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Abstract

In this paper, we characterize the price equilibrium in a Hotelling model where firms face

capacity constraints. For a wide range of capacity levels, a pure strategy equilibrium does not

exist. When this is the case, we show that in a mixed strategy equilibrium firms use a finite

number of prices and the number of price in their support differ by at most one.

1 Introduction

Bertrand (1883)–Edgeworth (1925) competition has generated a considerable amount of research in

recent years. Curiously enough, most of this research effort remained confined to the case of markets

where firms sell homogeneous goods. Building on the initial results of Kreps and Scheinkman

(1983), the strategic value of capacity limitation as a way to relax price competition has been

tested in various context. Some important references in this respect are Benôıt and Krishna (1987),

Davidson and Deneckere (1986), Deneckere and Kovenock (1992), Deneckere and Kovenock (2005)

or Allen et al. (2000).

By contrast, almost no progress has been made in the analysis of Bertrand-Edgeworth com-

petition in markets with differentiated products. A possible explanation for the lack of interest in

Bertrand-Edgeworth competition with differentiated products is the fact that product differentiation

already relaxes competition, so that firms enjoy positive payoffs in equilibrium. The corresponding

models therefore offer tractable setups in which to study multi-stage games with various forms of

commitment, which populates the IO field. Indeed, equilibrium outcomes in the corresponding price

subgames are “appealing“. A second reason which possibly explains the relative disinterest for this

class of games is the fact that the standard techniques which are used to solve Bertrand–Edgeworth

games with homogenoeus goods do not work at all in the case of differentiated products. Apart

from very special cases (such as Krishna (1989), Furth and Kovenock (1993) or Boccard and Wauthy

(2005)), very little is known about the structure of mixed strategy equilibria in such markets. The
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aim of the present paper is precisely to offer a detailed characterization of the structure of these

equilibria in a particular, though quite standard, model, namely, the Hotelling (1929) model.1

More precisely, we shall analyze the structure of price equilibria in a pricing game where products

are differentiated “à la Hotelling” and firms face rigid capacity constraints. It is well-known that in

such a model, there will exist no pure strategy equilibrium when capacities take intermediate values,

relative to the differentiation parameters. This result, though already conjectured by Edgeworth, has

been proved formally in various contexts (Canoy (1996), Furth and Kovenock (1993), Wauthy (1996),

Benassy (1989)). Yet, product differentiation and smooth rationing guarantee demand continuity

which then translate to payoffs so that the existence of a mixed strategy equilibrium is not

an issue (by Glicksberg (1952)’s theorem). What is at stake is the structure of a mixed equilibrium

for such cases. In this contribution we establish essentially three results: first, firms use atoms in

equilibrium, i.e. the support of the equilibrium mixed strategy is finite. Second, we show that the

number of atoms used by the firms differ by at most 1. Third, the number of atoms in the support

of an equilibrium decreases with the relative degree of product differentiation.

The present paper’s contribution is therefore mainly methodological. In particular we do not

explicitely compute all the mixed strategy equilibria and do not characterize equilibrium payoffs. We

are also silent on the uniqueness issue. All those issues are of course very relevant but we leave them

to future research. Let us stress however that the methodology laid out in this paper is likely to be

useful in addressing other economic problems characterized by continuous but non-concave payoffs.

Typical examples are the class of switching-cost models with product differentiation (Klemperer

(1987)) or duopoly models of price discrimination with differentiated products.

2 The model

2.1 Unconstrained Capacities

Two shops are located at the boundaries of the [0; 1] segment along which consumers are uniformly

distributed. The indirect utility derived by a consumer indexed by x ∈ [0, 1] when buying product

1 or 2 is defined as v − x− p1 and v − (1− x)− p2 respectively. Refraining from consuming any of

the two products yields a nil level of utility. Consumers buy at most one unit of the product.

