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Abstract

There is a wide range of economic problems involving the exchange of

indivisible goods without monetary transfers, starting from the housing

market model of the seminal paper of Shapley and Scarf [10] and including

other problems like the kidney exchange or the school choice problems.

For many of these models, the classical solution is the application of an al-

gorithm/mechanism called Top Trading Cycles, attributed to David Gale,

which satisfies good properties for the case of strict preferences. In this

paper, we propose a family of mechanisms, called Top Trading Absorbing

Sets mechanisms, that generalizes the Top Trading Cycles for the general

case in which individuals can report indifferences, and preserves all its

desirable properties.
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1 Introduction

Consider the economy modeled by Shapley and Scarf [10] in which there is

a set of agents, each of whom has strict preferences over a set of indivisible

goods, for instance houses. In this economy, commonly known as “housing

market”, each agent is endowed with one house and they are allowed to exchange

their houses among themselves, although monetary transfers are not permitted.

In this seminal paper, Shapley and Scarf prove the existence of a nonempty

strict core in this economy by using a so-called Top Trading Cycles Algorithm

(hereafter, TTC), attributed to David Gale.

The housing market has been extensively analyzed in the literature under the

domain of strict preferences, becoming plain that the TTC mechanism satisfies

(very) desirable properties. Roth and Postlewaite [8] prove that this mechanism

results in the unique assignment which belongs to the strict core. Subsequently,

Roth [7] shows that it is a dominant strategy for agents to reveal their true pref-

erences. Furthermore, Ma [5] shows that the TTC mechanism, equivalent to the

strict core mechanism, is the only mechanism satisfying individual rationality,

Pareto-efficiency and strategy-proofness (in the domain of strict preferences).

Unlike the previous case, however, very few papers have been written on

housing market under the full preference domain, even though it seems to be

quite natural that agents may have indifferences over goods. One reason might

be that introducing weak preferences to the model introduce also additional

complications. First, in this case, the strict core might be empty, unique or

multi-valued. Moreover, although the core is always nonempty, some of its al-

locations could be inefficient. As far as we know, there are two papers dealing

with weak preferences. On the one hand, Quint and Wako [6] propose an al-

gorithm to calculate if the strict core is empty or not, and obtain a strict core

assignment if it is non-empty. However, this cannot be considered a mechanism

since, for housing markets with an empty strict core, it reports that the strict

core is empty but it does not give an allocation. On the other hand, Yilmaz [11]

presents a random mechanism satisfying individual rationality, ex-ante efficiency

and no justified-envy. However, this mechanism is not an strict core mechanism

(i.e., there are housing market problems with non-empty strict core in which

the mechanism do not select an strict core allocation). Additionally, it is not
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a generalization of the TTC mechanism, since the allocation that it proposes

to problems with strict preferences may be different from the unique strict core

allocation. Additionally, this mechanism does not satisfy strategy-proofness,

although it attains higher levels of efficiency (by the randomized nature of the

mechanism).

The contribution of this paper is to present a family of mechanisms that gen-

eralizes the TTC mechanism preserving their good properties when agents are

allowed to report indifferences. In order to introduce this family of mechanisms,

we define an algorithm called Top Trading Absorbing Sets algorithm (hereafter

TTAS), which results in a strict core allocation when this set is non-empty and,

otherwise, it results in a Pareto-efficient core allocation. Then, we prove that

this family of mechanisms satisfy individual rationality, Pareto-efficiency and

strategy-proofness.

Additionally, we have that other problems involving indivisible goods and

where monetary transfers are not allowed have been considered so much in

the literature. Some examples are the housing allocation with existing tenants

(Abdulkadiroglu and Sonmez [1]), the kidney exchange problem (Roth et al.

[9]) and the school choice problem (Abdulkadiroglu and Sonmez [2]). In these

problems, the unique or one of the proposed solutions is based on an adaptation

of the TTC to these frameworks. However, as in the housing market problem,

they only study the case in which agents have strict preferences. Our family of

mechanisms (with the same particular adaptations needed to each framework)

will generalize all the classical mechanisms to the case in which agents can report

indifferences.

The rest of the paper is organized into the following sections. Section 2 con-

tains some basic preliminaries of the housing market problem. Section 3 revises

the TTC mechanism, introduces the family of TTAS mechanisms and studies

the properties of this family of mechanisms in the housing market problem. Sec-

tion 4 presents some further applications of our mechanisms to other problems.

Finally, an appendix contains the proofs of the results along the paper.
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2 The housing market model

Let N be a finite set of agents and H be a set of houses such that |N | = |H | =

n. Each individual i ∈ N has a transitive and complete (but not necessarily

antisymmetric) preference binary relation Ri on H . As usual, we will denote

by Pi and Ii the symmetric part and the asymmetric part of Ri, respectively.

For any Ri and any S ⊆ H , we will define the maximal elements of S according

to Ri as the set max(Ri) = {x ∈ S | xRiy for all y ∈ S}. Define R = (Ri)i∈N .

Given i ∈ N , let R−i = (Rj)j∈N\{i} denote the preferences of all individuals

except i.

An assignment (or allocation) is a bijective map µ : N −→ H . In some

cases, we will denote the house that is assigned to individual i by µi instead

of µ(i). The assignment which describes the initial owners of the houses is

called “initial endowment” and is denoted by ω. For any T ⊆ N , we define

ω(T ) = {x ∈ H | x = ωi for some i ∈ T }. Then, a housing market is a list

(N, H, ω, R).

A deterministic mechanism f is a map that assigns for each housing market

(N, H, ω, R) an assignment f(N, H, ω, R). When the description of (N, H, ω, R)

is clear, we will denote the house assigned to individual i ∈ N by the mechanism

f as fi. Let F be the set of all deterministic mechanisms. A random mechanism

g is a probability distribution over F . That is, a random mechanism associates

for each housing market a probability distribution over the set of assignments.

