with valuation between κ+ 1 and N stay out. Following Stein

[7] we can write down both the equilibrium strategies and the equilibrium payoff

as follows

Proposition 1 (Stein, [7]) Suppose that v(g) = (v1(g), . . . , vn(g)) such that

condition (1) is satisfied. Then e∗(g) = (e∗1(g), . . . , e∗n(g)) is a Nash equilibrium

of the Tullock contest in which agent i makes the following equilibrium effort:

e∗i (g) =

 κ−1
κ hκ

(
1− 1

vi(g)
κ−1
κ hκ

)
if i = 1, . . . , κ

0 if i = κ+ 1, . . . , n
(4)

Additionally, if agent i participates to the contest, the probability that agent i

wins the prize, becomes

p∗i (g) = 1− 1
vi(g)

κ− 1
κ

hκ(g)

as a result her equilibrium payoff is given by

Π∗i = vi(g) (p∗i (g))2 (5)

Stein [7] has shown that both the probability of winning and the expected payoff

are positively related with the player’s valuation. Hence, we have the following

Lemma 1 (Stein, [7]) Given the number of participants then: (i) an increase

in vi implies that pi increases and pj decreases for i 6= j and (ii) an increase in

vi implies that the expected payoff of player i increases and the expected payoff

of each of the other players will decrease.

Given these building blocks, we can summarize the timing of the contest in

two stages. In the first stage, the agents form their collaboration through their
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link formation strategy and the network g determines the valuations v(g) =

(v1(g), . . . , vn(g)) of all players. In the second stage, playing according to the

above described strategies, each agent would decide either to join the competi-

tion or to stay outside the contest.

4 Equilibrium network formation

4.1 Characterization of pairwise stable networks

From Equation (2) it is straightforward to see that each agent valuation posi-

tively depends on her amount of links, namely

vi(g) = v + β ηi(g) (6)

where v ≥ 0 is a minimum reward that i gets whenever she is competing alone.

Even though we will work with this additive valuation specification, our main

results still remain true with a multiplicative effect as we show in section 4.2.1.

Now, we will look for the conditions that characterize pairwise stable networks.

In particular, since each link has a smaller but positive cost, all players that i)

do not participate to the contest and ii) are linked in g, have an incentive to

cut their link. This lead us to the following lemma

Lemma 2 If a player i /∈ κ and ηi(g) > 0 then g is not stable. A necessary

condition for the network g to be pairwise stable is that all non participating

firms have no links.

Furthermore, two players want to form a link if and only if it is beneficial for

both of them, i.e. Π∗i (g + ij) > Π∗i (g) and Π∗j (g + ij) > Π∗j (g). At this point it

is convenient to rewrite the equilibrium payoff stated in Equation (5) in a more

explicit way:

Π∗i (g) = vi

(
1− 1

vi

(κ− 1)
κ

hk

)2

, ∀ i ∈ g. (7)

When player i forms a link gij , the equilibrium payoff becomes

Π∗i (g + ij) = (vi + β)
(

1− 1
vi + β

(κ− 1)
κ

h
′

k

)2

(8)

where h
′

k = κ
S
′
k

and S
′

k = Sk − 1
vi
− 1

vj
+ 1

vi+β
+ 1

vj+β
. Comparing Equation (7)

with Equation (8) we can see what happens when player i forms a new link. On

the one hand, the valuation increases due to the new collaboration. On the other

hand we have a change in probability of winning the contest. In particular, due
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to the higher valuation player i would exert a higher effort to win the contest,

and this leads toward an increase in pi(g). Despite that, there is also an increase

in the harmonic mean: player i’s opponent has a higher valuation making her a

fierce rival, and this leads toward a decrease in pi(g). A priori it is not possible

to see the overall effect of a new link on the expected payoff. We will show that

the positive effect dominates the negative only as κ ≥ 3

Theorem 1 Let g be such that ∀ i /∈ κ, i has no link. Let κ ≥ 3 and consider

two players i and j such that they both participate to the Tullock contest but

they are not linked to one another in network g. In such a case agents i and j

always form a link and participate to the contest in the network g + ij.

Proof. See Appendix A.

We can deduce that if all agents participate to the contest then they are all

linked and the complete network is pairwise stable. Nevertheless, in the next

theorem we show our main result namely, gN is not the only pairwise stable

network.

Theorem 2 When β is sufficiently high, there exist pairwise stable dominant

group networks.

Proof. See Appendix B.

In others words Theorem 2 says that all the agents engaged in the contest

are linked among themselves whereas those who do not participate form no

links. The finding corroborates the main result found in Marinucci and Vergote

[5] which states that there exist pairwise stable dominant group networks in

the all-pay auction setting. Furthermore, the following condition allows us to

characterize all pairwise stable networks in the Tullock contest.