As in most of the literature, we assume market coverage in equilibrium i.e., that firms do not

wish to act as local monopolists. This is guaranteed to happen if a monopolist covers the market.

The monopoly profit being p(v−p), the optimal price is v
2 ; it thus attracts the most distant customer

if v − 1− v
2 > 0⇔ v > 2.

The indifferent consumer, denoted x̃(p1, p2), solves v − x− p1 = v − (1− x)− p2 i.e.,

x̃(p1, p2) =
1− p1 + p2

2
(1)

1While we were in the process of rewriting this paper, our attention has been attracted on Sinitsyn (2009) who

offers comparable characterizations in a different setup. While the basic games are very different, it is clear that the

logic behind the characterizations are identical. Since the author does not mention any of our previous contributions

in his paper, it seems fair to consider that his contributions and ours have been developed independently from each

other.
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The market is non-covered whenever

v − x̃(pi, pj)− pi < 0⇔ pi + pj > 2v − 1 (2)

i.e., at prevailing prices, at least one consumer prefers to refrain from buying. In such a case, firm

i is a local monopolist with demand Di = min {1, v − pi}. When firms name prices low enough, the

market is covered so that demands are D1 = x̃(p1, p2) and D2 = 1 − x̃(p1, p2). Accordingly, the

demand function of firm i is

Di(pi, pj)|pi≤2v−1−pj
=


0 if pi > pj + 1
1−pi+pj

2 if pj − 1 ≤ pi ≤ pj + 1

1 if pi < pj − 1

(3)

Di(pi, pj)|pi≥2v−1−pj
=


0 if pi > v

v − pi if v − 1 ≤ pi ≤ v
1 if pi < v − 1

(4)

In this section, each firm is able to cover the entire market so that profit is πi(pi, pj) =

piDi(pi, pj). The best reply is either max
{

1+pj

2 , pj − 1
}

along (3) or max{v − 1, 2v − 1 − pj}

along (4) as v > 2 is assumed. The best reply is thus Φ(pj) = min
{

max
{

1+pj

2 , pj − 1
}
, v − 1

}
The standard Hotelling equilibrium pi = pj = 1 covers the market.

We analyze this game of complete information with the concept of Nash equilibrium. W.l.o.g.

pure (price) strategies belong to the compact [0; v]. A mixed strategy is σ ∈ ∆, the space of

(Borel) probability measures over [0; v], its support2 is Γ(σ), σ = inf(Γ(σ)) and σ = sup(Γ(σ)). The

following result is well known but its proof includes unusual convexity considerations hinting at the

results to come.

Lemma 1 If min{k1, k2} ≥ 1, the equilibrium is uniquely defined by (1,1).

Proof With ample capacities, sales equate demand. Since Di is piecewise linear and decreasing in

pj , πi is strictly concave in pj whenever Di(pi, pj) > 0. If positiveness was not an issue, we would be

able to use the fact that the expectation of a strictly concave function is strictly concave to claim

that the best response to a mixed strategy is a pure one because a strictly concave function has

a unique maximum over a compact domain. As demand may become nil, the previous argument

cannot be used. Yet, the knowledge of the best reply is useful to eliminate strictly dominated

strategies.

It is trivial to check that no firm wants to price above suppj
Φ(pj) = v− 1. Indeed, a lower price

does better against any opponent’s price, thus against any mixed strategy of the opponent. Using

this information for the other player means that no one wants to price above Φ(v − 1) < v − 1 (by

construction of Φ). Reiterating, we see that no firm wants to price above the greatest fixed point

of Φ. Likewise, no firm wants to price below infpj Φ(pj) = 1
2 . Hence, no firm wants to price below

Φi(1
2) = 3

4 . By the same token, no firm wants to price below the smallest fixed point of Φ. Since Φ

has a unique fixed point at 1, uniqueness of the equilibrium is proved. �

2Set of all points for which every open neighbourhood has positive measure.
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2.2 Constrained Capacities

We now consider a pricing game G(k1, k2) where (k1, k2) denote the capacity levels that firms are

committed to. Firms cannot produce beyond capacities and thus ration consumers whenever demand

exceeds capacity.3 In order to analyse the pricing game, we must therefore specify the organisation

of the rationing. We follows Kreps and Scheinkman (1983) in assuming that the efficient rationing

rule is at work in the market. Under this rule, rationed consumers are those exhibiting the lowest

net reservation price for the good.