Obviously, any deterministic mechanism is a random mechanism.

An assignment µ is individually rational if for each agent i ∈ N , µiRiωi. A

deterministic mechanism f is individually rational if it always selects an indi-

vidually rational assignment for each housing market. A random mechanism is

individually rational if its support contains only individually rational determin-

istic mechanisms.

An assignment µ is Pareto-efficient if there does not exist any other as-

signment ν such that for all i ∈ N , νiRiµi and for some j ∈ N , νjPjµj . A

deterministic mechanism f is efficient if it always selects a Pareto-efficient as-

signment for each housing market. A random mechanism is ex-post efficient if
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its support contains only efficient deterministic mechanisms. A random mecha-

nism g stochastically dominates other random mechanism h if for any possible

vector of utilities U = (ui)i∈N compatible with R, the following must hold: for

all i ∈ N ,

∑
x∈H p(gi(N, H, ω, R) = x) · ui(x) ≥

∑
x∈H p(hi(N, H, ω, R) = x) · ui(x) and

there is some j ∈ N in which this inequality is strict.

Then, a random mechanism g is ex-ante efficient if it is not stochastically

dominated by any other random mechanism.

A random mechanism g is strategy-proof if truth-telling is a dominant strat-

egy in its associated preference revelation game. That is, for any possible vector

of utilities U = (ui)i∈N compatible with R, the following must hold: for all

i ∈ N ,

∑
x∈H p(gi(N, H, ω, R) = x) ·ui(x) ≥

∑
x∈H p(gi(N, H, ω, (R−i, R

′
i)) = x) ·ui(x)

for all possible R′
i

An assignment µ is in the core of the housing market if there is no coalition

T ⊆ N and matching ν such that for all i ∈ T , νi ∈ ω(T ) and νiPiµi. An

assignment µ is in the strict core of the housing market if there is no coalition

T ⊆ N and matching ν such that for all i ∈ T , νi ∈ ω(T ) and νiRiµi and for

some j ∈ T , νjPjµj .

Preliminaries in digraphs

We begin with some background in the theory of directed graphs. A directed

graph, or digraph for short, is a pair (V, E), where V is a set of vertices (or

nodes) and E is a set of directed arcs. The indegree (outdegree) of a node

vi ∈ V is the number of arcs that point to (part from) vi. Given two nodes

vi, vj ∈ V , we say that there is a path from vi to vj if there is a sequence of

nodes vi = v1, . . . , vm = vj such that for all i ∈ {1, .., m − 1}, there is an arc

from vi to vi+1. A cycle is an ordered set of nodes C = {v1, v2, ..., vm} such

that for all i ∈ {1, . . . , m − 1}, there is an arc from vi to vi+1 and there is an

arc from vm to v1. Two nodes vi, vj ∈ V constitute a symmetric pair if there is

an arc from vi to vj and an arc from vj to vi.

5



An absorbing set is a set of nodes A that satisfies two conditions: (i) for any

two nodes vi, vj ∈ A, there is a path from one to the other (inside connection),

and (ii) there does not exist any path from any node vi ∈ A to any node vj 6∈ A

(no inside-outside connection). An absorbing set is paired-symmetric if each of

its nodes belongs to a symmetric pair.

3 Mechanisms

The classical framework in which the housing market problem is studied in the

literature consists of individuals having strict preferences. In this case, Shapley

and Scarf [10] have shown that the strict core always exists and have proposed

the Strict Core mechanism, which selects for each housing market a strict core

assignment.1 It has been shown (Roth [7]) that this deterministic mechanism

is strategy-proof. Moreover, Ma [5] shows that this is the unique mechanism

that satisfies individual rationality, Pareto-efficiency and strategy-proof in this

domain of strict preferences. Shapley and Scarf attributed to Gale an algorithm

called Top Trading Cycles to compute the strict core assignment of a housing

market.

Top Trading Cycles Mechanism

Consider a directed graph in which there are two types of nodes, agents and

houses, arcs are formed by agents pointing to houses and houses pointing to

agents, and all nodes have outdegree equal to 1. An interesting fact about any

directed graph with these characteristics is that it always has at least one cycle

and no two cycles intersect. This allows that the following algorithm, called

Top Trading Cycles, attributed to David Gale and introduced by Shapley and

Scarf [10], always determines an assignment.

Gale´s top trading cycles (TTC) algorithm:

Step 1:

(1.1) Let each agent point to her maximal house and each house point to its

owner. Select the cycles of this graph.

1It has been proven by Roth and Postlewaite [8] that the strict core assignment is unique

for housing markets with strict preferences.
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(1.2) Their agents are removed from the algorithm by assigning each agent

the house she is pointing to.

Step i:

(i.1) Let each remaining agent point to her maximal house among the re-

maining ones and each remaining house point to its owner (note that when an

agent leaves, her original house also leaves; so a house remaining in the algo-

rithm implies that her owner is still in the algorithm and vice versa). Select the

cycles of this graph.

(i.2) Their agents are removed from the algorithm by assigning each agent

the house she is pointing to.

In the general case in which we admit indifferences, the strict core may be

empty. There is an algorithm (called Top Trading Segmentation) proposed by

Quint and Wako [6] that determines if a housing market problem has an empty

core or not and, if it is non-empty, it determines an allocation of it. Given that

all the allocations of the strict core are indifferent for all the individuals (i.e., if

µ and ρ belong to the strict core, µiIiρi for all i ∈ N), the case in which the

strict core is non-empty has a good solution by this algorithm. However, there

is not any satisfactory mechanism that serves for all housing market problems,

independently if it has or not a non-empty strict core. Normally, the mechanism

suggested in the literature to generalize the TTC mechanism (see the descrip-

tion for the case of indifferences in Shapley and Scarf [10] or Roth [7]) is the

following:2 (1) Take the preferences of the individuals who have indifferences

and convert them in strict orders by some (fixed or random) tie-breakers; and

(2) apply the Top Trading Cycles mechanism.