Theorem 3 Take gκ characterized by a κ-players dominant group. A necessary

and sufficient condition for gκ to be PWS is

vl + β

h′−l
<
κ− 2
κ− 1

(9)

where h′−l = κ−1
S′−l

, S′−l = S−l + 1
vz+β and l, z /∈ κ.

Proof. See Appendix C.

4.2 Robustness with respect to the valuation function

In this section we analyze different specifications of the valuation function given

by Equation (6) and we wish to see whether our main result remains true. In
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particular, in what follows we analyze what happens when the benefit of a new

link 1) has a multiplicative effect on the valuation, and 2) is not equally shared

between the agents.

4.2.1 Multiplicative effect

We are interested to study if our results qualitatively change if we alter the way

in which the strategic benefit from collaboration is shared among agents. Let

us consider the following multiplicative valuation2

vi = φηi(g) with φ > 1. (10)

In this case the payoff of an agent i would still be given by Equation (7) whereas

when player i forms a new link her payoff becomes

Π∗i (g + ij) = (viφ)
(

1− 1
viφ

(κ− 1)
κ

h
′

k

)2

(11)

where h
′

k = κ
S
′
k

and S
′

k = Sk− 1
vi
− 1
vj

+ 1
viφ

+ 1
vjφ

. In this case the result follows

almost immediately from the multiplicative specification.

Theorem 4 When the valuation is given by Equation (10) there exist PWS

dominant group networks.

Proof. See Appendix D.

4.2.2 Asymmetric benefit sharing

It is interesting to see what happens to the cooperation between agents if the

benefit they get form the collaboration it is not equally shared among them.

This could be the case if some agents have a higher bargaining power, or they

are able to better exploit the information they get from cooperation. By means

of an example, consider the valuation function of two agents i and j:

vi = v + β vj = v + δβ with δ ∈ (0, 1)

It is not hard to see that if the asymmetry is small then because of the continuity

of the payoff function in δ, our results would remain true. At the same time if the

asymmetry is large enough, all room for cooperation disappears. We know from

Lemma 1 that if vi increases then both pj and Πj would decrease. Consequently,

for values of δ low enough all the participating players would not being fully

connected. As δ tends toward zero, player j would not wish to connect with

player i and the dominant group network would no longer be pairwise stable.
2This specification is equal to the one used by Marinucci and Vergote [5] in an all-pay

auction framework.
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5 Welfare analysis

In this section we define total welfare as the sum of all agents expected payoffs

and the network with the highest total welfare as the efficient one. Since some

players do not participate and valuations are lower in group dominant networks

compared to the complete network we may think that group dominant networks

do in general not maximize total welfare. We show, however, by means of

example, that it is not the case. Intuitively, when some agents do not participate,

there is less competition, leading those who participate to the contest to spend

less resources, yielding higher expected benefit for them but even higher total

welfare for the networks as a whole. In particular, let us define the total welfare

as ω(gκ) =
∑
i∈n Π∗i (g

κ) =
∑
i∈κ Π∗i (g

κ), then

Theorem 5 There exist values of β such that ω(gκ) ≥ ω(gN ) with κ < n.

Proof. The proof follows from the following example.

Example Six players want to participate in a contest. Consider first the net-

work g5 where one player, let say 1, does not participate, then the valuations of

the competing players become

vi = v + 4β i = 2, . . . , 6. (12)

It is straightforward to see that the harmonic mean would be h5 = v + 4β and

consequently, the equilibrium payoffs are3

Π1 = 0, Πi =
1
25

(v + 4β) i = 2, . . . , 6.

accordingly, the total welfare is

ω(g5) =
1
5

(v + 4β). (13)

However, since Πi(g5) ≤ Πi(g5 + i1) for i = 2, . . . , 6, then each player wants

always to form the link gi1. Consequently, g5 is pairwise stable if and only if

player 1 does not want enter the contest even when she form a link with a player

i ∈ g5. Hence the following condition must holds

(v + β)
(

4
v + 4β

+
1

v + 5β

)
< 3 ⇒ 18β2 − vβ − v2 > 0

this condition has only one positive root, i.e. β+ = v(1+
√

73)
36 . Therefore g5 is

pairwise stable for any value of the benefit such that β > β+. Now consider g6,

the valuations are

vi = v + 5β i = 1, . . . , 6
3The incentive constraints for all participating player are satisfied whenever β > 0.
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and the equilibrium payoffs become4

Πi =
1
36

(v + 5β) i = 1, . . . , 6.

accordingly the total welfare is

ω(g6) =
1
6

(v + 5β) (14)

As a result, comparing Equation (13) and Equation (14) we get

if v ≥ β > β+ ⇒ ω(g5) ≥ ω(g6)

Therefore there exists a parameters range such that a group dominant pairwise

stable network maximizes the total welfare, but obviously the welfare distri-

bution is less equally shared among the agents. However, despite this positive

result the next corollary shows that the player with the originally larger valua-

tion may be driven out of the contest through the network formation process.