In the example depicted on Figure 1, all consumers located in [0, x̃(p1, p2)] want to buy at firm

1 but some will be rationed. Under efficient rationing, those rationed consumers are located in

[k1, x̃(p1, p2)]. Note that they are precisely the most inclined to switch to firm 2 since they exhibit

the largest net reservation price for product 2 within the set [0, x̃(p1, p2)] .

�            
������

��
              ������ ����

Potential demand 
for firm 1

��            
������

Potential demand 
for firm 2

Sales of firm 1��
              ������ ����

Sales of firm 2

��
              ������ ����

Rationed consumers switching 
from firm 1 to firm 2

x

0 1 x (p1,p2)k1

Figure 1: Demand vs. Sales

Extreme capacities, analyzed in Lemmas 1 and 7 (in the appendix), lead to the conclusion that

firms have incentives to set intermediate values. Our focus is thus on the situation where each firm

is unable to serve the entire market by herself but the industry can i.e., k2 ≤ k1 < 1 and k1 +k2 ≥ 1

(which implies k1 ≥ 1
2).

3 Equilibrium analysis

3.1 Rationing

The original Hotelling analysis must be amended to account for binding capacities and rationing.

Referring to equations (3–4), we may identify two different ways through which firm i’s demand,

and therefore payoffs can be affected. For high prices (first segment), a firm may enjoy a positive

demand if it captures part of the consumers rationed by firm j. More generally, in the domain

where the market is covered, her demand may be strictly positive even for high price differentials.

On the other hand, its sales are bounded from above by the installed capacity.

To derive sales, we must first delineate the areas where firms are constrained. According to the

analysis developed when building equations (3) and (4), we already know that the price space must

be partitioned according to market coverage. The solution in p1 to equation (2) is

c(p2) = 2v − 1− p2 (5)

3The firm will refuse to produce beyond “capacity” if the marginal cost jumps beyond S.
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We must also identify the constellations of prices for which capacity constraints are binding.

D1(p1, p2) = k1 ⇒ p1 = a(k1, p2) ≡ p2 + 1− 2k1 (6)

D2(p1, p2) = k2 ⇒ p1 = b(k2, p2) ≡ p2 − 1 + 2k2 (7)

Hence, firm 1 is capacity constrained if p1 ≤ a(k1, p2), no firm is capacity constrained if

a(k1, p2) ≤ p1 ≤ b(k2, p2) and firm 2 is capacity constrained if b(k2, p2) ≤ p1. To connect areas, we

solve:

c(p2) = a(k1, p2) ⇒ p2 = ρ(k1) ≡ v + k1 − 1 (8)

c(p2) = b(k2, p2) ⇒ p2 = δ(k2) ≡ v − k2 (9)

Next, observe that δ(k1) = a (k1, ρ(k1)) and ρ(k2) = b (k2, δ(k2)). This means that the pair

(ρ(k2), δ(k2)) defines the highest prices such that firm 2 is exactly selling its capacity while firm 1

sells the market complement. A symmetric conclusion holds for (δ(k1), ρ(k1)). In the region where

the market is covered and firm 1 is capacity constrained (a(.) ≥ p1), firm 2 sells 1 − k1 as long as

p2 ≤ ρ(k1). The residual demand addressed to firm 2 is 1− k1 in this region and is therefore locally

independent of prices. Figure 2 illustrates our findings.

p2

p1

δ(k2)

ρ(k2)

ρ(k1)

δ(k1)