Obviously, this class of mechanisms coincides with TTC for the case of strict

preferences. However, in the case of indifferences, the application of these mech-

anisms does not lead necessarily to efficient allocations. In fact, there are cases

in which these mechanisms never achieve an efficient allocation, independently

of the tie-breakers selected. We illustrate this with a simple example.

2Yilmaz [11] proposes other mechanism, but it is not a generalization of the TTC mecha-

nism.
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Example 1 Let N = {1, 2, 3, 4, 5} and H = {h1, h2, h3, h4, h5} be the set of

agents and houses. Let ωi = hi for all i ∈ N be the initial endowment. The

preference profile is the following:

a1 a2 a3 a4 a5

h2 h3 h4, h5 h1 h2

h1 h2 h3 h5 h4

h3 h1 h1 h4 h5

h4 h4 h2 h2 h1

h5 h5 h3 h3

In this housing market problem, the strict core is empty and the core contains

the following four allocations: µ1 = (µ1
1, µ

1
2, µ

1
3, µ

1
4, µ

1
5) = (h2, h3, h4, h1, h5),

µ2 = (µ2
1, µ

2
2, µ

2
3, µ

2
4, µ

2
5) = (h1, h3, h5, h4, h2), µ3 = (µ3

1, µ
3
2, µ

3
3, µ

3
4, µ

3
5) = (h2, h3,

h5, h1, h4) and µ4 = (µ4
1, µ

4
2, µ

4
3, µ

4
4, µ

4
5) = (h1, h3, h4, h5, h2). There is only one

indifference binary relation in the preference profile and, then, there are two

possible results of the class of mechanisms presented before. They are exactly

µ1 and µ2. However, it is easy to see that each of these allocations are Pareto

dominated by µ3 and µ4, respectively.

Then, we have that (i) on the one hand, the TTC mechanism behaves well

for strict preferences, but the application of tie-breakers are not a good solution

for the general case; and (ii) on the other hand, the Top Trading Segmentation

algorithm provides a solution for some cases in the general case, but it is not a

mechanism in the sense that it does not provide any allocation when the strict

core is empty. In what follows, we propose a family of mechanisms (called Top

Trading Absorbing Sets) for the general case which extends TTC and TTS and

satisfies ex-post efficiency without renouncing to any of the good properties that

TTC satisfies.3

Top Trading Absorbing Sets Mechanisms

For the introduction of the algorithm that determines the family of mechanisms

presented below, we consider directed graphs in which there are two types of

nodes, agents and houses, arcs are formed by agents pointing to houses and

3There could be other possible ex-post efficient mechanisms that always select core alloca-

tions (and strict core allocations if there are). However, many of them are not strategy-proof.
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houses pointing to agents and all nodes have outdegree strictly positive. An

interesting characteristic of these digraphs is that they always have at least one

absorbing set (see Kalai and Schmeidler [4]).

Top trading absorbing sets (TTAS) algorithm:

Step 0: Consider a priority ranking of the houses; i. e., a complete, transi-

tive and antisymmetric binary relation over H .

Step 1:

(1.1) Let each agent point to her maximal houses and each house point to

its owner. Select the absorbing sets of this digraph.

(1.2) Consider the paired-simmetric absorbing sets. Their agents are re-

moved from the algorithm by assigning them their current assignments (Obvi-

ously, these houses are removed too).

(1.3) Consider the remaining absorbing sets. Select for each agent a unique

house to point to by using the following criterion: she point to the maximal

house with the highest priority different from her current endowment.

(1.4) Then, in this subgraph, there is necessarily at least one cycle and no

two cycles intersect. Assign (temporarily) to each agent in these cycles the house

that she is pointing to, but maintain them in the algorithm.

Step i:

(i.1) Let each remaining agent point to her maximal houses among the re-

maining ones. Select the absorbing sets of this digraph.

(i.2) Consider the paired-simmetric absorbing sets. Their agents are removed

from the algorithm by assigning them their current assignments (Obviously,

these houses are removed too).

(i.3) Consider the remaining absorbing sets. Select for each agent a unique

house to point to by using the following criterion: she point to the maximal

house with the highest priority from those that has not been assigned to her

yet.

(i.4) Then, in this subgraph, there is necessarily at least one cycle and no two

cycles intersect. Assign (temporarily) to each agent in these cycles the house

that she is pointing to, but maintain them in the algorithm.
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The following example illustrates how the TTAS algorithm works for a par-

ticular housing market problem.

Example 2 Consider a housing market with N = {a1, a2, ..., a9} and H =

{h1, h2, ..., h9} and assume that the initial endowment of agent ai is the house

hi for all i ∈ {1, 2, . . . , 9}. Let the preference profile R be the following (we only

express the houses that are not worse than the initial endowment of each agent):

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

h2 h3 h4, h5 h1 h6 h6, h7 h6 h5, h9 h9, h10 h9, h10

h5 h2

h4

h5

Consider the following priority ranking of houses:

h1 ≻ h2 ≻ h3 ≻ h4 ≻ h5 ≻ h6 ≻ h7 ≻ h8 ≻ h9

In what follows we depict the directed graphs that are formed in each step of the

algorithm: 4

Step 1:

·h9 ·a9

·h10
·a10

·a1

·

h2

·

a2

·
h3

·

a3

·

h4

·
a4

·

h1

·
h5

·a5

·a8

·h8

·

h6·a6

·
h7 ·a7

4There are two colors for the arrows in each graph: the black ones, that reflect the arrows

that do not belong to an absorbing set; and the red ones, which are the ones that belong to

an absorbing set. Moreover, within the set of red arrows, there are two types: the dotted

arrows, which are the ones that in step (i.3) are not selected by the priority criterion ≻; and

the normal ones, that represent the arrows chosen by the priority criterion.
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There are two absorbing sets: A∗
1 = {a9, h9, a10, h10}, which is a paired-

symmetric one and, hence, it is removed by assigning h9 to a9 and h10 to a10.