Corollary 1 The network formation process may lead to pairwise stable net-

works where the player with the initially higher valuation does not participate in

the contest.

Proof. The proof follows from the next example.

Example (cont.) Let us develop the previous example taking into consid-

eration that player 1 has a higher ex ante valuation, namely

v1 = v · ε with ε > 1

as usual, the minimum reward for all the other players is v. Let us analyze g5

where player 1 does not participate. The valuation of all others players are still

given by Equation (12) and as before, we know that each player i wants always

to form the link gi1, for i = 2, . . . , 6. Again g5 will be pairwise stable if and only

if player 1 does not want enter the contest making a link with one competitor.

So it must holds

(v · ε+ β)
(

4
v + 4β

+
1

v + 5β

)
< 3⇒ 36β2 + βv(22− 24ε) + v2(3− 5ε) > 0

we have just one positive roots, i.e. β+ = v
36

(
12ε− 11 +

√
13 + 12ε(12ε− 7)

)
.

Therefore the network g5 is pairwise stable for β > β+.
4The participation constrains are all satisfied for β > 0.
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6 Conclusion

Starting from the observation that in many contests agents not only compete

but also collaborate we have analyzed a two stage game where in the first stage

agents choose their cooperation partners and in the second stage they compete

in a Tullock contest.

In particular, we have showed that the network formation process may lead some

agents not to enter in the competition stage. However the agents who take part

in the contest are fully connected. This result does not seem to rely on the

specific valuation functional form describing the benefit of cooperation as long

as the latter is symmetric: both the additive and the multiplicative specification

results in pairwise stable dominant group networks. This result is affected more

by the hypothesis of symmetric benefit sharing of the cooperative gains. But, as

soon an agent gets much more than the other one from the collaboration then

it may be that in equilibrium the participating agents are not fully connected.

Furthermore, even though the network formation process can act as barrier to

the entry to the Tullock contest we showed that group dominant networks can

be efficient. Thus, a higher level of total welfare can be reached even if some

players do not participate to the competition. Unfortunately, it may happen

that the player who is ruled out is the player with the highest ex-ante valuation.

A Proof of Theorem 1

In order to prove that is always beneficial for agent i to form a link with a

competitor we must distinguish two cases. In particular, after that the link

g + ij is formed it may happen that 1) no agents drop out of the contest or 2)

k ≥ 1 agents drop out.

Case 1) We have to prove that the equilibrium payoff of player i (and j) is

higher when she is linked with player j, namely

(vi + β)

1− (κ− 1)
S
′
k

1
vi + β︸ ︷︷ ︸

a


2

> vi

1− (κ− 1)
Sk

1
vi︸ ︷︷ ︸

b


2

(15)

The previous condition holds whenever a ≤ b. Therefore

a ≤ b⇒ Skβ + (vi + β)
(

1
vi + β

+
1

vj + β
− 1
vi
− 1
vj

)
≥ 0 (16)

From conditions given in Equation (4) it is easy to see that agent i participates

in the contest if and only if her effort level is non negative. Hence, it must be
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that the participation constraints of both i and j are satisfied in network g:

vi ≥ κ−1
Sk

and vj ≥ κ−1
Sk

which implies that

Sk ≥
κ− 1

min(vi, vj)
(17)

Let us analyze what happens when vi = min(vi, vj). Replacing S with κ−1
vi

in

equation (16) and rearranging terms it is possible to rewrite it as(
κ− 2
vi

)
β − (vi + β)

(
1
vj
− 1
vj + β

)
≥ 0

since

vj ≥ vi ⇒
vi + β

(vj + β)vj
≤ vi + β

(vi + β)vi
≤ 1
vi

we can rewrite the pervious condition as(
κ− 2
vi

)
β − β

vi
≥ 0

which holds whenever κ ≥ 3.

Now let us see what happens when vj = min(vi, vj). Replacing S with κ−1
vj

and

repeating the same procedure we get(
κ− 2
vj

)
β +

(
vi + β

vj + β
− β

vi
− vi
vj

)
≥ 0

since

v2
i + vjβ + vj(vj − vi)

vivj(vj + β)
<

v2
i + vjβ

vivj(vj + β)
<

vi(vi + β)
vivj(vj + β)

=
(vi + β)
vj(vj + β)

we can rewrite the previous condition as

vi + β

vj + β
< κ− 2⇒ vi + β ≤ (κ− 2)vj + (κ− 2)β

this condition may be not satisfied when vi is equal to its maximum value and

vj is equal to its minimum one,5 namely

vi = v + (κ− 2)β and vj = v

however we can see what happens to condition (16) for these particular values.