D1 = v − p1 
D2 = k2

D1 = 1 − k2 
D2 = k2

D1 = v − p1 
D2 =  v − p2

D1 = k1 
D2 = v − p2

D1 = k1 
D2 = 1− k1

D1 = 1 − x 
D2 = x 

 

 2v - 1

a

c

b

Figure 2: The Sales Space

Notice that k1 +k2 > 1 implies a(.) < b(.) and δ(kj) ≤ ρ(ki). The non void area delimited by the

functions a(.), b(.) and c(.) is referred to as “the band”. We define p−1 = b(0, k2) and p−2 = 2k1−1 ≤ 1,

the solution to a(p2, k1) = 0 (k1 ≥ 1
2 implies a(k2, 0) ≤ 0).

Then the sales function of firm 1 can be defined as follows:

if p2 ≤ p−2 , S1(p1, p2) =


x̃(p1, p2) if 0 ≤ p1 ≤ b(p2, k2)

1− k2 if b(p2, k2) ≤ p1 ≤ ρ(k2)

v − p1 if ρ(k2) ≤ p1 ≤ v
(10)
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if p−2 ≤ p2 ≤ δ2(k2), S1(p1, p2) =


k1 if 0 ≤ p1 ≤ a(p2, k1)

x̃(p1, p2) if a(p2, k1) ≤ p1 ≤ b(p2, k2)

1− k2 if b(p2, k2) ≤ p1 ≤ ρ(k2)

v − p1 if ρ(k2) ≤ p1 ≤ v

(11)

if δ2(k2) ≤ p2 ≤ ρ(k1), S1(p1, p2) =


k1 if 0 ≤ p1 ≤ a(p2, k1)

x̃(p1, p2) if a(p2, k1) ≤ p1 ≤ c(p2)

v − p1 if c(p2) ≤ p1 ≤ v
(12)

if ρ(k1) ≤ p2, S1(p1, p2) =

{
k1 if 0 ≤ p1 ≤ δ(k1)

v − p1 if p1 ≤ (k1)δ
(13)

The sales function S2(p1, p2) is entirely symmetric. Notice that sales are continuous and exhibit

at most two constant segments corresponding to market shares ki and 1 − kj . Glicksberg (1952)

then ensures the existence of a Nah equilibrium.

3.2 Equilibrium Analysis

Having obtained the firms’ sales function, we now characterize firms’ best reply (BR) functions and

identify Nash equilibria in G(k1, k2). Given p2, we seek the local incentives for firm 1 with the help

of on Figure 2.

Since v > 2, we have v
2 < δ(k1) = v − 1 + k1, hence the ideal monopoly price is below the line

“ρ(k2)–c(.)–δ(k1)” which means that the BR is at or below this line. Observe now that firm 1’s

demand is constant below the line “a(.)–δ(k1)”, hence the BR against p2 ≥ ρ(k1) is simply δ(k1).

Below a(.), demand is constant, hence the optimal price is a(.) itself and since it also belongs to the

band, the BR is that of the band. The candidate in the band being H1(p2) = 1+p2
2 , the BR inside

the band is Φ1(p2) = min {b(k2, p2),max {H1(p2), a(k1, p2)}}.
Above b(.), demand is constant, hence the optimal price is ρ(k2) which we may call a “security

price” as it ensures the “minmax” payoff πsi ≡ ρ(kj)(1− kj). The cut-off price of firm 2 for which

firm 1 is indifferent between Φ1(p2) and ρ(k2) is γ(k1, k2) such that πs1 = π1(Φ1(p2), p2). In Lemma

6 of the Appendix, we show uniqueness and derive the explicit form of γ(k1, k2) as well as the

conditions under which it is positive. Letting α(k2) be defined as the solution to a(k1, p2) = 1+p2
2 ,

we obtain α(k1) = 4k1 − 1.