The other absorbing set is A2 = {a7, h7, a6, h6}. In this case, the priority rank-

ing over houses is applied, and the cycle c2 = (a6, h7, a7, h6) is formed. Then,

the algorithm assigns temporarily h7 to a6 and h6 to a7.

Step 2:

·a1

·

h2

·

a2

·
h3

·

a3

·

h4

·
a4

·

h1

·
h5

·a5

·a8

·h8

·

h6

·a7

· a6

·
h7

There is only one absorbing set: A∗
3 = {h6, a7}, which is paired-symmetric.

It is removed by assigning h6 to a7.

Step 3:

·a1

·

h2

·

a2

·
h3

·

a3

·

h4

·
a4

·

h1

·
h5

·a5

·a8

·h8· a6

·
h7

There is a paired-symmetric absorbing set A∗
4 = {a6, h7}, which is removed

by assigning h7 to a6. There is also another absorbing set A5 = {a1, h1, a2, h2, a3,

h3, a4, h4, a5, h5}. By applying the priority ranking, the cycle c5 = (a1, h2, a2, h3,
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a3, h4, a4, h1) is formed. Then, the algorithm assigns temporarily h2 to a1, h3

to a2, h4 to a3 and h1 to a4.

Step 4:

·a1

·

h2

·

a2

·
h3

·

a3

·

h4

·
a4

·

h1

·
h5

·a5

·a8

·h8

There are 3 paired-symmetric absorbing sets A∗
6 = {a1, h2}, A

∗
7 = {a2, h3}

and A∗
8 = {a4, h1}, which are removed by assigning respectively h2 to a1, h3 to

a2 and h1 to a4.

Step 5:

·

a3

·

h4

·
h5

·
a5

·a8

·h8

There is only one absorbing set A∗
9 = {a3, h4, a5, h5}. In this case, the cycle

c9 = (a3, h5, a5, h4) is obtained by applying the priority ranking. Then, the

algorithm assigns temporarily h5 to a3 and h4 to a5, respectively.
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Step 6:

·

a3

·

h4

·
h5

·
a5

·a8

·h8

There is a paired-symmetric absorbing set A∗
10 = {a5, h4} that the algorithm

removes by assigning h4 to a5.

Step 7:

·

a3

·
h5 ·a8

·h8

There is a paired-symmetric absorbing set A∗
11 = {a3, h5} that the algorithm

removes by assigning h5 to a3.

Step 8:

·a8

·h8

There is a paired-symmetric absorbing set A∗
11 = {a8, h8} that the algorithm

removes by assigning h8 to a8.
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Meanwhile in the description of the TTC is clear that the algorithm always

determines an allocation, it is not so clear that this occurs with the TTAS. The

following proposition shows it.

Proposition 1 The TTAS algorithm always selects an allocation.

It is easy to see that in the case in which all individuals have strict prefer-

ences, all absorbing sets that appear in any step i of the algorithm are cycles

and, when the trading between the agents in each cycle is done, each of them

forms a paired-symmetric absorbing set with her new house in step i + 1 and

leaves the algorithm. As a consequence, the TTAS coincides with the TTC

when the preferences are strict.

The Top Trading Absorbing Sets Algorithm determines an allocation de-

pending on the priority ranking ≻ selected in the Step 0. Then, we define a

mechanism for each priority ranking in the following way: a mechanism µ is

a Top Trading Absorbing Sets mechanism if there exists a priority ranking ≻

such that the mechanism chooses for each housing market problem the alloca-

tion that the Top Trading Absorbing Sets algorithm selects with this priority

ranking. The selection of the priority ranking is important only in the case in

which the strict core is empty, given that in the rest of cases it does not affect the

welfare level that each individual attains. However, if the strict core is empty,

the priority ranking indicates the individuals that, in case of conflict, have to be

treated better than others (but always mantaining the efficiency of the mech-

anism and the fact that the allocation must be in the core of the problem).

Although the priority ranking is written in terms of houses for the simplicity of

the algorithm, its interpretation in terms of agents is easy: one individual i has

priority over other j if the original house of i, ω(i), has priority over ω(j).

We will prove first that this class of mechanisms always selects an assignment

in the core.

Theorem 2 With any priority ranking ≻, the TTAS≻ mechanism always se-

lects an assignment in the core.

As a corollary, we can deduce that all TTAS mechanisms satisfy Individual

Rationality.
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Corollary 3 With any priority ranking ≻, the TTAS≻ mechanism is individ-

ually rational.

Now, we prove that TTAS maintains for the general case all the properties

that characterize the TTC for the restricted case of strict preferences. We start

with Pareto efficiency.

Theorem 4 With any priority ranking ≻, the TTAS≻ mechanism is Pareto-

efficient.

Additionally, we also prove that any mechanism of our family is strategy-

proof.

Theorem 5 With any priority ranking ≻, the TTAS≻ mechanism is strategy-

proof.