In this case, it holds vi ≥ vj , then the condition on Sk becomes Sk ≥ κ−1
v .

Replacing the new terms in condition (16) we get(
κ− 2
v

)
β −

(
v(v + β) + (v + (κ− 2)β)2 − v(v + (κ− 2)β)

v(v + β)(v + (κ− 2)β)

)
β ≥ 0

which holds again whenever κ ≥ 3.
5These values are found considering Lemma 2 holds true.
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Case 2) Let us first analyze network g. We already know that for each player

k it must hold vk >
κ−1
S , where κ is the number of players that take part to

the contest and S =
∑n
l=1

1
vl

. From Lemma 1, we can immediately deduce that

(i) a decrease in vk implies both a decrease in pk(g) and an increase in pi(g) for

i 6= k and (ii) a decrease in vk implies an increase of Πi for all i 6= k.

Now, let us examine what happens to the network g when we perturbed it

such that we change the value of k players so that they still participate in g.

Specifically, take λ such that vk−λ ≥ κ−1
S then it must hold Πi(g|perturbed) ≥

Πi(g). Hence, the limvk→κ−1
S

Πi(g|perturbed) = Πi(g − k), with g − k be the

network where k players stay out. Therefore it must hold Πi(g − k) ≥ Πi(g).

Moreover if the link ij is formed such that both vi and vj increase then, following

Case 1), their expected payoff increase, so that

Πi(g − k + ij) ≥ Πi(g − k) ≥ Πi(g).

B Proof of Theorem 2

We already know by Theorem 1 that all participating agents are connected.

Moreover, by Lemma 2 we know that all agents which do not participate to

the contest are singletons. It remains only to show that there could be non

participating agents. However, equation (3) implies that in equilibrium vj would

not to participate when

vj
h−j

≤ κ− 2
κ− 1

In particular, when β is sufficiently high then the harmonic mean is high too

making the participation of player j less certain. Moreover, when two rivals

form a new link they increase h−j , as a result the LHS would shrink while the

RHS remains unchanged. Summing up, if β is high enough and the participating

agents are sufficiently connected, it could be that j would not participate to the

network g + ij for all participating i.

C Proof of Theorem 3

Take any outsider player l /∈ κ. In order not to participate in gκ, l must not to

violate the following conditions:

1. the participation constraint

vl
h−l
≤ κ− 2
κ− 1

(18)
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2. l has to remain out when she forms a link with i ∈ gκ

vl + β

h̄−l
≤ κ− 2
κ− 1

(19)

where h̄−l = κ−1
S̄−l

and S̄−l = S−l − 1
vi

+ 1
vi+β

;

3. l has to remain out when she forms a link with z /∈ gκ

vl + β

h′−l
≤ κ− 2
κ− 1

(20)

where h′−l = κ−1
S′−l

and S′−l = S−l + 1
vz+β .

Let us see which is the most restrictive condition. First, we can see if Equation

(20) is more binding then Equation (18)

vl + β

h′−l
≥ vl
h−l
⇒ (vl + β)

(
S−l +

1
vz + β

)
≥ vl S−l

which is always the case. Now, let us see if Equation (20) is more binding then

Equation (19)

vl + β

h′−l
≥ vl + β

h̄−l

or (
S−l +

1
vz + β

)
≥
(
S−l −

1
vi

+
1

vi + β

)
⇒ 1

vz + β
+

β

vi(vi + β)
≥ 0

which always holds. We can conclude that the more binding condition is given

by Equation (20).

D Proof of the Theorem 4

First of all we have to prove that if agents i and j are both participating in the

contest then they alway want to cooperate and to form a link. Consequently we

have to prove

(viφ)

1− (κ− 1)
S
′
k

1
viφ︸ ︷︷ ︸

a


2

> vi

1− (κ− 1)
Sk

1
vi︸ ︷︷ ︸

b


2

as before, it is enough to show that a ≤ b or that

φS
′

κ ≥ Sκ
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so, we have

φS
′

κ = φ

∑
l 6=i,j

1
vl

+
1
φvi

+
1
φvj

 =
∑
l 6=i,j

φ

vl
+

1
vi

+
1
vj
≥
∑
l 6=i,j

1
vl

+
1
vi

+
1
vj

= Sκ

which is always true. Consequently, all the participating agents are always

linked. Furthermore Lemma 2, stating that all non participating firms are not

linked, extends to this case. It remains to show that there are such non par-

ticipating players. It is straightforward to see that this is the case through the

participation constraint given by Equation (3).
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