Firm i’s best reply correspondence, illustrated on Figure 3, is thus

BRi(pj) =


ρi(kj) if pj ≤ γ(ki, kj)
1+pj

2 if γ(ki, kj) ≤ pj ≤ α(ki)

pj + 1− 2ki if max{α(ki), γ(ki, kj)} ≤ pj

(14)

The iterated elimination of dominated strategies along the lines of the proof of Lemma 1 leads

to:

Lemma 2 Γ(σi) ⊂
[
max

{
1, π

s
i
ki

}
; ρi(kj)

]
.

Proof We proceed in several steps.

i) To show σi ≤ ρi(kj), observe that ∀pj ≥ 0,∀pi ≥ ρi(kj), Si(pi, pj) = v − pi, thus the average
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α(k1)

p1

p2

ρ(k1)

δ(k1)

γ(k1,k2)

ρ(k2)

q2

q1
γ(k2,k1)

1 2

1 2

δ(k2)

Figure 3: Demand vs. Sales

πi(σj , .) is the monopoly payoff over that domain and it is strictly decreasing because the monopoly

price v
2 is less than ρi(kj).

ii) Observe from (14), that BRi is either strictly increasing or greater than unity and in any case

BRi ≥ Hi holds true. We may thus apply the proof of Lemma 1 to derive σi ≥ 1.

iii) The equilibrium payoff is larger than any deviation, hence π∗i ≥ πi(σj , ρi(kj)) = πsi . Together

with the fact that Si ≤ ki, we deduce σi ≥
πs

i
ki

. �

Proposition 1 There exist only three possible type of equilibria:

i) Both firms quote the pure strategy Hotelling price.

ii) One firm plays a mixed strategy displaying n + 1 atoms while the other plays a mixed strategy

displaying n atoms, with n ≥ 1.

iii) Both firms use a mixed strategy involving the same number of atoms.

Proof Whenever γ1(k1, k2) ≤ 1 and γ2(k1, k2) ≤ 1, the best reply curves intersect at (1, 1) meaning

that the pure strategy price equilibrium (1, 1) exists. Lemma 6 in the appendix proves that the

condition reduces to min{k1, k2} ≥
2−v+
√
v2−1/2

2 ∈
[

1√
2
, 1
]
. The rest of the proof derives from 3

lemmas.

1. The support of a mixed strategy equilibrium distribution is finite.

2. The Hotelling equilibrium exists under sufficiently large capacities (case i)).

3. Existence of an equilibrium where one firm uses a pure strategy while the other mixes over

two atoms. This equilibrium exists for intermediate capacities (case ii)).

4. Existence of (n, n+ 1) and (n+ 1, n+ 1) equilibria, with ∞ > n ≥ 1 (case ii) continued and

case iii) ).

Let β1(k2) = 3 − 4k2 be the solution to b(k2, p2) = 1+p2
2 . A similar argument can be used to

identify β2(k1) as the level of p1 such that a−1(k1, p1) = 1+p1
2 and α2(k1) as the level of p1 such

that b−1(k1, p1) = 1+p1
2 .
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Lemma 3 The support of a mixed strategy equilibrium is finite.

Proof Using the fact that Γ(σi) ⊂ [1; ρi(kj)], we define p0
1 = p0

2 = 1 and for m ≥ 1 let pm1 =

b(pm−1
2 , k2) and define pm2 such that pm1 = a(pm2 , k1). Because industry capacity covers the market,

those sequences are strictly increasing thus reach the upper bounds for a finite m.

Let p1 vary in [p0
1; p1

1]. Observe that ∀p2 ≥ p0
2, D1 is decreasing concave (constant and then

linear decreasing), thus so is π1. Since integration preserves this property, π1(., σ2) has a unique

maximum p1 over [p0
1; p1

1] which is the unique price on which firm #1 may put mass in equilibrium.