Then, we have proved that, meanwhile in the restricted case of strict prefer-

ences the TTC mechanism is the only one that satisfies individual rationality,

ex-post efficiency and strategy-proofness (see Ma [5]), in the general case we

have a family of mechanisms that satisfy all these properties. Additionally, we

are going to prove that our family of mechanisms always select an strict core

allocation if the strict core is non-empty. That is, our family of mechanisms

always generalizes the solution of Quint and Wako [6].

Theorem 6 With any priority ranking ≻, the TTAS≻ mechanism selects an

strict core allocation when the strict core is non-empty.

4 Comments and Applications

We have proposed a family of deterministic mechanisms for the housing mar-

ket problems for the general case in which individuals can report indifferences.

This family of mechanisms generalizes the previous proposals of the TTC mech-

anism and the TTS algorithm, satisfying all the desirable properties that these

proposals have. The mechanisms of the family differ in the priority ranking im-

plemented to favor some individuals over others in case of conflict, but always

without renouncing to the requirements of efficiency, strategy-proofness and the

obligation of selecting a core allocation.
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The selection of the priority ranking may be done in terms of some charac-

teristic of the individuals that are not included in the formal specification of the

housing market problem (income, seniority, . . . ). However, if there is not any

intuitive way of selecting a priority ranking in a particular problem, it is always

possible to randomize it. In this case, independently of the probability distribu-

tion over the priority rankings, we have that the random mechanism obtained

satisfies individual rationality, strategy-proofness and ex-post efficiency5. Ad-

ditionally, it selects a strict core allocation with probability 1 if the strict core

is non-empty and, in general, it selects a core allocation with probability 1.

There are many other problems in the literature that can be seen as a ex-

change of indivisible goods: house allocation with existing tennants (Abdulka-

diroglu and Sonmez [1]), kidney exchange (Roth et al. [9]), school choice (Ab-

dulkadiroglu and Sonmez [2]). In all these problems, the proposed solution,

maintaining the assumption that individuals can only report strict preferences,

is based on adaptations of the TTC algorithm to these particular cases.6 In

these problems, it is also natural that individuals could have indifferences and,

then, it is also necessary to propose a mechanism for the general case in which

they can report them. We can easily adapt our family of Top Trading Absorbing

Sets mechanisms to each of these problems in a similar way that the original

TTC is adapted to incorporate the particular characteristics of each of these

frameworks.7 Therefore, the family of mechanisms that we propose has a wide

range of problems in which they can be applied.

APPENDIX

We are going to prove all the results of the paper in the Appendix.

5This is a difference with respect to the mechanism of Yilmaz [11], which is ex-ante efficient.
6There is an exception in the school choice problem in which apart from the solution based

in the TTC, Abdulkadiroglu and Sonmez [2]) also propose other mechanism based on the

Gale-Shapley [3] deferred acceptance algorithm, which is the one that some authorities in US

cities have selected to be applied.
7The particular details of the adaptations can be provided upon request.
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Proof of proposition 1

By contradiction, suppose that this does not occur. That is, there is a maximal

set of individuals S ⊆ N and a maximal set of houses T ⊆ H that are not

removed never from the algorithm. Consider the algorithm just after the other

agents and houses has been removed (suppose that this occurs in step i). Then,

in this subgraph we know that there is at least one absorbing set. If at least

one absorbing set is paired-symmetric, we have a contradiction. If, however, all

absorbing sets are non paired-symmetric, we have that in each absorbing set

Ai, there exist a set of nodes Bi ⊆ Ai that do not belong to symmetric pairs.

Then, we proceed with step (i.3) and we select one house for each individual to

point using the priority ranking. Then, we go to step (i.4) and we proceed with

the provisional trading of the houses in the cycles. The nodes of Ai \ Bi will

also belong to symmetric pairs in the next period. With respect to each node

vi ∈ Bi, if it is in a cycle, it will belong to a symmetric pair in the next period.

Similarly, if there is no node of Bi in any cycle, it is easy to see that in the next

period Ai is also an absorbing set.

Then, the set of nodes that belong to symmetric pairs are never decreasing.

If they are increasing in some moments, we know that we will finally obtain a

paired-symmetric absorbing set and, therefore, some agents and houses leave

the algorithm and we arrive at a contradiction. Then, the unique possibility

is that the set of agents Bi do not enter never in a cycle. However, we have

seen that in this case the absorbing set Ai will stay stable over time. Given

that any node of an absorbing set belongs to some cycle and that the selection

of the house that each individual points to varies according to the rule of step

(i.3), we can deduce that some node of Bi will finally enter in a selected cycle.

Therefore, we have a contradiction and the proposition is proved.

Proof of Theorem 2

By contradiction, let µ be the assignment selected by applying the TTAS al-

gorithm with priority ordering ≻ to some housing market problem (N, H, ω, R)

and assume that µ is not in the core. Then, there exists a coalition T ⊆ N and

an assignment υ such that for all i ∈ T , υi ∈ ω(T ) and υiPiµi. Denote, without

loss of generality, T = {1, 2, . . . , r} such that υi = ωi+1 for all i ∈ {1, . . . , r − 1}

and υr = ω1. Take 1 ∈ T . Given that υ1P1µ1, we have that υ1 have leaved
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the algorithm before 1. Then, ω−1(υ1) = 2 ∈ T has entered in a cycle and has

received a temporary assignment before 1. Moreover, 2 prefers υ2 to µ2 and this

means that υ2 have leaved the algorithm before 2. Then, ω−1(υ2) = 3 ∈ T has

entered in a cycle and has received a temporary assignment before 2. Following

this argument, we have that for all i ∈ {1, . . . , r − 1}, i + 1 has entered in a

cycle and has received a temporary assignment before i and, therefore, r has

entered in a cycle and has received a temporary assignment before 1. However,

given that an individual and her initial endowment enters in a cycle by the first

time in the same step, ω1 is in the algorithm when r enters firstly in a cycle.

Then, the house that r receives temporarily is not worse than υr = ω1. Then,

by Lemma 3, we can conclude that µrRrυr, which is a contradiction. Then, the

proposition is proved.

Proof of Theorem 4

By contradiction, suppose that there is some TTAS mechanism that selects for

some housing market problem (N, H, ω, R) an assignment µ which is not Pareto

efficient. That is, there exists an assignment ν such that for all i ∈ N , νiRiµi

and for some j ∈ N , νjPjµj . Given the construction of the algorithm, νj has

leaved the algorithm with the agent µ−1(νj) before µj . This indicates that

µ−1(νj) has belonged to a paired-symmetric absorbing set A in this moment.

Given that µ−1(νj) should obtain by ν a house that is at least equally good

from her than νj , we have that at least one agent z of A (probably µ−1(νj))

have obtained by ν a house νz that have leaved the algorithm before z.

We can replicate the analysis with the agent µ−1(νz). This agent should have

leaved the algorithm with a paired-symmetric absorbing set. Then, at least one

agent w of this absorbing set have obtained by ν a house νw that have leaved

the algorithm before w. However, this process can not be repeated infinitely:

if we return continuously to symmetric absorbing sets that have leaved before,

we will arrive at the first paired-symmetric absorbing set and it is impossible to

return more. Therefore, we have a contradiction and the proposition is proved.

Proof of Theorem 5

We are going to prove some lemmas that will help us in the proof of the theorem.

The first lemma states that all the houses that the TTAS algorithm assigns
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temporarily to an agent are indifferent to her.

Lemma 1 Let xt
i be the t-th temporary assignment that the TTAS algorithm

assigns to agent i. Then ∀t xt
iIix

t+1

i .

Proof. Consider the step of the algorithm in which xt+1

i is assigned to agent i

and let xt
i be agent i’s current assignment. Then, by construction of the algo-

rithm, there is a cycle in which xt
i points to i and i points to xt+1

i and therefore

xt+1

i is maximal for i among the houses remaining in the market/algorithm.

Hence xt+1

i Rix
t
i.

Now consider the step of the algorithm in which xt
i was assigned to i. At

this step, there was a cycle in which i points to xt
i and ,by construction, xt

i is

maximal for i among the remaining houses. But in this step, house xt+1

i is still

in the market and therefore xt
iRix

t+1

i .

Hence if xt+1

i Rix
t
i and xt

iRix
t+1

i we can conclude that xt
iIix

t+1

i as desired.

Then, we can deduce the following corollary, by which the first house that

the TTAS algorithm assigns temporarily to an agent determines the utility that

this agent will have with her final assignment.

Corollary 7 Let x and µi be the first temporary assignment and the final as-

signment that the TTAS algorithm assigns to agent i, respectively. Then xIiµi.

The following lemma will also help us in the proof of the theorem. We will

denote hereafter by ϕ≻(P−i, Pi) the TTAS mechanism with the priority ranking

≻ when the reported preferences are (P−i, Pi) and the description of N , H and

ω is clear.

Lemma 2 Let hk be the first house assigned temporarily to agent ai by the

TTAS algorithm for (P−i, Pi) with priority ranking ≻ and let P ′
i be any prefer-

ence such that {h ∈ H |hPihk} = {h ∈ H |hP ′
ihk}. Then,

• the set of cycles and paired-symmetric absorbing sets previous to the cycle

assigning hk to agent ai in the algorithm defining ϕ≻(P−i, Pi) is also in

the algorithm defining ϕ≻(P−i, P
′
i ), and

• (ii) Each agent participates in the same sequence of temporal assignments

in the algorithm defining ϕ≻(P−i, Pi) until agent ai is assigned to hk as

in the first v stages of the algorithm defining ϕ≻(P−i, P
′
i ).
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Proof. Consider that hk and ai enter in a selected cycle of the algorithm

defining ϕ≻(P−i, Pi) in stage q.

Let t = 1 be the first step of the algorithm and let G1(P−i, Pi) be the graph

associated with this step when agent ai declares Pi. Suppose that q > 1 (if

not, the proof is finished). Notice that the paired-symmetric absorbing sets in

G≻
1 (P−i, Pi) (the digraph in step 1) are also in G≻

1 (P−i, P
′
i ). Let C∞ denote

the set of cycles obtained by the algorithm at the end of this step and let cj =

{a1, h2, a2, h3, ..., h1} be a cycle in C∞. Now consider G≻
1 (P−i, P

′
i ). Notice that

every agent in cj is in this graph pointing to the same houses as in G≻
1 (P−i, Pi)

(given that ai 6∈ cj). (a) If cj is in an absorbing set in G≻
1 (P−i, P

′
i ), then the

same structure of priorities is used to select an arrow from each agent of cj in

G≻
1 (P−i, Pi) and in G≻

1 (P−i, P
′
i ). Hence cj is also obtained as a cycle in the first

step of the algorithm for (P−1, P
′
i ). (b) If not, all agents and houses in cj will

enter firstly in an absorbing set (the same absorbing set for all of them) in the

same stage, of the algorithm. Then, in this stage, say stage t, the structure of

priorities gives the same result as in G≻
1 (P−i, Pi) and then the cycle cj is also

obtained in G≻
t (P−i, P

′
i ) and this is the first cycle in which agents in ci enter.