Let p2 vary in [p0
2; p1

2]. Conditional on p1 > p1
1, D2 is decreasing concave, thus so is π2. The

partial average y2(p2) =
∫ v
p11
π2(p2, x)dσ1(x) has then a unique maximizer. Now, there is α1 ≥ 0 such

that π2(., σ1) = α1π2(p2, p1) + (1 − α1)y2(p2). Being the average of two locally concave functions,

each with a unique maximizer, this payoff function has at most 2 maximizers over [p0
2; p1

2]. This

shows that firm #2 uses at most 2 atoms over this interval.

∀ ∈ [p1
1; p2

1], ∀p2 > p1
2, D1 is decreasing concave meaning that the partial average y1(p1) =∫ v

p12
π1(p1, x)dσ2(x) has then a unique maximizer. Since firm #2 uses at most 2 atoms over prices

below p1
2, π1(., σ2) has at most 3 maximizers over [p1

1; p2
1].

Repeating the argument for each player alternatively adds a single potential atom at each step

and since all prices are bounded, the supports of an equilibrium distribution must be finite. �

Lemma 4 There exist mixed strategy equilibria where one firm uses a mixed strategy involving two

atoms while the other uses a pure strategy4.

Proof The proof is by construction. Firm 2 plays γ2(k1, k2) while firm 1 mixes (ν, 1−ν) over ρ1(k2)

and p1 = Φ1(γ2). The pure strategy of firm 2 guarantees that firm 1 is indifferent between her two

atoms.

If the point (p1, γ2) belongs to the border of the band then firm 2 has a constant demand for

p2 > γ2 against ρ1(k2) and p1, thus a clear incentive to raise her price. The candidate equilibrium

thus requires this point to be interior to the band i.e., p1 = 1+γ2(k1,k2)
2 , the Hotelling branch of the

best reply function (14). The condition on the parameters is γ2 < α(k1) i.e., k1 large relative to k2.

We now need to find weights that make γ2(k1, k2) a BR for Firm 2. We have

π2(ν, p2) = νp2k2 + (1− ν)p2

(
1− p2 + p1

2

)
(15)

The FOC ∂π2(.)
∂p2

∣∣∣
p2=γ2(k1,k2)

= 0 yields a solution ν∗ since the first term is positive while the

second is negative as γ2(k1, k2) < 1. �

Since we put no upper limit to v, the above condition will be violated for v large enough, thereby

destroying our semi-mixed equilibrium. This is why we have to consider alternative candidate

equlibria, involving both firms using mixed strategies. Let (pmi )ni
m=1 denote5 the (ordered) support

of an equilibrium strategy σi. Given the matrix of price pairs (pm1 , p
s
2)s≤n2
m≤n1

, we speak of a “line”

when for a fixed p1 and of a “column” for a fixed p2. Last, the ”diagonal” is defined as the pairs

(pm1 , p
m
2 )m≥1 .

4To the best of our knowledge, Krishna (1989) is the first paper identifying this particular type of equilibrium

under Bertrand-Edgeworth competition.
5The “m” index bears to relation to that employed in Lemma 3.
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Since the existence of an equilibrium is ensured by the continuity of payoff functions, if neither

pure nor semi-mixed equilibria exist, then there exists an equilibrium in which both firms use non-

degenerate mixed strategies. We furthermore know that firms use only atoms in an equilibrium.

The intuititon underlying the proof rest on the piecewise concavity of payoffs and on the fact that

within the band, there can be only one best reply. Starting from the pair of minimal atoms, we

identify some restrictions on the distribution of the other atoms; these restrictions allow us to show

that the cases where firms use the same number of atoms or the case where the large capacity firm

puts n+1 atoms while the other names n prices are the only possible cases that satisfy the necessary

conditions for a mixed strategy equilibrium.

Lemma 5 There exist completely mixed strategy equilibria where either n1 = n2 or n1 = n2 + 1.