Consider now t = 2 (assume that q > 2, if not, the proof is finished) and

let G≻
2 (P−i, Pi) be the graph associated with this step when agent ai declares

Pi. Consider any paired-symmetric absorbing set, Ai, in this graph. It is easy

to verify that every arrow from an agent in Ai to any house outside Ai in

G≻
1 (P−i, Pi) are not in G≻

2 (P−i, Pi). This happens because these houses belong

to a paired-symmetric absorbing set in G≻
1 (P−i, Pi). Then, every arrow from

an agent in Ai in G≻
2 (P−i, Pi) are the same as in G≻

2 (P−i, P
′
i ) and in the sub-

sequent stages (given that the paired-symmetric absorbing sets in G≻
1 (P−i, Pi)

and in G≻
1 (P−i, P

′
i ) are the same). Consider now a house hi ∈ Ai. If hi points

to its original owner in Ai, it also points to her in G≻
2 (P−i, P

′
i ) and the sub-

sequent stages. If hi points to an agent aj different from her original owner,

it must belong to a cycle cj obtained in G≻
1 (P−i, Pi). Then, by the previous

reasoning, we know that cj will also be obtained in G≻
t (P−i, P

′
i ) for some t.

Therefore, we obtain that the paired-symmetric absorbing sets Ai will be ob-

tained in G≻
t∗+1(P−i, P

′
i ) (being t∗ the later stage in which a house in Ai has

entered in its corresponding cycle8). And, therefore, the sequence of temporal

assignments that has received each of these agents are the same in both cases.

8If all of them point to their original owner, t∗ = 1
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Consider now a cycle cj = {a1, h2, a2, h3, ..., h1} in G≻
2 (P−1, Pi). In cj there

may be (only) three types of agents: (i) Those agents that have not entered

in a selected cycle in the first stage in G≻
1 (P−i, Pi) and point to some houses

that are not present in G≻
2 (P−i, P

′
i ). (ii) Those agents that have not entered in

a selected cycle in the first stage and do not belong to (i). (iii) Those agents

that have entered in a selected cycle in the first stage. The houses that have

disappeared in the first stage are the same in G≻
1 (P−i, Pi) and in G≻

1 (P−i, P
′
i )

because the paired-symmetric absorbing sets are the same in both graphs (as

we have proven above). Therefore, the agents in (i) point to the same houses

in G≻
2 (P−i, Pi) and in G≻

2 (P−i, P
′
i ) (and in the probably subsequent stages).

By triviality, the agents in (ii) also point to the same houses in G≻
2 (P−i, Pi)

and in G≻
2 (P−i, P

′
i ). To respect to those agents in (iii), they point to all their

maximal houses in G≻
2 (P−i, Pi). We know that the cycle that each of them

formed in the stage 1 of (P−i, Pi) is also formed in some stage t of (P−i, Pi). Let

t∗ be the later stage in which one of the cycles is formed (t∗ = 1 if this set is

empty). With respect to the houses of cj , it is easy to verify that they point to

the same agent in G≻
2 (P−i, Pi) and in G≻

t∗+1(P−i, P
′
i ). Then, G≻

2 (P−i, Pi)|cj =

G≻
t∗+1(P−i, P

′
i )|cj

9. Then we also have that there exists t̂ ≥ t∗ + 1 such that

G≻
2 (P−i, Pi)|cj = G≻

t∗+1(P−i, P
′
i )|cj and cj belongs to some absorbing set in

both graphs. Given that cj is formed in G≻
2 (P−i, Pi), we can deduce that the

house (hj) that each agent (aj) in cj receives temporarily in this stage is the

house with the highest priority between her maximal remaining houses. It is

possible that in G≻
t̂

(P−i, P
′
i ) the set of maximal remaining houses of each agent

is a proper subset of that in G≻
2 (P−i, Pi) but hj+1 is still present and, therefore,

must be the house with the highest priority. Then ci is also formed in stage t̂

and the sequence of temporal assignments that has received each of these agents

are the same in both cases.

When t ∈ {3, . . . , q}, the proof is similar. Therefore, we have proved both

parts of the lemma and v will correspond with the maximum of all t̂ that will

appear in the proof of all stages of the algorithm after ai and hk enter in a cycle.

9If G is a graph and c is a set of nodes of G, we denote by G|c the restricted graph that

includes only the nodes of c and the arrows that part from a node of c and arrive at a node

of c.
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Now, we prove that if when an individual attains a utility level declaring a

preference, then there exist a house that gives this individual the same utility

such that if the individual puts it as her maximal house, she will receive it by

the algorithm.

Lemma 3 Let Ui(ϕ
≻
i (P−i, Pi)) = k, then there exists a house hj such that

Ui(hj) = k and ϕ≻
i (P−i, P

′
i ) = hj for all P ′

i with max(R′
i) = hj.

Proof. Let hj be the first house assigned temporarily to agent ai by the TTAS

algorithm for (P−i, Pi) when the priority ranking is ≻. Notice that by Corollary

7, Ui(hj) = Ui(ϕ
≻
i (P−i, Pi) = k. By Lemma 2, we have that the absorbing set

of agent ai in the graph corresponding to the stage q of the algorithm in which

hj is assigned to ai when she declares Pi is the same as the absorbing set of

agent ai in the graph corresponding to the stage v of the algorithm when she

declares P ′
i . Additionally, we know that each agent has passed from the same

sequence of temporal assignments in both algorithms until these steps. Then, if

the priority criterion has selected the cycle in which hj is assingmed ai when she

declares Pi, the priority criterion has to select also this cycle when she declares

P ′
i . Given that max(R′

i) = hj , we have by Corollary 7 that ϕ≻
i (P−i, P

′
i ) = hj .

Now, we can prove the theorem. By Lemma 3, we have that if there is

any way of obtaining a particular level of utility, it is also possible to obtain

this level declaring any preference in which the maximal house is one of the

houses (hk) that gives you this utility. Consider in particular a ranking P ′
i in

which hk is the unique maximal house, hkPiϕi(P−i, Pi) and {h ∈ H |hPihk} =

{h ∈ H |hP ′
ihk}. Then, by Lemma 2, we have that the set of cycles and

paired-symmetric absorbing sets that have been formed when she declares Pi

before obtaining ϕ≻
i (P−i, Pi) are also formed when she declares P ′

i . Then, in

particular, we know that hk has belonged to a paired-symmetric absorbing set

and has leaved the algorithm with an agent different from ai when ai declares

Pi. Therefore, hk has also leaved the algorithm with this different agent when

ai declares P ′
i . Then, it is impossible for ai to obtain a better house than

ϕ≻
i (P−i, Pi) and the theorem is proved.
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Proof of Theorem 6

Consider a housing market problem (N, H, ω, R) with a non-empty strict core.

We need to introduce an algorithm, called Top Trading Segmentation (hereafter,

TTS) originally proposed by Quint and Wako (2004) to determine a partition

of the set of agents and houses.

Step 1: Let each agent point to her maximal houses and each house point

to its owner. Select the absorbing sets of this digraph. Each absorbing set

constitutes an element of the partition.

Step i: Let each agent point to her maximal houses among the remaining

ones and each remaining house point to its owner. Select the absorbing sets of

this digraph. Each absorbing set constitutes an element of the partition.

With the partition obtained with the algorithm, Quint and Wako (2004)

proved that the following statements are equivalent:

• In each element of the partition, it is possible to find a sub-allocation that

assigns to each agent one of their maximal houses in this set.

• The strict core of the problem is non-empty and one of the allocations of

it consists of the union of all these sub-allocations.

Now, we will prove the following lemma.

Lemma 4 Consider a digraph (V, E) such that V is an absorbing set. Then,

we can partition V in a set of disjoint cycles if and only if there exists a subset

E′ ⊆ E such that in the digraph (V, E′) all nodes have indegree and outdegree

equal to 1.

Proof. Assume first that we can partition V in a set of disjoint cycles, {ci =

(hi
1, a

i
1, h

i
2, a

i
2, . . . , h

i
mi

, ai
mi

)}i∈{1,...,k} . Then, construct E′ in the following way:

(x, y) ∈ E′ if and only if [x = ai
j and y = hi

j+1] or [x = hi
j and y = ai

j] for some

i ∈ {1, . . . , k} and j ∈ {1, . . . , mi}. Then, it is easy to see that in (V, E′) all

nodes have indegree and outdegree equal to 1.
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Assume now that there exists a subset E′ ⊆ E such that in the digraph

(V, E′) all nodes have indegree and outdegree equal to 1. Then, start with any

node of the digraph as the first node of a cycle. Then, continue with the unique

sequence of edges (given that the outdegree of all nodes is 1) that part from

this node. Given that the indegree of all nodes is equal to 1, this sequence will

terminate in the initial node in some moment. Then, this sequence is the first

cycle of the partition. Starting with other node that does not belong to this

cycle, we will construct other cycle, disjoint from the first one. Finally, following

this procedure, we will have a partition of V in a set of disjoint cycles.

Then, consider any absorbing set of the first step of the TTAS algorithm.

Note that this absorbing set is also one of the sets of the partition that TTS

determines. Then, given the result of Quint and Wako (2004), we have that

in a housing market problem with a non-empty strict core, the absorbing sets

determined in step 1 of the TTAS algorithm must have a partition in disjoint

cycles. Or, equivalently, using Lemma 4, in each of these absorbing sets we can

find a subset of edges such that the indegree and outdegree of each of these

nodes is equal to 1.

If the absorbing set is paired-symmetric, our algorithm gives to each agent

in step (1.2) one of her maximal houses. Given Corollary 7, we deduce that our

mechanism allocates to these individuals one of their maximal houses.

If the absorbing set is non paired-symmetric, our algorithm applies in step

(1.3) a priority ranking ≻ to determine only one edge for each node of the

absorbing set, and in step (1.4), the resulting cycles trade provisionaly their

houses. If the priority ranking chooses exactly the edges that determine the

partition in cycles of the strict core allocation, we will have that all individuals

of the absorbing set will attain provisionally one of their maximal houses. Given

Corollary 7, we deduce that our mechanism allocates to these individuals one

of their maximal houses.

If, however, the priority ranking chooses other different edges, we need to

prove that in the second step of the algorithm we have that the same agents

belong to a partition of absorbing sets such that we can find a subset of edges

such that the indegree and outdegree of each of these nodes is equal to 1. Given

that this condition is satisfied in the step 1, we are going to construct a function

that assigns, for each of the edges belonging to this subset in step 1, an edge

in the step 2. First, for each edge from an agent to a house, consider exactly
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the same edge in step 2. Second, for the edges from houses to agents, select

the unique edge that part from each house in step 2. Now, we will prove that

taking into account these edges, the nodes will have indegree and outdegree

equal to 1. Given that we have selected only one edge starting from any node,

the outdegree is equal to 1 in all nodes. To see why the indegree is also equal

to 1, consider first the nodes of the agents. In this nodes, only the house that

in this moment belong to this individual points to, and, then, the indegree is

equal to 1. Consider now the nodes of the houses. Given that we have selected

the same edges that in step 1 of the algorithm and the condition was satisfied

then, we have that the indegree is here also equal to 1 for any node.

Finally, if the condition is satisfied for all the absorbing sets determined in

step 1 of the TTAS algorithm, it is easy to see that the other sets of the partition

obtained by the TTS algorithm will appear in subsequent steps of the TTAS

algorithm and the same reasoning applies. Therefore, the theorem is proved.
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