Proof We prove that the number of atoms used by firms differ by at most one and ∀m ≤ n − 1,

we have 1 − 2k2 < pm1 − pm2 < 2k1 − 1. Observe firstly, as a by-product of Lemma 3, that ∀pi ∈
Γ(σi),∃!pj ∈ Γ(σj) such that (pi, pj) belong to the band; this is so because the profit in the band is

strictly concave and has at most one maximizer (cf. y2 function in the proof).

We use five successive claims with the help of Figure 4.

α

β χ

ω

δ ε

p2

p2

p1

D1 =k1

D2 = k2

p 2

p 1

p1

Figure 4: Atoms

1. The pair of minimal atoms (p1
1, p

1
2) lies in the band.

If the minimal point was ω, not α, then firm #1 has a constant demand, thus would like to

raise her price until ω hits the band. Likewise if the minimal point is β, firm #2 would like

to raise her price until β hits the band. Define now α = (p1
1, p

1
2), ω = (p1

1, p
2
2), β = (p2

1, p
1
2).

2. ω and β lie strictly outside the band.

Point ω cannot belong to the band, for otherwise α would not be the unique maximizer of π2

over [0, k1), b(p
1
, k2)] (recall that π2 is concave over that domain given that #1 plays at or

above p
1
). The same applies for β wrt. profit maximization of firm #1.

3. The pair of minimal atom is strictly interior to the band.

If α lies on the right border of the band, then firm #2 has constant demand at p1
2 because the
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atoms of firm #1 are either above or below the band but not in. Price p1
2 is then not a best

reply to σ1. The same applies for the upper side of the band.

4. All points (pm1 , p
m
2 )m≤n−1 are strictly interior to the band.

The second “diagonal” point (p2
1, p

2
2) could be either χ, δ or ε as shown on Figure A1. If χ, then

the ω − χ column would have no point in the band and π2(σ1, .) would be locally increasing

at p2
2. Likewise, if ε, the β − ε line would have no point in the band. Hence, (p2

1, p
2
2) = δ. We

have thus shown that for m ≥ 1, (pm1 , p
m
2 ) lies in the band. Furthermore, the previous claim

implies that the point is strictly interior if m < min{n1, n2}. Only the last diagonal point

could lie on one frontier of the band.

5. The number of atoms of equilibrium distributions differ by at most one.

Suppose n1 = n, n2 = n + 1. We first show using argument similar to above that the last

diagonal point must be interior to the band. Then the last point has to belong to the small

upper triangle for it the only way to generate an interior maximum of the profit function. The

case for n2 > n+ 1 is now easy because π2(σ1,.) must have the same shape over [pn2 , p
n+1
2 ] or

over [pn+1
2 , pn+2

2 ] leading to a contradiction.

�

Notice that, when establishing step 1 in the above proof, we have relied on the fact that the

iteration process would reach its end when we reach the finite upper bound of the equilibrium

support. At the same time, it appears form this proof that the number of possible iteration, i.e. the

number of successive atioms, is actually depending on the width of the band, relative to the value of

ρ(ki). Recalling that we have normalized the transportation cost to 1, v is sufficient to capture the

relative importance of product differentiation into the model. An increase in v can be interpreted as

a relative decrease in the degree of product differentiation. As a result an immediate by-product of

the above argument is that the number of possible atoms in a mixed strategy equilibrium is inversly

related to the magnitude of v. The less relevant is the differentiation dimension, the more numerous

atoms are to be played in equilibrium.

4 Final Remarks

In this note, we have partially characterised the structure of mixed strategy equilibria in a Hotelling

model where firms face capacity constraints. Our main results can be summarized as follows: in

this setup, firms use a finite number of prices in equilibrium and the number of atoms they retain in

equilibrium differ by at most one. This result is obviously a partial one and several extensions are

called for. First, we do not fully characterize these equilibria. Second, we do not characterize, even

partially, equilibrium payoffs. Third, we do not discuss uniqueness. These three problemsn should

be addressed in order to allow for the analysis of capacity commitment games. This is to a large

extent a matter of computations. Relying on preliminary results, we offer the following conjecture:

despite of the multiplicity of equilibria (which is is endemic is this class of models), there always

exists an equilibrium in which the large capacity firm is held down to its minmax payoff.
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Appendix

Lemma 6 The cut-off price γ(k1, k2) is defined as follows

γ(k1, k2) =

 max
{

0,
√

8(v − 1 + k2)(1− k2)− 1
}

if k2 ≥
2−v+
√
v2−8k2

1

2

(v−1+k2)(1−k2)
k1

− 1 + 2k1 if k2 ≤
2−v+
√
v2−8k2

1

2

(16)

Proof The best reply of firm 1 within the band is either H1(p2) or a(k1, p2) depending on whether

she hits her capacity or not. We have D1(H1(p2), p2) < k1 ⇔ p2 ≤ 4k1 − 1. Accordingly, the payoff

accruing to firm 1 when she plays her best reply within the band is

π1(p2) =

{
π1(p2) = (1+p2)2

8 if p2 ≤ 4k1 − 1

π1(p2) = k1(p2 + 1− k2) if p2 ≥ 4k1 − 1
(17)

These payoffs are then to be compared to those accruing from the security strategy ρ1(k2), i.e.

πs1(k2) = (v − 1 + k2)(1− k2). The solution to πs1(k2) = π1(p2) is p2 =
√

8(v − 1 + k2)(1− k2)− 1

while that of πs1(k2) = π1(p2) is p2 = (v−1+k2)(1−k2)
k1

− 1 + 2k1. Observe that if v is too small,√
8(v − 1 + k2)(1− k2)−1 is negative and the security strategy is never used; also

√
8(v − 1 + k2)(1− k2)−

1 gives us a bound when considering large values of k2 as πs1(k2) is decreasing. Taking care of the

negative solution, we have√
8(v − 1 + k2)(1− k2)− 1 ≤ 4k1 − 1⇔ k2 ≥ Φ(k1) ≡ 1

2

(
2− v +

√
v2 − 8k2

1

)
(18)

This separates cases where the security strategy beats the standard Hotelling best reply (π1(p2))

throught the whole relevant range from the alternative case.

Hotelling Equilibrium The necessary conditions are γ1(k1, k2) < 1 and γ2(k1, k2) < 1. Observe

from (6) that γ1(k1, k2) < 1⇔{
k2 ≤ Φ(k1)
(v−1+k2)(1−k2)

k1
− 1 + 2k1 < 1

}
or

{
k2 ≥ Φ(k1)√

8(v − 1 + k2)(1− k2)− 1 < 1

}

In the first case, the condition yield k2 >
2−v+
√
v2−8k1(1−k1)

2 . In the remaining case, the condition

is k2 > Φ(1/2) = 2−v+
√
v2−1/2

2 ∈
[

1√
2
, 1
]

(as v > 2). By symmetry for k1, the Hotelling equilibrium

exists for capacities greater than Φ(1/2) (drawing the two curves shows that). �

Lemma 7 If k1 + k2 < 1, there is a unique equilibrium; it is in pure strategies.

Proof When aggregate capacities are smaller than the market size (k1 + k2 < 1), firms do not

compete at all since their potential market shares cannot overlap. In this “local monopoly” case,

denoted GL(k1, k2), firms sell either at the monopoly price or at full capacity if the WTP is large

enough. In any case, they have maximal incentives to increase capacities.

Demand is Di = min {v − pi; ki} and profit is πi = pi min {v − pi; ki} which is maximum for

pi = max
{
v − ki; v2

}
. Thus whenever 1 − kj > ki ≥ v

2 , firm i acts as a pure monopolist whereas

in the complementary case, she sells her capacity at the price pki = v − ki which makes consumer

located at a distance ki indifferent between buying product i or refraining from consuming. �
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